


1. Introduction

The symmetry of magnetic structures and the vrelated physical
properties of crystals are described by the magnetic (Shubnikov)
groups =, They are extensions of classical crystallographic
groups by means of time inversion. The structure of the latter
implies that they are a specific example of the so called colour
groups = . One of the types of the colour groups - the permuta-
tional ones is particularly important for solid state physics as
they could be effectively applied for a symmetry analysis of phase
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transition in the framework of Landau theory These groups

are also an important tool in the description of the vector or

tensor properties of the crystals /18{ or in the study of Fotts
modelS/IQ/. In view of the mentioned application of colour symmetry

to the examination of magnetic phase transitioﬁs the permutational
colour groups, constructed on the basis of magnetic groups
(permutational magnetic groups or FMG in what follows), are
required. Fassing by we note that the so called "groups oFb colour
antisymmetry" (cf. Ref.B8) are to some extent similar to the PMG,
however our approach, its results and the possible application are
quite different.

The idea for a synthesis of magnetic symmetry and polycolour
symmetry will be realized in a series of three papers. The present
one deals with the general theory and with the classification of
FMG in “chromomorphic classes"/ls/. In the second one/ZO/ a subset
of the full tables of all Permutational Magnetic Point Groups
(PFMFPG) is shown. The third part/21/ presents. the method of
induction and the complete list of all transitive permutational
representations of PMPG, as well as an illustration of their
efficiency in the analysis of magnetic phase transitions. The
present article is organized as follows:in the the next section we
remind the basic concepts in the theory of magnetic group and
permutational colour groups. In the third section the theory of P-
symmetry is applied to the case oF‘permutational magnetic groups,
and their chromomorphic classification is discussed. The results
are collected in two tables. In the 1last section some general
results concerning the symmetry analysis of phase transitions of

the basis of PMFG are briefly discussed.
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2. Magnetic Groups and Permutational Colour Groups

The magnetic groups’l_slare a particular realization of

Shubnikov’s antisymmetry/3’7’8/, where the operation  "anti-
identification" is interpreted as time inversion ~ 1*, respectively

inversion of magnetic moments,
1A = - A . (1)

The magnetic groups are direct or subdirect products of a crystal—
lographic group GD and the group &=17=<1°> (1’)2=1, generated by
the operation of time inverse. In the first case the magnetic group
is called a grey one,

* .
G(GD)= GD=GD *x & =6 x 1° 2)

while in the second case it is a black—and-white group,

, 2,2 s .
G(B) = 6, *+ 9’6, , (@)° € G, , g’=ql’e G . (§:9)

In every grey or black-and-white magnetic group the "non primed”
operations (the ones that are not products of +the form Q’=gl’)
constitute an invariant subgroup GQ of index ‘2 with respect to
G(GD). (These subgroups we shall denote Wwith a subscript “zero").
The ordinary crystallographic groups are usually added to the set
of proper magnetic groups, which are generated by the former. These
are colourless groups.

We note that the black-and-white space magnetic groups are
classified as antirotational (the respective point group is black-
and-white) and antitranslational (the point group is a grey one).
The grey space groups describe the symmetry of paramagnetic
crystals, while the grey point groups might as well be referred to
the antiferromagnetic structures.

In the framework of the theory of the colour symmetry’b_IOI
the magnetic groups might be regarded as “two-colour" ones,
EG(GD)=GDJ=2, and can be constructed as group extensions of G by

722/ e
means of & The respective short exact sequence is, (cf.
Ref.15-17),

1 GD G(Go) & 1

i.e. 6, < G(G) . G(G)/G, = & . |o]=2 . ’ (4)4\
The number of colours however does not coincide with the possible
orientations of atom magnetic moments, as the magnetic groups are

710/ 1 et H?) be an axial-vector

interpreted as colour O-type groups
function of the magnetic density in a crystal with crystallographic
group G, and GM < G % & is the symmetry group of the function ﬁ(?).
The action of the operators 9; € G x ©.is defined by Eq.(1) and by

the forthcoming equality,

>
. G
" { ﬁ(r) 1 9; € M s

-1
A =rg.1 BT P =
93 i i B, b =A@, g, w6

M

Here EgiJ is the proper ‘rotational paft of 9. Therefore the
crystallographic part of the colour group elements transforms both
the position and the orientation of the magnetic moments (a speci-
fic action for GO-type symmetry ). The different functions
ﬁi(?),i=1,2,...,n , NS [6G x & 1 GM] describe the different
orientations of the magnetic gomains. In general not all of the
functions ﬂi(?)are linearly independent. )

In connection with what we already mentioned,there rises the
question in what of the types of colour groups (P—- or Gftype) are
to be classified the permutational magnetic groups.

The answer is evident : the type of the colour groups is not
determined by the group structure alone, but also by the structure
of the "colour” system and the definition of the group action on
it. In the discussed case the colour group acts on the system of
magnetic moments (which can be regarded as axial vectors, localized
in atomic positions) as a O-type group, Eq.(5). This group acts as
P-type colour group on the set of n = EG:GMJ vector functions
£ ﬁi(?), i=1,2,...,n ¥}, Eq.(5).The latter correspond to the n
possible domains ,i.e. the group acts on the numbers of the
domains. The extension from a classical crystallographic .group Go
to colour Q-type group is realized in the form of Amagnetic group
G(G ).The second level of extension from a Shubnikov magnetic group
G(GD) to permutational magnetic group would be realized as a P—type
grogp. So, let’s discuss the basic concepts of permutational P-type

colour groups.



The permutational colour groups are defined as direct or sub-
direct products of a crystallographic group G and a group P which
is transitive subgroup of the symmetric group Sn (see Ref.b6-10),

3 ,
6P = {(p;g)l p = ng(g) €P, ge6, ng 16—P < sn} CP x 6 .(b)

The crucial stage of their construction is the determination of the
homomorphism n ¢t 6 —— P, defining the proper combination of
g € GH?nd pe€P in Eq.(4). Following Van—der~waerden/6/we find
m = through a transitive permutational representation Dg’OF G,
realized by an action from the left (permutation), of the left
cosets of H*> in 6, H’c G ~ [G:H’ I=n,

) H, ... HY, . H’

H . ] ) gl ) =« 3 g

e (@) = . n ePcs 2
9H”, ... ,gg HY, ... +99 H*

D

H? H H 2 . .
The kernel of DG y Ker DG = ker L coincides with the invariant

subgroup of 6 which is an intersection of all conjugated subgroups

e Hr o=l . .
H;—giH 9y i.e. with ‘the core 9# the class of conjugated
subgroups,
Ker D= = g !
g = Core H'= n g H’g =HaG. (8)
gei

The subgroup H, = Core H? determines the maximal “one~colour"
(preserving all the colours) subgroup H(l) < G(p), H(l) = H. The
subgroup H’ determines the maximal subgroup H’(p), keeping fixed at
least one colour. The homomorphism nn : 6 —— P is interpreted
as a homomorphism ¢ 16 — A X6 / H followed ‘by an isomorphism
A & P (usually the latter is considered to be a trivial one so ¢

and n are identified). Introducing the abstract qroups

AX6G/H=PCS ()

n
A’ H'/H , A’ c A,

we obtain the following relation between group~subgroup chains

1

6 > H > H = (gHgh
6
¢l ol e 7°F
A > A > L= (aaah ao
ae€nf

The transitive permutational representation "2 of A construc-
ted using its decomposition into cosets of A® is a faithful repre-

»

sentation (Ker ng = Core A" = Cy), i.e. the forthcoming isomorphism

holds,

AZP = (AA) S8 an

A
A .
The essential information about the colour groups, given 1in
Eqs. (4-11) might be written in a compact form by the so called
“three terms symbol"/7—9/,

6P 26/ h (A,A%) (12

The colour group denoted by the symbol (12) is isostructural
to 6, [G:H’l=n-colour, with one-celour subgroup H(l)z H and a sta-
bilizeerF colour number 1, H’(p) isomorphic to H'. The image of
the permutational representation Im Dg,coincides with the transi-
tive subgroup (A,A’)n < Sn.

It is particularly important that the whole sets of permuta-
tional representations Dg’and (according to Eq.(6)) the sets of
colour groups G/H°/H have the same image (A,A’)n. Defining in a
proper way the equivalence of the subgroups (A,A’)n s Sn’ we
obtain a finite number of classes, known as "chromomorphic

71/ and this way we classify all colour groups G(p)

classes"
according to these classes.

For the first time such a classification of the c¢olour point
groups was presented in Ref.9. Forty five (45) chromomorphic
classes were found, denoted for short by the symbol of the group
(A,A’)n. All the 242 colour point groups G(p) fall in these classes
(see Table 1 in Ref.9). The same result was abtained in Ref.23.

As the chromomorphic classification of the colour groups is
based on the similarity of the group-subgroup relations , its iden~

.
tical coincidence with the proposed several years later/‘4/ "exo~



morphic classification" of group-subgroup relations is not surpri-
sing at all. The same is true for the coincidence of the exomorphic
classification and the classification of phase transitions given in
Ref. (24-30) and Ref. (11-13).

3. Permutational Magnetic Point Groups

The permutational magnetic point groups (FMFG) are subdirect
pfoducts of a magnetic point group G(Go) with a transitive subgroup
of permutations F ¢ Sn:

(FP)
G(GD) = { {p:g) l peF, gei, n:G(GD)——+P < Sn} < F u G(GD) .

(13)

The essential difference of these groups from the nonmagnetic ones
6‘P?,is the reguirement that the homomorphism ¢ in Eq.(10) should
perform the same happing for the corresponding subgroup chains of

index 2 :

‘~ G 2 A
s A= GD/HD s AD = HD/HO

A A (14)

1 s AXG /H s A’ H?/H .

To take into account the additional information connected
with the subgroups XD < X(Xo)’ the components X in the "three terms
symbols” (12) have to be changed to X(XD) (for the cases of black-
and-white and grey groups). In the most general situation,

)

G5 ) P = G(G_)/H* (H)/H(H ) [A(A ),A%(A’)] (1%)
o o (=] o o o “n.

In fact this "clumsy" symbol could be significantly simplified.

First of all the possible subgroup chains are,

» (H? (16a)
G(GD) > H (Hu) > H(HD) a

' * (H? (16b)
6(6,) > H' (H1) > H_
. (16¢)
6(6) > HL > Hj .
G > H oS H (16d)
o (=] o .

The latter case correéponds to colourless magnetic groups and the
symbol (15) reduces to (12). The type of the transitive groups
[A(Ao),A’(Aé)]n remains to be checked. For this purpose we shall

consider G(G_) and H’ (H’) as group extensions of H(H?) or of H_.
o e . .9 /15-17 9

For the case (l1&éa) the following commutative diagrams are
valid :

€y €y Cy C €y il

— — — — — —_ 3 A — C
l:1 HD GD AD l:1 C1 HD HD lo 1
s (H? QT
Cl——aH(HD)—ws(GD)—an(AD)—+ C1 Cl——+H(HD)-+H (HD)——+A (TD)——+ C1 .
Cl—b iz —_ iz —_ [31 Cl—» iz —_ iz — l::1
C 17)
C1 L1 ) C1 C1

Whereof it follows that A(AD) = AD, A’(A;) = A; and the symbol . of
the permutational group will be P = (AD,Aé)n. For the sgbgroup

‘chain given in Eq. (1&b) the diagrams are :

¢ ¢ ¢ ¢ G 5

l l l l l l
Cl—’Ho — Go — Ao —-»Cl Cl_'Ho — H‘; —_— A; —_ [31

l ! l l l l
Cl—bHD —bG(GD)—bA(AO)—)Cl Cl—bHD —H? (H;)—DA’ (Aé)——b [31

! ! ! ! i !
C;b— C, — C;,—C

s Iy

c, — C, — C, —C

1 l& l‘

C1 C1 C1 Cl
: (A - . (18)
A(AD) / Ao X C2 A (AD) / AD xC
7



which implies that now the type of P is EA(AD),A’(A; )Jn . For the
chain given in Eq. (16c) we obtain P = EA(AD)’A;]n' The symbols
(Ao'Aé)n . EA(AD),A’(Aé)]n and EA(AQ)’A;]n consist of abstract
groups related to the factor—groups of the point groups. The 32
point groups and 115 (out of 122 ) magnetic groups are isomorphic
to 18 abstract groups. This 18 groups A, and their subgroups Aé,
with Core Aé =C1,
phic to (A,A’)n < Sn, n=EAD=Aé], which are obtained for the first

generate 45 nonequivalent colour groups isomor-—

time in Ref.9. The remaining 7 grey magnetic groups @ th, Czh,
¥* * * * * o | . .

D2h’ D4h' Dbh’ Th’ Dh » where X© = X & & are isomorphic to 7 new

abstract groupsls’sll. The latter give 23 " new permutation groups

L. ¥ sne e
(AD,AD)n and 2 groups EAD,A (AD)]n s where AD AD x 8.
The following equivalence criterion has been accepted for the

i . » 2
permutational groups : two groups (Al,Al)n1 and (Az,Az)n2 are

equivalent (and are considered to be the same group) if they
coincide as groups of permutations, i.e. if they are conjugated
subgroups of Sn (n1=n2=n). In Table 1 the symbols (A,A’)n of all 70
nonequivalent transitive subgroups of Sn, isomorphic to 25 abstract
groups A, are presented. These groups correspond to 70 qlasﬁes .of
chromomorphism of PMPG6. Following the symbol of the group (A,A’)n
viewed as a label of the respective chromomorphic class, the
quantity of all nonequivalent FMPG belonging to this class is
given, i.e. of all PMPG with the corresponding permutation group.
For the first 45 classes in the column entitled "OLD" in Table 1
figures stand for the number DF’the permutation colour point groups
generated by the 32 nonmagnetic groups. The number of the PMPG
generated from the 122 magnetic pnint groups is written in column
entitled “ALL"

The derivation of the PMPG and the complete lists of their

symbols are presented in the next paper/20’21/

.Here we just note
that the equivalence definition we used comprises the -Following
conditions : a) the equivalent groups are isostructural, i.e. they
can be generated by the same magnetic point group G(GD); b) their
subgroups H’(Hé) are conjugated subgroups in G(GD).

We point out, that the problem of the choice of the equiva-
lence criterion for colour groups is rather nontrivial.So we

732/

discuss four possibilities in the general case and ten modifi-

cations for isostructural (with the same 6) colour groups. Qur pre—

]

§

§

.

sent choice of the mentioned equivalence criterion is based on the
presumable application of PMPG in physics 3 to nonequivalent repre-

sentations DH correspond a nonequivalent PMPG (cf.also Ref.l16).

All 1993 PMPG were calculated by means of a designed for this
purpose computer program in Turbo-Pascal 5.0 for a personal
computer IBEM-FC. The following results were obtained :

- A complete list of the subgroups of all 122 magnetic point
groups;

— The invariant subgroups and classes of the conjugated noninva-
riant subgroups as well as the cores of these classesj;

—~ The decomposition of the magnetic groups in left cosets for all
the subgroupss

-~ The transitive permutational representations Dg’For each pair
group~subgroup H’> < G

- The characters and the decomposition of these representations
into irreducible components; )

-~ For each colour group a complete list of the combined elements
(p.g) € G(GD)(p\

The comparison of our group—-subgroups list with similar ones

/3431,33/

by other authors proved the effectiveness of ~ the program

and brought about the correction of some misprints and omissions

in these tables. (For example in the excellent tables of

/317

Ascher % Janner there are omissions only in two groups :in

T, % © the 4 subgroups S, x &, and in D % ©® the 12 noninvariant

h ) 4h
subgroups of 3 types : Cévx o, D2h(C§h), D2h(cév)') We especially

note the tables of Ref.33 that were shown to us by their author
after the final termination of our work.The chromomorphic classes
of the colour magnetic point groups and the exomorphic classes for
the group—-subgroup relations for the respective grsups completely
coincide (in comparison with Ref.9, 24, here and in Ref.33 there
are 25 new classes ,No 46-70).The difference in the number of FPMFG
- 1997 ,and the “total number of geometrically nonequivalent
symmetry descent” -~ 1599, is due to the different equivalence
criteria. Two subgroups H’,Hé < G are considered to be equivalent
if they are conjugated by g € 6 in our paper and by g € S0(3) (in
Ref.33).
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# [Pe=G/H| (AAIn  Joip | ALL | #|P—=G/H|(A.A'In oLolaLL | # (PeeG/H] |AAIR ALL
| 1| ¢ |icyey, |32 | t22]28] 0 [10.ciles | 3 |14 48] clh | ICinCilis 1
| 2| c, [iCaci, |73 | 451 |ag (0.Celsz | 3 |11 Ja7| cdn [ICEn.Calas 1
| 3| G |[ICaculy 7 21 |30 [0.Cz) 12 3 | 14 {48 of, | D.Cilis 3
4] c, lc,ey, 4 20 |31 0.Cale 3 |11 |49] DI | (D4n.Calaz 1
5| cg [ICeCyg | 7 | 41 |32 10.Cale 3 |11 |so 1D $n.Cal 16 8
6| C4 |CanCia | ¢ 12°] 33 0.0zl g 3 |11 [51] o | DEn.Colas 1
7| Cen |CenCilia| 1 15 |34 (0.D3) 4 3 |11 Is2 IDgh:Calz4 8
8| D |[DaCyl, |34 | 366 35] On [OnCilea | 1 | 5 53| TH (Th.Cilas 1
g| Dan |PanCya | 3 74 138 [OnColaa | ¢ | 9 |54 (Th.Cal24 1
10 D, [ID,Clg | 10 | 42 |37 OnCslaa| 1 | 9 |55 ITh.Cdl2a 3
11 ID5.Cals | 10 | 42 |38 (On.C2las | 2 | 18 |56 (Th.Calss 1
12[ D, |D4C4le 5 32 |39 10,.Calse | 2 | 8 |57 ITh.Cavliz 3
i 13 D4C3ls | 10 | 64 Jao 0,.Calsz | 2 | 18 |58 (Th.CaviCallsa| 2
< 14| D,, [DuCisgl ¢ | 15 |41 On.Cavlyz| 1 | 9 fsa| o} (Of.C1lgs 1
15 D n.Calg 60 |42 lOnD2l42 { 2 | 18 |60 O}.C2l4s 1
16] Dy DaCslsa | 8 g2 43 I0n.Caviga| 1 9 |e1 (OE.CJ 48 3
17 - |IDg.Calg | 16 | 124 § 44 10,.D3} 5 2 | 18 |62 OhC2las 4
B[ Opn |Og,.Colas| & | 18 )45 OnCuls | 2 |48 |53 (0} Cdlse 1
18] = Den.Caliz] 4 | 72 279 |1919] 64 On.Cdas 4
20 T (T.C,l,» 2 5 65 (Op.Cavlaa 3
21 IT.Calg 2 5 66 [On.D2l24 4
22 IT.C3la 2 5 67 lo}.Caviza 6
23 Ty (TnCqlza | 1 6 68 IO}.Cay ICollaa| 1
24 nCalga | 1 6 69 On.Dal 16 4
25 T,.Calyz| 1 6 70 I0h.Cavl 1z 12
26 (Th.Calg 1 5]
a7 ThCals| 1 5] 1997
Table No.1
No|1AAn Permutational representation
1|lCs.Caly N 23|1Th.C4las |Rotlegtlagt3agtNutloytfayt3fa’
2|lcaCyl, |RH 24|{Th.C2alya ﬁg"'anfragfng"'r!u"'r2u+r3u"'r4u:
3|lC3Cyls [MtlRtG)° 25[(Th.Cylyn |Rotfegtlsgtlagtelid
41lC4.Cq) 4 Rttt lraﬂ:t’ ' > 26((Th.C3le ﬂnfrdnfrlu"'nu.
5|ICg.C4lg l'i'l'l'zﬂ'sﬂ}f (rsﬂ-aj ' 27|ThCavle ﬁgﬂ'zqﬂ'apﬂ'«?
6 |ICan.Cylag |Mgtlagtlagtlagtiutlaytlaytiy 28[10.Cy Jas |RtTat2Rt31+3°
7 |ICen.Celea nuﬂ-znfran"'ratgfﬁqfrsn"rtu”-Zufrau"rm”%u"rm 29{(0.Calyp [Mthat @M+ +15°
8 |IDa,Cyls [htMt5tYG : ) 30{l0.C'2142 |fthptlt2 °
9 [ID2n.Cyla [figtlagtlagtlagtNutlaytlsthy 31{(0.Calg P PR e P
10[ID3.C tg [RtMatars® 32|0.C, ) g Rt
11](D03.Cal3 [R5 33(10.0'21 g |RtRHHR
= [12]D,C,lg |QtRtHIHRNE 340,04, |GtE"
13)1D0,.C'5l, ri*rs*rs. 35|10,.C, l s NgtTagt2lag+3Tagt3Msg thutlaytels +370" 43083
14][B an.C 1) 1g | MgtlagtTagtag +20mg thyt ey tlsyt Ry +2Msy 36{[0n.Cal 24 |Mgtlagt 2Magthag gy +2May ey’ +May
15[ID 4n.C'ala |Mig*Mag*Msp*Miy tMautlsy 37[104.C 4l oy |MatTeg* 2Mag+lagtsg 25" +2Msd
16|[D6.C1) 12 |tiatigti targtal, 38| [0y .C2) 24 |fgtfgtlagtelsgthutlsutlas tals,
17|IDg.Cle |Mt*EHH 39|104,.C 3l 45 |fio*Teg*Tag* Mg HiutFautlas Haf
181D gn.C 4oy |MatlagtMagtlag talpgt 25 Hiutfeytlautlay +205, 120G, § 40 [0 .C 4} 4o | Ratfatlag thutfautlay’
19({[Den.C'2] 12 ﬁnﬂ-zg"'rSgﬂlgﬂ-lu"'rau*rau"rdu 41((On.Cavls2 ﬁnfran*arSn*rAucﬂ-suc
20{(T.C4) 4o |MRHHEt30S 4210, D'l 4o lig+Magtlsg +Mutlautlsg
21|T.C2lg |Mthtistr® 43| [0n.C2v ) 12|figtMagt Mgy’ sy’
22|[T,cals |t : 44110, .D3lg |fgtgtriutlsd
45] 0n.Cavl 6 |fgtMagtias

Table No.2
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Permutational representation

No | [AA'ln

46|1C%n.Calis  |FotlogtlagtTag Tty Tt Ty #1g #Mog tag Mg 1T T2y M5y au

a7[(Chn Calae [ Ry e g HE o A T T i g g g Mg o i T o o e
48[103.Culus (bR HRY PG L PR P, ¥y g g g i et ,

49|ID3n .C4laa l':?:”é’g”:'a’g*fi’u*zra’g*ﬂﬁ"EL*E’u*Q’u*E‘E’u'fﬁ;+EE*G}’fl’&*afﬁ*ﬁﬁﬂ'ﬁ.fﬁ]*m +20Ey

50| (Din.C'al sa  [bHEL Gt RL HEHEuthp* gt gt iRt ey

51|(D6n.C1las Tt Gyt it Tt 2la 2l [ R B T 2t 2leut gt gt gt Mgt 2l gt Mgt Mttt ek
52((Ddn.Calea  [ibHS} Ty TRy T+ T30 M i 1o i e i s ey

53|IT8.Colan  [IibHal ol +30y il HE 1,130 g # gy 300 41 1 42y 415 #3M

54]ITR .Czlaa Tt G 1 11t AT T 1 41 # T 13 1T 41y #y #1514y

55|ITH Calas  [lbHTEp 135 #1ay *2M It 20ty M g 2T

56T} .Calyg (AT AR R P PR PR R

57 HTh .Cav)ia n’vﬂ-a’n”é’n”‘d’u*r-(nfrz_g*rs-n*r:u

58|(TH.Cay ICll 12 |Mib* g *R0+Mu +Mag My

59|l0kh.Cqles TG I 2l S Al U 2 ST+ 315, Higt g 12MRg 3t 3Bt Miu +M2y 123y +3ray 30
60|10} .Calan n',ﬂ;“'rzrgﬂ'rr},+r;,+r{u+r2’u T2 T2, 115, g +Tag 420ag +Mag +Mag My g, 120, Mgy tray
61 |l0OX.Clus Tih Y +ardg+rg tTdy t2rfytard Mg +Mzg 1203, +ag +MEg 12M 4y +2Msy

62 [ 107 .C2l 46 it [y 1 + 218G 7], 1y +T0 PN, 411 475 11 120+, M5, taytley -

63 (Or: .C 3 ) a2 - n%”-z’nﬂ-d’n ”:’I’n 1'r;u"'rz’ui'rd’u ﬂ_ﬁ’u*rry +ré-g +r4-n+r:':—n +rl_u +r2-u ﬂ':; ﬂ-:":-u

64|10}.C4las Mt Eh 0yt HM3, 14, Mg tMag t gy ey

65|10} .Cavlaa Tib*lag 1My I, tgy gt Mg Y2l ey Mg, +May

66 IO,'. -D'zl 24 r"ﬂﬂ?ﬂ ﬂ-;n ﬂ—:u *rs’u +r;u fl"’; ﬂ-s-n +r.’;;: +|";‘ +r3-u 1.ra-u

67 o r'l-’::"zvl 24 rl,n“?g *rs’u*rzu*rgu*rl-n +r3—g ﬂ_gn +r-;u +|"5'|',

68 | (O .Cay (Cal) 24[Mib R, t2IF Ly T8y +4g #T5g +Mau 15y

69 1(03.Dalss b+t L +Mig M5 M tMay

70 108 .Cuylsz [Nkt MG g *Mau

Table No.2 [continued)



4.Application of PMFG to the theory of Landau

In Ref.11 it was shown that the colour permutational groups
could be very useful in analysis of phase transitions in crystals
in the framework of the Landau’s theory.This is a consequence of
the properties of their transitive permutational representations
and also of the well defined relation between groups, supgroups and
factor groups. Without repeating the procedures precisely presented
in Ref.11~17, we shall just note that in the three-terms symbol
(12) , or respectively (185), the group G describes the high sym-
metry phase, H® - the low symmetry one and H is the kernel of the
symmetry breaking irreducible representation Dé 5re1ated to the

order parameter). A necessary condition is that Dg should belong
to th? decomposition of the permutational representation Dg',
Im Dg = (a,8%) . .,

All the 1997 transitive permuta&innal representations DG
= (A,A')n. The decomposition

where
»

have in total 70 different images 02
’
of Dz to irreducible representations of the abstract group A = G/H

are presented in Table 2, where the notations of irreps follow the

Ref.35. From the images 02 by engendering’>*/ one obtains all

»
necessary irreducible representations, contained in Dg . The full
»
list of decompositions of Dg to G-irreducible representations for
721/

all PMPG is given in the third part of the present paper . Sym—
metry breaking irreps Dé are engendered only by the faithful
irreps Dg of A.

All faithful representations D; =r s J=1,2,... of A are

Bl
denoted in Table 2 with an upper index "¢", "s" or "X". The. "c"
/34/by Dgs r?’
does not satisfy the Chain Subduction Criterion (CSC), introduced

: /31,37,12/
by PBirman

/Sf/; 80 it is not an active irrep in a phase transition.

means that the representation Dg of G, engendered

and based on the Frobenius Reciprocity
Theorem

The representations with a superscript "s" do not satisfy the
Stability Criterion of Landau,12/ and may drive only first-—order
transition . The symmetry breaking representations for continuous
phase transitions might be engendered only by the faithful irrehé,
marked in Table 2 with "¥x".

The tables allow to reach useful general conclusions on the
possibilities concerning equitranslational magnetic phase transi-
tions : all nonequivalent changes of symmetry, described by
magnetic groups are 1997, in number equal to the quantity of PMPG

and are distributed in 70 classes. All the properties of the groups
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in one class are gquite similar. Forty one of these classes either
have no faithful irreducible representations in Dg,or these repre-
sentations do not satisfy the CSC (among them are all new 25
classes). Therefore the 912 FMPG belonging to them cannot be
connected with any phase transition. Faithful representations with
upper .index "s" are contained in Dg’ of 8 chromomorphic classes
total of 142 PMPG and the corresponding phase transitions are from
first—order.

All necessary conditions are satisfied for those marked with
an asterisk *%’ and fall in 21 classes with a total of 934 groups.

Examples of application of the tables are contained in the
forthcoming two parts.

One of the authors (J N K) thanks Dr. V.Kopsky - Czechoslova-
kian Academy of Sciences, who (after the present work had been

already finished ) acquainted him with his book’>37.
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Koues H.H., Uorer C.C. , ’ E17-90-387
" TlepecTaHOBOYHbIE MATHHTHBIE TOuYEYHble I'DYIIIH

H MX IPHMEHeHHe B TeODHH (GasOBbIX /

nepexonos JlaHmay ;

06man Teopus M XpoMOMopdHAas KaccubHKAIMA TpPYHI

MaanTHme Jury 6uukosekue / TOouyeyHble T'PYNmnbL PacCHHPANTCS
C TOoMOHBI0 TPaH3HTHBHLX IOATDYIIN chMeTpuqeéxoﬁorpynnm Sn.
HonyquHme'nepeCTaHoBquue MarHuTHEE TPYINE OMNHCHIBAKT
CHMME T PHI0 nOHHﬂOMeHHHX MaTHUTHHIX CTPYKTYD, a TakKxe IpH-
MeHSKWTCH B aHamuse MaFHHTHHX $a30BbX MEPexXofoB B paMKax,
Teopnn HaHnay.

! "Pabora anonHeHa B Ha6opaToan Teopeanecxon ¢n3nxn
OUiH.

Coobuetne O6BeOMHEHHOrO HHCTHTYTA ﬂnepﬂm ucenenoBatmii. y6ua 1990

Kotzev J.N., Tzonev S.S. ‘ ' E17-90-387
Permutational Magnetlc Point Groups o C
and Their’ Application in the Landau Theory

of Phase Transitions : ‘

General Theory and Chromomorphlc C1a551f1catlon

Through a two-Step extension of point groups by time
inversion and transitive permutational groups, new types
of colour groups called permutational magnetic groups
have been obtained. They describe the symmetry properties
of polydomain magnetic crystals and might be applied to
symmetry analysis of magnetic phase transitions.,

The investigation has been performed at the Laboratory
of Theoretlcal Phy51cs, JINR.
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