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1. Introduction 

The symmetry of magnetic structures and the related physical 

properties of crystals are described by the magnetic (Shubnikov) 

groups11 - 51 • They are extensions of classical crystallographic 

groups by means of time inversion. The structure of the latter 

implies that they are a specific example of the so called colour 

groups/b-lO/. One of the types of the colour groups - the permuta­

tional ones is particularly important for solid state physics as 

they could be effectively applied for a symmetry analysis of phase 

transition in the framework of Landau theory/ll-l?/ These groups 

are also an important tool in the description of the vector or 

tensor properties of the crystals 118{ or in the study of Potts 

models1191 • In view of the mentioned application of colour symmetry 

to the examination of magnetic phase transitions the permutational 

colour groups, constructed on the basis of magnetic groups 

Cpermutational magnetic groups or PMG in what follows>, are 

required. Passing by we note that the so called "groups of colour 

antisymmetry" (cf. Ref.8) are to some extent similar to the PMG, 

however our approach, its results and the possible application are 

quite different. 

The idea, for a synthesis of magnetic symmetry and polycolour 

symmetry will be re~lized in a series of three papers. The present 

one deals with the general theory and with the classification of 

PMG in "chromomorphic classes" 1131 • In the second one1201 a subset 

of the full tables of all Permutational Magnetic Point Groups 

<PMPG) is shown. The third pa,-t1211 presents the method of 

induction and the complete list of all transitive pe,-mutational 

representations of PMPG, as well as an illustration of their 

efficiency in the analysis ,of magnetic phase transitions. The 

present article is organized as 'follows: in the the next section we 

remind the basic concepts in the theory of magnetic group and 

permutational colour groups. In the third section the theory of P-

symmetry is applied to the case of permutational magnetic groups, 

and their chromomorphic classification is discussed. The results 

are collected in two tables. In the last section some general 

results concerning the symmetry analysis of phase transitions of 

the basis of PMPG are briefly discussed. 

C$bl.C:JU,i~,i.;li,;ll l:HCTL'TYf \. 
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2. Magnetic Groups and Permutational Colour Groups 

The magnetic groups11 - 31are 

Shubnikov's antisymmetry13• 7 • 81 , 
a particular realization or 

where the operation. "anti-
identification" is interpreted as time inversion - 1', respectively 
inversion or magnetic moments, 

1·A<1> = - A<1> • 

The magnetic groups are direct or subdirect 

lographic group G
0 

and the group &=1'=<1'> 

(1) 

products or a crystal­

(1'>2=1, generated by 
the operation or time inverse. In the rirst case the magnetic group 
is called a grey one, 

G(G )5 G~5G x & = G x 1' 
0 0 0 

while in the second case it is a black-and-white group, 

(2) 

G(G0 l = G0 + g'G
0

, (g'l 2 e G
0

, g'.=g1'e G
0

• (3) 

In every grey or black-and-wh_ite magnetic group the "non primed" 

operations (the ones that are not products or the rorm g'=g1') 

constitute an invariant subgroup G or index' 2 with respect to 
0 ' 

G <G0 >. <These subgroups we shall denote with a subscript "zero"). 

The ordinary crystallographic groups are usually added to the set 

or proper magnetic groups, which are generated by the rormer. These 
are colourless groups. 

We note that the black-and-white space magnetic groups are 
classiried as antirotational (the respective point group is black­

and-white) and antitranslational <the point group is a grey one>. 

The grey space groups describe the symmetry or paramagnetic 

crystals, while the grey point groups might as well be rererred to 
t~ antirerromagnetic structures. 

In the rramework or the theory or the colour symmetry/b-lO/ 

the magnetic groups might be regarded as "two-colour" ones, 

CG<G >:G l=2, and can be constructed as group extensions or G by 
o o /22/ O 

means or &. The respective short exact sequence is, (er. 
Rer. 15-17>, 

2 

t, 
j' 

;1 
1, 
:i 
l' 
I 
I 
t ,: 

,t 

1--+ G --+ G(G l--+ & --+ 1 
0 0 

i.e. G
0 

c G(G
0

l , G(G
0

l/G
0 
~ & 19 1=2 (4) 

The number or colours however does not coincide with the possible 

orientations or atom magnetic moments, as the magnetic groups are 
. / 10/ :t -> . ' interpreted a~ colour Q-type groups :Let n<r> be an axial-vector 

runction or the magnetic density in a crystal with crystallographic 

group G, and GM c G x & is the symmetry group or the.runction A.<1>. 
The action or the operators gi e G x &.is derined by Eq. (1) and by 

the rorthcoming equality, 

gi A<'~> 
:\ -1 .. 

Cgil ri<gi r> 
{ 

A<1> , gi e GM 

Ai<1>,. A<1>, gi e GM. 
(5) 

Here Cgil is the proper ·rotational part or gi. Thererore the 

crystallographic part or the colour group elements transrorms both 

the position and the orientation or the magnetic moments (a speci­

ric action ror Q-type symmetry ). The dirrerent runctions 

Ai <1>,i=1,2, ••• ,n, n s CG x & : GMJ describe the dirrerent 

orientations or the magnetic pomains. In general not all or the 

runctions Ai <1>are linearly independent. 

In connection with what we already mentioned,there rises the 

question in what or the types or colour groups IP- or Q-typel are 

to be classiried the permutational magnetic groups. 

The answer is evident: the type or the colour groups is not 

determined by the g1·oup structure alone, but also by the structure 

or the "colour" system and the derinition or the group action on 

it. In the discussed case the colour group acts on the system or 

magnetic moments (which can be regarded as axial vectors, localized 

in atomic positions) as a Q-type group·, Eq. (5). This group acts as 

P-type colour group on the set or n = CG:GMJ vector ,functions 

{ Aic1>, i=1,2, ••• ,n >, Eq. (5).The latter correspond to the n 

possible domains ,i.e. the group acts on the numbers or the 

domains. The extension rrom a classical crystallographic . group G0 

to colour Q-type group is realized in the rorm or magnetic group 

GCG
0

).The second level or extension rrom a Shubnikov magnetic group 

G(G
0

) to permutational magnetic group would be realized as a P-type 

group. So, let's discltss the basic concepts or permutational P-type 

colour groups. 
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The permutational colour groups are de-fined as direct or sub­

direct products o-f a crystallographic group G and a group P which 

is transitive subgroup o-f the symmetric group Sn (see Re-f.6-10>, 

(P) { I H H' } G = (p;g) p = nG(g) e P, g e G, "G :G-P s Sn c P x G. (6) 

The crucial stage o-f their construction is the determination o-f the 

homomorphism n: G -- P, de-fining the proper combination o-f 

g e G and p e P in Eq. (6). Following Van-der-Waerden161we -find 

n = n~'through a transitive permutational representation o~'o-f G, 

realized by an action -from the le-ft (permutation), o-f the le-ft 
cosets o-f H' in G, H'c G - [G:H'l=n, 

H' [H', 
... ' giH'' ' g H' l DG <gl a; n E p S S 

,ggiH'' H' n. gH', ... ,ggn 

H' H ' H ' The kernel o-f 06 , Ker 0 6 = ker n
6 

coincides with the 

subgroup o-f G which is an intersection o-f all conjugated 

H1=giH'g~
1

, i.e. with the core o-f the class o-f 
subgroups, 

H' Ker 06 = Core H'= n g H'g -l 
g E G 

H c G 

(7) 

invariant 

subgroups 

conjugated 

(8) 

The subgroup H, = Core H' determines the maximal "one-colour" 

(preserving all the colours> subgroup H<l> c G<p>, H(l);:;: H. The 

subgroup H' determines the maximal subgroup H' (pl, keeping -fixed at 

least one colour. The homomorphism n: G--+ P is interpreted 

as a homomorphism~ :G--+ A a: G / H -followed 'by an isomorphism 

A a: P (usually the latter is considered to be a trivial one so ~ 
and n are identi-fiedl. Introducing the abstract groups 

A;:;: G/H;:;: PSS 
n (9) 

A'a: H'/H ' A' CA, 

we obtain the -following relation between group_-subgroup chains 

4 

' ~-. 

i 

G ::, H' ::, H = n (g H'g-1) 

~! ~! ~! g e G 

A A' ::, c1 = n <a A'a- 1 > <10) ::, 

a e A 

The transitive permutational rept·esentation n~' o-f A construe­

ted using its decomposition 
·A• 

sentation <Ker nA = Core A' 

into cosets o-f A' is a -faith-ful repre­

c1>, i.e. the -forthcoming isomorphism 

holds, 

A;:;: P;:;: "AA'= (A,A'l S S n n. 

The essential in-formation about the 

Eqs. (6-11) might be written in a compact 

"three terms symbol"t7 - 9 t 

colour 

-form 

G(P) = G / H'/ H <A,A'> 
n • 

groups, 

by the 

(11) 

given in 

so called 

( 12) 

The colour group denoted by the symbol (12) is isostructural 

H<l)~ Hand a sta-to G, [G:H'l=n-colour, with one-colour subgroup 

bilizer o-f colour number 1, H' (pl isomorphic to H' 

the permutational representation Im o~'coincides with 

The image o-f 

the transi-

tive subgroup <A,A')n c Sn. 

It is particularly important that the whole sets o-f permuta­

tional representations o~' and (according to Eq. (6)) the sets o-f 

colour groups G/H'/H have the 

proper way the equivalence o-f 

obtain a -finite number o-f 

classes•• 111 and this way we 

according to these classes. 

same image <A,A'>n. De-fining in a 

the subgroups <A,A'ln S Sn' we 

classes, known as ''chromomorphic 

classi-fy all colour groups G(p) 

For the -first time such a classi-fication o-f the colour point 

groups was presented in Re·F.9. Forty -five (45) chromomorphic 

classes were -found, denoted -for short by the symbol o-f the group 

<A,A') • All the 242 colour point groups G(p) -fall in these classes 
n 

(see Table 1 in Re-f.9). The same result was obtained in Re-f.23. 

As the chromomorphic classi-fication o-f the colour groups is 

based on the similat·ity o-f the group-subgroup relations , its iden­

tical coincidence with the proposed several years later1241 "exo-

5 



morphic classification" of group-subgroup relations is not surpri­

sing at all. The same is true for the coincidence of the exomorphic 

classification and the classification of phase transitions given in 
Ref. (24-30) and Ref. <11-13). 

3. Permutational Magnetic Point Groups 

The permutational magnetic point groups <PMPG) are subdirect 

products of a magnetic point group G(G
0

) with a transitive subgroup 

of permutations P s Sn: 

G<Gol <Pl= { (p;gl p e P, g e G, n:G(G
0
l->P S S} c PX G(G) • 

n o 

< 13) 

The essential difference of these groups from the nonmagnetic 

G<p>,is the requirement that the homomo_rphism ,t, in' Eq.(10) 
ones 

should 
perform the same mapping for the corresponding subgroup chains of 
index 2 

A ~ A' 
0 0 

"'l "'l 
G ~ H' 

0 0 
l; l; 

G ~ H' 

"'l "'l 
A ~ A' 

~ Cl 

"'l 
~ H 

0 

l; 

~ H 

"'l 
~ Cl 

A a; 
0 

G· /H 
0 0 

, A a; G /H 

A' a; H'/H 
0 0 0 

, A";; H" /H 

(14) 

To take into account the additional information connected 

with the subgroups X
0 

c X(X
0
l, the components X in the "three terms 

symbols" (12) have to be changed to X(X
0

l <for the cases of black­

and-white and grey groups). In the most general situation, 

G(G >(pl= G(G l/H'(H'l/H(H l 
0 0 0 0 

CA<A ) ,A' (A' l J o o n. (15) 

In fact this "clumsy" symbol could be significantly simplified. 

First of all the possible subgroup chains are, 

6 

" i} 

i, 
' 

~ 

G(G l ~ H' (H'l ~ H<H l 
0 0 0 

G(G l ~ H' <H' l ~ H 
0 . 0 0 

G(G l ~ H' ~ H 
0 0 0 

G ~ H' ~ H 
0 0 0 

<16al 

( 16b) 

<16cl 

< 16dl 

The latter case corresponds to colourless magnetic groups and the 

symbol (15) reduces to (12)·. The type of the transitive groups 

[A(A
0

l,A' (A~)Jn remains to be checked. For this purpose we 

consider G(G) and H' (H'l as group extensions of H(H'l or of 

shall 

o o o /15-17 
For the case (16a) the Following commutative diagrams 

Ho. 
are 

valid 

Cl Cl Cl Cl Cl Cl 

! ! ! ! ! ! 
Cl-> Ho-> Go-> Ao-> cl C1-> Ho-> H'-> A'-> C 

0 o 1 
! ! ! ! ! ! 

C1->H(H
0

l-+G(G
0

l-+A<A
0

l-+ c 1 Cl->H(Hol-+H' (H~>-A' (A~>- cl 

! ! ! ! ! ! 
c

1
_. c,., _. c,., _. c

1 !4 !4 C1-> c2-> 
! 

c,.,-!4 Cl 

Cl C 1 Cl Cl (17) 

Whereof it follows that A(A
0

) = A
0

, A' (A~) = A~ and the symbol of 

the permutational group will be P = (A
0

,A~ln. For the subgroup 

chain given in Eq. (16b) the diagrams are: 

Cl Cl Cl Cl Cl Cl 

! ! ! ! ! ! 
C1->Ho-> Go ->A o ->Cl C1->Ho-> H'-> A'-> C 

0 o 1 

! ! ! ! ! ! 
C1->H

0 
->G<G

0
l-+A(A

0
>-+C1 

C ->H ->H' <H'l->A' <A')-> C 1 0 0 0 1 

! ! ! ! ! ! 
c 1 -> c,., _. c,., -c1 !4 !4 C2-> c2 _. 

! 
C-,-> c 1 !~ 

Cl Cl Cl Cl 

A<A
0

> / A
0 
~ c 2 

A' (A' l / A' a; C (18) 
0 0 

7 



which implies that now the type or Pis CA<A
0

>,A' <A~ >Jn. For the 

chain given in Eq. (16c) we obtain P = CA(A
0

>,A~Jn. The symbols 

<A
0

,A~>n, CA<A
0

),A' (A~>Jn and CA(A
0

>,A~Jn consist or 

groups related to the factor-groups or the point groups. 

abstract 

The 32 

point groups and 115 (out or 122 > magnetic groups are isomorphic 

to 18 abstract groups. This 18 groups A, and their subgroups A~, 

with Core A~ =C 1, generate 45 nonequivalent colour ·groups isomor­

phic to <A,A') ~ S, n=CA :A'J, which are obtained for the first 
n n o o .+. 

time in Ref.9. The remaining 7 grey magnetic groups : c::;h, c 6 h, 

o;h' o:h' o:h' T~, 0~, where X~ a Xx & are isomorphic to 7 new 

abstract groups13 • 311 • The latter give 23 new permutation groups 

<A", A'> and 2 groups CA", A' (A') J , where A"= A x &. oon o on o o 
The following equivalence criterion has been accepted for the 

permutational groups: two groups <A 1,Ai>n
1 

and <A2 ,A2>n
2 

are 

equivalent (and are considered to be the same group) if they 

coincide as groups of permutations, i.e. if they are conjugated 

subgroups of Sn <n1=n2=n). In Table 1 the symbols <A,A')n of all 70 

nonequivalent transitive subgroups of Sn' isomorphic to 25 abstract 

groups A, are presented. These groups correspond to 70 classes of 

chromomorphism of PMPG. Following the symbol of the group <A,A')n 

viewed as a label of the respective chromomorphic class, the 

quantity of all nonequivalent PMPG belonging to thi,s class is 

given, i.e. of all PMPG with the corresponding permutation group. 

For the first 45 classes in the column entitled "OLD" in Table 

figures stand for the number of the permutation colour point groups 

generated by the 32 nonmagnetic groups. The number or the PMPG 

generated from the 122 magnetic point groups is written in column 

entitled "ALL" 

The derivation or the PMPG and the complete lists 

symbols are presented in th& next paper120• 211 .Here we 

that the equivalence definition we used comprises the 

conditions: a) the equivalent groups are isostructural, 

can be generated by the same magnetic point group G(G
0

>; 

subgroups H' (H~) are conjugated subgroups in G(G
0
). 

or their 

just note 

following 

i.e. they 

bl their 

We point out, that the problem or the choice or the equiva­

lence criterion for colour groups is rather nontrivial.So we 

discuss 
1321 

four possibilities in the general case and ten modifi­

cations for isostructural iwith the same G) colour groups. Our pre-

8 

f 
s. 

j 
J 

sent choice or the mentioned equivalence criterion is based on tha 

presumable application or PMPG in physics: to nonequivalent repre­
H' sentations 06 correspond a nonequivalent PMPG (cf.also Ref.16). 

All 1997 PMPG were calculated by means or a designed for this 

purpose computer program in Turbo-Pascal 5.0 for a personal 

computer IBM-PC. The following results were obtained: 

- A complete list o-f the subgroups or all 122 magnetic point 

groups; 

- The invariant subgroups and classes of the conjugated noninva­

riant subgroups as well as the cores or these classes; 

- The decomposition or the magnetic groups in left cosets for all 

the subgroups; 

- The transitive permutational representations o~' for each pair 

group-subgroup H' c G 

- The characters and the decomposition or these representations 

into irreducible components; 

- For each colour group a complete list or the combined elements 
<p,g) e G<G > (pl 

0 

The comparison or our group-subgroups list with similar ones 

by other authors13• 31 • 331 proved the effectiveness of the program 

and brou\)ht about the correction or some misprints and omissions 

in these tables. (For example in the excellent tables or 

Ascher & Janner1311 there are omissions only in two groups :in 

Th x & the 4 subgroups s6 x &, and in o4 h x & the 12 noninvariant 

subgroups or 3 types: c 2vx &, o2 h<c2h>, D2h<c2v>.> We especially 

note the tables or Rer.33 that were shown to us by their author 

after the final termination or our work.The chromomorphic classes 

or the colour magnetic point groups and the exomorphic classes for 

the group-subgroup relations for the respective groups completely 

coincide (in comparison with Rer.9, 24, here and in Rer.33 there 

are 25 new classes ,No 46-70).The difference in the number or PMPG 

- 1997 ,and the "total number or geometrically nonequivalent 

symmetry descent" - 1599, is due to the different equivalence 

criteria. Two subgroups H1,H2 c Gare considered to 

if they are conjugated by g e Gin our paper and by 

Rer.33). 

9 
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.... 
0 

.... .... 

No 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

* P-G/H 

1 C1 

2 c2 
3 C3 

4 C4 

5 Cs 

6 C4h 

7 Csh 
8 D2 
9 D2h 
10 D3 
11 
12 D4 
13 
14 D4h 
15 
16 D6 
17 
18 Dsh 
19 
20 T 
21 
22 
23 Th 
24 
25 
26 
27 

IA,A'ln 

(C1,C1l1 

IC2,C1l2 

IC3,Cd 3 

IC4,C1l4 

ICs,Cde 

(C4h,C1 I e 

ICeh•C1l12 

ID 2 ,C1I 4 

ID2h ,C1 I B 

ID3,C1 I e 
(D3,C2I 3 

(D4,C 11 e 

ID4,C'2l4 

ID 4h,c d 1s 

ID 4h•C'2I B 

(D5,C1l12 

IDe,C'2I e 

ID sh,c 1124 
IDeh,C'2l12 

(T,C 11 12 

IT,C2I e 

(T,C3I 4 

(A,A'(n OLD ALL * P-G/H (A.A'ln 

IC1,C1I 1 32 122 28 0 ID.Cd 24 

IC2,C1la 73 451 29 (D,C2I 12 

(C3,C113 7 21 30 (D,C2I 12 
IC4,C1( 4 4 20 31 (O,C3I e 

ICs,C1l s 7 41 32 IO,C4l e 

(C4h'C11 B 1 12 
. 

33 ID,D~ls 

IC6h'C1112 1 15 34 (D. □ 314 
ID2,C114 34 366 35 Oh (Dh,C1l4e 
(D2h'C11 B 3 74 36 (Dh,C2l24 

ID 3,C116 10 42 37 (Oh,C ■ (24 

ID3,C2I 3 10 42 38 (Dh,C2l24 
(D4,C1I B 5 32 39 (Oh,C3l1s 
ID,4,C214 10 64 40 (Oh,C::4112 

ID4h,C1l1e 1 15 41 1oh,C2vl12 

ID4h,C2le 4 60 42 (Dh,D2112 

IDe,C1I 12 8 62 43 (Dh,c'2vl12 
ID 6 ,C~l 6 16 124 44 (Oh,D31 e 
ID6h'C1l24 1 18 · 45 (Dh,C4vle 

IDeh,C2l12 4 72 

(T,Cll 12 2 5 
IT,C2ls 2 5 
IT,C3l4 2 5 

(Th,Cll 24 1 6 
(Th,C2l12 1 6 
IT h ,c. 112 1 6 

IT h ,C3I B 1 6 
IT h'c2vls 1 6 

Table No.1 

Permutational representation 
fj_ 

r,_tr2• 

fi.t(r2tr31• 

r,_tr2t lr3tf.il' . 
r,_tr2tr;tf.it lfstriJ • 

ljgtfi!gtr3gtr4gtfiutr2utr3utl":iu 

ljg tr2g +r3g tr4g tfsg treg tr1u tr2u tr3u tr4u t r:iu treu 

r,_tr2tr3tf.i 

ljg tr2g tr3g tr4g trju tr2u tr3u tr;.. 
r,_tr2 t 2r3• 

r,_tr3• 

r,_tr2tr3tf.it2r5 ' 

r,_tr3 tfs' 

ljg tr2gtr3g tr4g t2r!lg tlju tleutr3u tr4u t2reu 

ljg tr:,g tr5g tr10 t'30 treu 

fj_tr2tr3tr4t2r5•t2r8 

r,_tr3tre'tr8 

ljgtr2gtr:,gtr4g t2rsg t2'5g tfiut'2utr3utr4u t2r5u t2lsu 

ljg tr2g tr3g tr4g trju tr2u tr3u tr4u 

r,_tr2tr3 t3r4• 

r,_tr2tr3tr4• 

r,_tr4" 

Table No.2 

OLD ALL * P-G/H (A,A'ln ALL 

3 11 46 C~h 1c:h,c111s 1 

3 11 47 CJh (Csh,C1l24 1 

3 11 48 □:h (D~h,C1I lB 3 

3 11 49 □:h 1□ :h,C1b2 1 

3 11 50 ID~h,C2l1s 8 

3 11 51 □dh (□ Jh ,C114B 1 

3 11 52 (□.,' •. C2l24 8 

1 9 53 T' h (T~.C1l4e 1 

1 9 54 (TLC2J24 1 
1 9 55 IT~ ,Cal 24 3 

2 18 56 (TtC3 l1s 1 
1 9 57 IT~.C2vl 12 3 
2 18 58 (T~,C2vlC.ll12 2 
1 9 59 o• (Dj;,C1lse 1 h 
2 18 60 1ot,C2l4e 1 
1 9 61 ID~.c.l4e 3 

2 18 62 (D~.C 214B 4 

2 18 63 (D~.C:3132 1 

279 1919 64 ID~.C~24 4 

65 ID~.C2vl24 3 

66 ID~.D2124 4 
67 ID ~,C2vl 24 6 
68 IDtC2v ICall24 1 

69 (D~.D3l 1s 4 
70 

.. 
1Dh,C4vl 12 12 -199i 

23 ITh,C1l24 ljgtfi!gtr3gt3r4g tfj., tr2utr3u t3'4u' 

24 !Th ,C2l12 ljgtfi!gtr3gtr4gtfiutr2utr3utl":iu C 

25 1Th,Cal12 figtfi!gtr3gtr4gt2r4J 

26 (Th,C3le ljgtr4gtfiutr4u' 

27 IT h,C2v I e figtfi!gtr3gtr4J 

28 ID,C1124 r,_tr2 t 2r3t3r4•t3t;" 

29 ID,C 21 12 r,_tr2t 2r3 trltr15c 

30 ID,C'2l12 r,_tr3tr4t2 r;• 
31 IO,C3I B fj_tr2trJtr;;c 

32 (D,C 41 8 r,_tr3+r4' 

33 ID,D'2I e r,_tr3tr5" 

34 (D,D,.I 4 fi.tr5
1 

35 (Oh ,CI l4e ljgt1egt2r:,gt3r4gt3r:ig tljutr2ut2r3u t3r4u 1t3r:i~ 

36 1oh,C2I 24 ljgtlegt 2r:,gtr4g tr5gtfiut'2ut2r3u tr4uc tr!luc 

37 (Dh,Cal24 ljgtr2gt 2r:,gtr4gtrsg t2r4u't2r:iJ 

38 1Oh ,c2124 ljgt'3gtr4gt2r5gtfiut'3utr4~ t2rl5: 

39 IDi,,C3l1e ljgtr2gtr4gtr!lg tfiutr2utr4J tr!!: 
40 (Dh,C4l 12 ljgtr3gtr4g tfiutr3utr ... u" 
41 (Oh ,C2v I 12 ljgtr2gt2r:,g tr4uc tr!luc 

42 (Oh ,D'2I 12 fi.11t'3gtr!lg tfiu tr3utr5~ 

43 1oh,c2,l12 ljgtr:,gtr!lgtr4u1 trsu
1 

44 (Oh ,D3 I e ljgtli,gtr1utr!!u' 

45 (Oh,C4vl B figt1°3gtr4J 



.... 
NI 

No 

46 
47 

48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

69 
70 

IA,A'Jn 
IC~h,c 1 l1s 
·1c~h ,C 1 J 24 
ID~h ,c tJ 16 
ID~h ,C 11 ::12 
ID~h ,C'2' 16 
l□:h,C1J45 
l□ :h ,C'2J 24 
IT~.C1l4s 
IT~ ,C2J24 
IT~ ,C 8 l24 
IT~ ,C3 J16 
IT~ ,C2vl12 
IT~ ,C2v IC all 12 

1ot,C1las 
IO~ ,C2l4e 
IO~.c.J 48 
IO~ ,C'2l 4e 
IO~ ,C:;il::12. 
IO~.C4l24 
IO~ ,C2v )24 
IO~ ,D'2l24 
IO ~.C"2vl24 
IO~ ,C2v ICalJ24 

IO~.D 3116 
IO~ ,C4vl 12 

Permutational representation 
fitt'2~ tr;•gtr;.•gtr{utlitutr:futl'"lu trjg tr2g tr3-g tr4g tr"jutr;utfiutr;u 
fitt'2~tr;"gtf.s\t'5~t'5~trjttr{.tr;utrJutlifutr;utfi;t~~tr;-;tr,.~t~~t~~tfi~t~~tr;~tr:.~ti;~t1j;~ 
fittfe~tr;\tf.s\tfitt'2~tr;~tr;utfi;t'2;tr;gt'4gtrj~tr20t!;~tr4-;. 
fitt'2~tr;"gtr;."gt2i;;t1j~t~tti;ttrJut2fsttft;t~;tr;gtf4gt2fe'atfi~tf.!~tr;~triut2r;.; 

litt '3'\i tr!l•g tlj~ tr:tutrJutligtl;";tli;gtrj;tr;~tli!-;, 
ritt'2~+r;•gtf.s\t2re•g+2rigt1j~tfi!t+r;ttr4V2fstt2'iit+li;+'2;tr;'atr.ivt2fs";+21s;+lj;tri,,,+r;~tf.s~t2i;~+21s~ 

lit+'3'\i tfs•ii+lii'g tr{u +r;u trJu +ritu +r;-; +f;g tr;g +rag tri., +r;u +rs-;. +rs~ 
litt'2~ tr;•g t3r:g +r,t +!i!t tr;u +3r:u +rig tr;g tr:;i-g +3r.j"g +rju triiu +r;u t3r;.-;. 
litt'2~ t!;"gtr;.•g tr,t t'2•utr3•u tr;u tri;i tr2g +r;g +r;g +rj"u triu tr;u +r;u 
litt'2~ tr;•gtf.s\ t2r:u trig tr;;g+r3-g tr-;jg t2r;u 

littf.s\ tr{ut1".!utrj"g tr.cg tr1u triu 
litt'2~t'3\tr:utr1gtr2gtl":;igtriu 
litt'2~tr;•g tr:u tr;g triu 
lit t '2~ t2f:tgt 3r;.•gt31i,"g t Ii~ t '2t t 2f:tut3f.s•ut3 r5•u tliiit l2Q +2 Jii";+3r4gt3Gjj+r1u + r 2u t2r iu t3r iu t3r!!-;, 
litt'2~ t2r;g +r.tg tr;g +r1u tr;u t~•u +r.tu tr;u +r,-; +r2g +2r;g tr4g +r;g trj"u tr;u t2r;u triu tr;u 

litt'i!•g t2r;g+r.tg trJg t2rlu +2rJutr1u tr2g t2r;g tr4-g +~11 t2r:iu t2rsu 
littr;"g tf.s"g t2r;g trtu tr;u +r.tu t2r;u +rj"g tr;g +r;g t2r;g trj"u +r;u triu t2r!I-;. . 
ritt'2~tf.s\tr;•gtftutr;utf.st tr;utrj'g tr;gtr;gt'i;g tri., tr2-;. tr4-;.+re-;. 

li~~+~t~tGu+~t~t~t~+~t~t~ 
lit+!i!~ t2r;g tr.tu trJu trj; tr;g t2r;g tr.ju +rsu 
li~~•~t~+qut~t~t~t~tr~t~t~ 

lj~~t~•~·~•~t~t~t~t~ 
lit•'2~ t2r;g+r.tu+rJu+r4g trsg +r;u +rsu 

lit +li;+g Hit trifu tri; trsg +ri"u +rsu 
lit+'3'\i +r.tu+r,11 tr;g tr4-;. 

Table No.2 !continued) 



4,Application of PMP6 to the theory of Landau 

In Ref.11 it was shown that the colour permutational groups 

could be very useful in analysis of phase transitions in crystals 

in the framework of the Landau's theory.This is a consequence of 

the properties of their transitive permutational representations 

and also of the well defined relation between groups, subgroups and 

factor groups. Without repeating the procedures precisely presented 

in Ref.11-17, we shall just note that in the three-terms symbol 

(12) , or respectively (15), the group 6 describes the high sym­

metry phase, H' - the low symmetry one and His the kernel of the 

symmetry breaking irreducible representation 0~ (related to the 

order parameter). A necessary condition is that o~• should belong 
H' of the permutational representation 06 , where to the decomposition 

H' Im 06 = (A,A')n. 
H' All the 1997 transitive permutational representations 06 

have in total 70 different images o~•= (A,A') • The decomposition 
A' . n 

of DA to irreducible representations of the abstract group A~ 6/H 

are presented in Table 2, where the notations of irreps follow .the 

Ref.35. From the images o~• by engendering1341 one obtains all 
H' necessary irreducible representations, contained in 06 • The full 

list of decompositions of o~'to 6-irreducible representations for 

all PMP6 is given in the third part of the present paper1211 • Sym­

metry breaking irreps 0~ are engendered only by the faithful 

i rreps oi{ of A. . 

All faithful representations 0~ = rj j=l,2, ••• of A are 

denoted in Table 2 with an upper index "c", "s" or 11 *0
• The "c" 

means that the representation oi{ of 6, engendered1341 by oi{= r~, 

does not satisfy the Chain Subduction Criterion (CSC), introduced 

by Birman131 • 37 • 121and based on the Frobenius Reciprocity 

Theorem13; 1 ; so it is not an active irrep in a phase transition. 

The representations with a superscript "s" do not satisfy· the 

Stability Criterion of Landau1121 and may drive only first-order 

transition. The symmetry breaking representations for continuous 

phase transitions might be engendered only by the faithful irreps, 

marked in Table 2 with"*"· 

The tables allow to reach useful general conclusions on the 

possibilities concerning equitranslational magnetic phase transi­

tions all nonequivalent changes of symmetry, described by 

magnetic groups are 1997, in number equal to the quantity of PMP6 

and are distributed in 70 classes. All the properties of the groups 

13 



in one class are quite similar. Forty one or these classes 

have no raithrul irreducible representations in D:•or these 

either 

repre-

sentations do not satisry the CSC (among them are all new 25 

classes). Thererore the 912 PMPG belonging to them cannot be 

connected with any phase transition. Faithrul representations with 

upper index "s" are contained in D:• or 8 chromomorphic classes 

total or 142 PMPG and the corresponding phase transitions are rrom 

rirst-order. 

All necessary conditions are satisried ror those marked with 

an asterisk'*' and rall in 21 classes with a total or 934 groups. 

Examples or application or the.tables are contained in the 

rorthcoming two parts. 

One or the authors <J N Kl thanks Dr. V.Kopsky Czechoslova-

kian Academy or Sciences, who Carter the present work had 

already rinished > acquainted him with his book
1331

• 
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, Kon;eB 0: .H., UoHeB C .C. 
JiepecTaHOBOtIHbie MarHHTHbie TOtietIHbie rpynIToI 

H HX .IlPHMeHeHHe B TeopHH ~a30BblX 

nepexogoB JlaH,D;ay 

El7-90-387 

O6~aH TeOpHH H XpOMOMOP~HaH KnaCCH~HKan;HH rpynn 

MarHHTHbie /my6HHKOBCKHe/ TOtietIHbie rpynnbI paClllHpHIOTCH 

c nOMo~1,10 TpaH3HTHBHbIX nogrpynn cHMMeTpHtiecKoii rpynIToI Sn. 
IlonytieHHbie nepecTaHoBOtIHbie MarHHTHbie rpynnbI oiiHcbIBaIOT 

CHMMeTpHIO nonHgOMeHHbIX MarHHTHblX CTPYKTYP, a TaK~e npH­

MeHHIOTCH B aHMH3e MarHHTHblX ~a30BblX nepexogOB B paMKax1 
TeopHH JlaHgay. 

Pa6oTa BbmonHeHa B J1a6opaTOpHH TeopeTHtieCKOH ~H3HKH 

OIDIH:. 

Coo6llleHHe 061,ewmemmro HHC'mTYTa ,mepHLIX HCCJieAOBaUHH. ,lly6Ha 1990 

Kotzev J.N., Tzonev S.S. E17-90-387 
Permutational Magnetic Point Groups 
and Their Application in the Landau Theory 
of Phase Transitions 
General Theory and Chromomorphic Classificati?n 

Through a two~~tep extension of point groups by time 
inversion and transitive permutational groups, new types 
of colour groups called permutational magnetic groups 
have been obtained. They describe the symmetry properties 
of polydomain magnetic crystals and might be applied to 
symmetry analysis of magnetic.phase transitions. 

'" 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. ' 
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