


I. Xntrodqctiun

The present article is based on an earlier one by Schick and
/17

Griffiths’ *. The reason for returning to the Potts model discussed

there is twofold. First, we identify the symmetry of this mudelll/as
. /2-6/

colour group symmetry. Thus colour space groups are needed to

find the degeneracies of the respective Hamiltonian, being therefore
groups of dynamical invariance. We would like to stress that this is
a new field of application of the idea of colour space groups
introduced earlier on purely geometrical grounds. Secund; by applying
a new method, discussed elseuhere/7f we find that the phase diagram
corresponding to the present model deviates in part +from - - the one
constructed in Ref.1l. We also explicitly determiné the invariance of
the low symmetry phases which are  once again given by nontrivial
colour groups. Finally it is quite enlightening to compare our
resulgs to those that would be obtained by standard Landau
argumentation.

The material is organized as follows:in part 11 we focus our
attention on  the precise 5ymmetr1e5 of the referred Potts
Hamiltonianll/, while in part III we present the results concerning
the thermodinamical behaviour of the system under investigation.

II. The Symmetry of the Hamiltunianll/

The usual g-state Potts mudelle/ is a generalization of . the
Ising model. It represents an attractive or repulsive two-particle
interaction between nearest neighbours. The particles (infinite in
number) are situated on a certain lattice and each of them occupies
one of g possible states. It is well known that the thermodynamics of
such a system is equivalent to the one of a quantum mechanical model
with Hamiltonian whose eigen states are into a one—to—one
correspondence with the mentioned discrete “Potts” states. Therefore
in what follows wé restrict uurselveé to the quantum -~ wmechanical
terminology. In this terms the Hamiltonian given by Schick and

Griffiths is /1/, -
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H= - E-K }: Pin L }: P.P.P . (1)
<ijk>» 1=1-

<ij>» 1=1
Here K is the usual two-particle interaction constant and <ij> means

sum over the nearest couple neighbours. The second term represents a

three — particle interaction with constant L, the sum ranging over

the nearest triple neighbours. The particles are situated .in the high

symmetry Wyckoff position (point group-. C v=6mm) of a two

6
dimensional hexagonal lattice with symmetry group G’ .=gérr. As q=3 the

Hilbert space of the present three state model "is an infinite tensor

- product of 3-dimensional linear spaces. The operator ﬁ; is a
projection operator corresponding to the 1-th state: of  the i-th
particle, ’

~y . 1 )
Pi= E{3)eE(3)®...® 0 B J1=1. (2)

o]

i—-th place E : (R
To 'simplify our considerations and-to focus on the essential
symmetries of ﬁ we impose the usual Born—-Karman.conditions. Thus the
N—particle with

system reduces'to a finite system

6 = G'/TN . As always TN is an’infinite subgroup of T, the invariant

translation subgroup of G'; T ={(E|N131+N235)|N1N2=N}is generated by

N
two sufficiently large (non collinear) translations. belonging to T
and'[T:TN]=N. The group G is not isomorphic to pém® although it is

short in what fullows we shall denote

N ker ¢ = TN »
|6|=[6’ T 3=12N. Even now when the-Hilbert space of the. -system is
(i.e. the

essentially “the same". To be

G by pémm, having in mind that. ' pémx —24 G c§

finite dimensional the symmetry group of the Hamiltonian

set of operators that commute with it /9/) is' infinite. This group
GH’ contains an infinite invariant subgroup U of wunitary operators,
diagonal in the basis of eigen vectors of H;,It is.. only = the group

~

‘GH=GH/U that is physically interesting and for .the 3-state Potts

model EH is straight. forwardly identified to be a subgroup .of §

3N
The latter is the group of permutations'of 3N objects, which are the
3N eigen vectors of H. Note that ,P:are the. projectors. adapted. to
these vectors. )
Consider the group, '
N@SN = (5 xS x...x5.) @S5 =

—_ 1
: N

v

53@ §N < Sqy - (3

symmetry group .

——

different

“is alsc easy to conclude from Eq. (1) that

In Eq.(3) we used the notation W » which stands for a
710/ '
product

wreath

of the occurring groups. For the sake of simplicity

hereafter we shall use the symbol A < B for both the cases when A is
a subgroup of B and when A is isomorphic to-a subgroup of H.
The group W @)SN permutes independently the states into the

DHEjpérticle spaces and 'also performs all possible

permutations of these spaces. Therefore the

action of the group

element on Fi is given by,

~1 Api(l)_ 4

( .ea Y= P . = E g
Pys ,pij i p (i) u(pl,...,lep) i'U(pl,...,lep)

—the unitary operator

P, € 53 s i=1,...,N 3p SN U

(Pys---sPylp

corresponding.  to (pl,...,lep). 4)

As a consequence of Eq. (4) we obtain that,
Pyse--sPylP) Y5 -aspp P '=lpy, (iHP17 Py (krPnleP)

where p’ (i)=1 ,..., p’ (k)=N . (%)
Equation(3) is exactly the muitiplicatiun law of a wreath productllo,

and clarifies the meaning of Eq. (3).

In what follows we shall be interested in GH ~ a subgroup of
N@SN that leaves H invariant. The main reason is that W@ SN acts

transitively on the eigen vectors of H. Thus.even though GH < EH .

the decomposition of the Hilbert space into Eﬁ—invariant subspaces
should coincide with its decomposition into EH—invériant subspaces.
These arguments and the definition of H (cf.Eq. (1)) immediately imply

that,

Gy <WOG cu@s, . (&)

~

Thus GH, the group of essential invariance of H, beihg a subgroup of
NC)G is therefore a P- or W~type colour group in the terminology of
Rets 2-3. )

For arbitrary values of the interaction constants (K and L) it
r
By = ([S3%8.%...%5.1) @6 <« W@ 6 = 53@5,

S
N



where L53x53x.:,x53] = diag (S3x53x...x53)=((p%p,.,.,p)f_p = 53}.
O — = | | ) .
N = N . t N (7)
Therefore, - ’
GH = 53 X G - (8)

Ta proceed further, fallawxng Ref.1, we &e:ampase the 1lattice

into 3 sublattxces A, B and C respectlvely. On figure 1 A 'is denofed

by ©,B - by @ sand C — by X S Clearly the symmetry group of

sublattice A -~ GA’ has a point group identical to that of 6 = psus
and a translation group with enlarged minimal translation vectors.
They might be chosen to be,

2~ _¢ . 2P =

t1 t1 t2 H t2 t1+2t2 - . ()

We find the structure of EA and fix the coset representatives of 6

with respect to GA’
GA = p'6mm < pémp = 6 ,

6 = GA

U (Ejt )6, U (E|2t )6, = 6, U 9,6, U 96, - (10)
Bypassing we note that,

by = 9,6,9, -’ 6 = 956,95
and

B, NGy NGB, =6 . : 1y

B and GC

and C respectively. (On

The groups G are the invariance groups of the sublattices B

figure 1 :the :elementary cells of these

lattices are shown.) The group G is an invariant subgroup of G

A,B,C
which is a stabilizer of the three sublattices.

6, =6 ‘u goGABC . Bapc = P38 (ct. Ref.il) . (12)

We chose,

go=(m’|3), m’ =(x,2x%) (see figure 1). T3

The order of the multiples S in W. could be

3

decomposition of G with respect to GA (cf. Eq.(10)). Indeed

corresponds to one lattice site. The

adapted to the

each of

the mentioned factors S_ sites
~

might be labeled by the different translantions in G. Finally we

separate the factors in three groups corresponding to the sublattices

s, ¢

-

s e

A, B and C. Thus we construct the group W,

W= ([53x53x...xSslxtssxssx...x53]x[53x53x...x5 1 <cW,

L T 1 L )
N/3 N/3 . N/3

W = 53y53x53 . (14)

The fact that the

between particles belonging to different sublattices is a

interactions
hint that
that gives

Hamiltonian H demonstrates

G, < W &6 < WE 6. This conjecture agrees with Eq. (B),

GH for the "“general position” in the (K, L) space. Let’s define M as,
M=SK+L. (s
In Ref.l it was noticed that when M=0 the symmetry group of H

M=0

spontaneously rises to GH . To see what is this group we proceed as

follows. We decompose the lattice into triangles as shown on figure

2. Each site belongs to only one triangle and in each triangle there

is only one site from the sublattices A, B or C. Therefore the sites

might be labeled by iA(iB, iC), where i is the 1label of 1i-th the

invariant under the group

triangleL Clearly this decomposition is

GABC' As [G:GABC] = &6 ,

remaining five ones could be obtained from the present decomposition

there are six such decompositions. The

applying the coset representatives of G with respect to GABC (;f. Eqs
(10-13))., 1§ we introduce an additional label s = 1,..,6 , then we

obtain an unambiguous notation for every site in each of the six

decompositions, namely isA(isB, i;C). Now the Hamiltonian  might be
rewritten in the form,
b 3
il 1 1 ~1 "1 A1 21
H= EKZ Z[JAIB+P1BiC+?iCPiAj’
£ s s
s=1 i 1=1
s
pt Pt Pl ' (16)

or

u
[}]
-

6 ) .
n= E: E: a, an
s
- i
5



N ~
where the meaning of H5 is obvious from Eqs (16,17). It is already

straight

forward to find by direct calculation the group o+

invariance of HS. For M=0 this is,

M=0
W =€‘pl,91,p1),(pl,pz,p3),(p4»p5,pb)

(PosPosPR) s (PysPsPy) 5 (P s P00 )
(93.93,93),(D?,pl,pz);(ps,p4,pb)
(PasPasPy)s (P3P sP5) 5 (PosPysby)
(Pg1P5sPs) s (PosPgaPy )5 (P s P s PS)
(PysPyiPg)s (PgsPosP ) s (PP )3

(18)
The isomorphi9m~is given by,

S

< [S_x85_xS5.1 ,

33773

n

- 2, o : ‘ '
c3 = {e!a’a“} = {(Plnplypl?!(Plsp2’P3)y(P1’P3’P2)} y (19)

while the automorphisms of 03 required to define the séhidirect

product are,

P: P P p P P
(a) 1=(a) 2=(a) 3=(a ) 4=(az) 5=(a ) 6 .
P P P P P P
2 N
(a™) 1=(32) 2=(a2) 3=(a) 4=(a) 5=(a) 6=a2 - 20
In Eqs (18-20) we used the shorthand notation,
p1=(1)(2)(3),p2=(123),p3=(132),p4=(12),p5=(23),p6=(13). (21)
Having‘in mind the invariance of ﬁs we see that
GM=0 = ff1=0 .
" =W ©6 cuW ©6. (22)

M=0 : o
In Ref.1 GH was given through its generators. Now we found its

structure explicitly. For the reader’s convenience we represent the

introduced group-subgroup relations on diagram 1.

San .
u
"W S, = (SgxSx...x82) @ S = 55 @ S
— 1
u N
WEE = (5:x8:x...%8.0 ®G =5;@6
. [ ]
u P N
’ N =
w6 (S3xSzxS7) ®6 )
U -
< _M=0_  M=0 M=0 _
Gy =W &6 ., W =C; @8,
u
Gy =Sz x 6

diagram 1.

II1I. Thermodynamics of the Three State Potts Model

The thermodynamical behaviour (phase transitions, critical

phenomena) of a system with Hamiltonian H (cf. Eq. (1)) 1is described

by the corresponding free energy F=F(T;K,L). The direct approach
requires the calculation of
F = -k T1ln Sp [exp (-H(K,L)/kT)1, (23)
Unfortunately even for the usual Fotts model (L=0) this is only
o

possible at the transition temperaturell*l. Therefore certain
approximation techhique should be applied.‘ Dng of the appropriate
possibilities in the pfeseht case is the pbsition Space
renormalization gruup/lsl. It was realized in Ref.1. A second

possibility is to find the generalized free energy (Landau-Ginzburg-

Wilson Hamiltontan) employing a method we shall hereafter the

47:1%/ 1he LW -

name

"inhomogeneous mean field"” Hami l tonian might be

studied following one of the standard procedures. One could extract

the main (leading) degree of thus the Landau

< S 74
approximation

freedom performing

or to take into. account the critical fluctuations

7167

by means of the usual renorm group approach T,

An entirely phenomenological approach consists ip applying the

/15

Landau theory of phase transitions /starting with symmetrical



arguments only. Naturally thus one can not

approximation for F=F(T;K,L), but

qualitative behaviours of the system could

find
nevertheless the

be predicted.

any quantitative
possible:
A

key

question in this case would be, what is the "symmetry of the physical

problem". The standard procedure requires the use of the crystal
group and the transformation properties of some physical (tensor)
field defined on localized site functions/17/. A better choice is to ﬁ

- /7/

use the full symmetry of the Hamiltonian H
was partly realized in Ref.l.
We shall preéent the results found

mean field technique. The LGW Hamiltonian

studied further on By the Landau approximation.

using the

obtained

The latter

A comparisan with the

results of the standard Landau theory is also given.

In order to construct the LGW — Hamiltonian it is

. ~
to pass to new operator variables in H,

v 2
Y2 st p2 1

i =——2—(Pi —Pi, =E(3)Q-..‘Q — — - .
Y2
Q
i-th place
1
Y6
~ S ~ T2 g 1
Mf = - (P: + PZ) + P: = E(3)®...® - —
Y6 Y 6 .{ &
2
Y&
i—-th place
- Uy o a 1 1
Mo = (Pl + Pz + P3) = —— E(3)®...eE(3)e...= .

i ‘v/;— : v v/;ﬁ

7:

approach l
1

inhomogeneous | ’

this way

is

convenient

e, ..

invariant under transformations in the

From Eq.1 we obtain,

following LGW-Hamiltonian,

2

1 2 !
ah = - 5 K+ S L) E: E: MM
EHI=1
-M. .M. .M - M. M. .M -M. .M. M

i,2 5,1 k,1 1,1 5,2 kel 1,1 5,1 k,2

xln(Y & Mi
’

+(3’2? M, LA + D1nSrX2 ﬁi

i,1 3 i,2 2 51

M= M, M.

2,"" i, 1!

1, My pameeay o)

and M.

In this equation H i1 i,2

thermodynamical mean value of the operators Ml

viewed as Cartesian coordinates of the states of the i-th

particle", which is in fact by construction,
. 17/

particles

af all

M1

variables M. Its domain

i,2

_3 2,
~ 2

-Yey
21,

a

resticted

2 1
b= - 2w+ 20 E: Ml ;‘ E:‘ M2 M M2 -
£1j> 1=1 67.6 <iik>
A Ay AT A A o~ ~ Ay o~ ~
- Ml N e Ul o Ml M2 ) + cE . (25)
k i J k k
~ .
Here ¢ 1is a constant "and the whole term_ . cE is physically
insignificant. Using the methods developed in Ref.7 we obtain the

M

- - E: i,2"5,2",2 ~
o6  <TFi>
N
) + KT/3 E:?(¥ 6 M, +1ix
9,

=1
i
iyt 5 My 2+

o*1) = NKTIn3 ,

(26)

are classical variables that give - the

~2
Mi. They could be
"classical

whole sgbsystem of

. The function &(M) is defined into a subset of the space

to the subspace

s M ) forms an equilateral triangle and is given Dn\figure 3

(compare with Eq.(24)). Equation (26) implies that &(M=#(T;K,L,M is

group S

% G, a result that is a consequence
g/7/

When M=0 (cf. EQ(13)) the
M-O M .

Gy % -

space |

H,

of

symmetry of

performed by the
the invariance of

s(M) rises to

Now the main degree of freedom whxch depends on both K and L is

to be found. If we follow the

standard procedure

of Landau’s



approximatiunlls, and take interest only in the second degree terms

in (M) then we shall conclude that there are only twe subspaces in M

which are connected with phase transitions. The first of these is

My Mot
N
- 1 =
M ras N 2: Mi,l J1=1,2 . (27)

' i=1
This subspace is “the main one"” when K + —% L > 0. The variables
[y} r.1 transform according the two-dimensional irreducible

L

representation (irrep) of S_.x G - E x I't, where E is  the two

3
dimensional irrep of 53.
found by minimization and is a “ferromagnetic” one — all “classical
particles” simultaneously tend to one of the Potts states, say 1. The

invariance group of this phase is ,

F

= =4 F s
6] = (9;,6) U (p,6) =C, x 6, 6,c G, - ' (28)
The decomposition of GH with respect to GT is ,
_ _F F F
G, = 6y U (pyja,) 6 U tpylay? G » gl—(E|6) . 29

and therefore there are three domains.
The second subspace is (M 2’1 + M 2,2 » H 2,’1 « M 2;,2),

1 : y ] =
’M Ra™ N exp (=2aik) "i, s 1=1,2

1

v N o
: 1 e =
Mg o= N 2 exp (-2aik’ ) Mi,l s 1=1,2

i=1
' 11

B = (3-,-550) (cf. Ref.18)

. + 1 1 ' 1 2

R = 6 (5500 = (-3, —5,0) = L (30)

These variables are the prinbiﬁal ones when 'K + —% tA< 0, and

transform accurdiﬁg the four dimensional irrep E x K1 of 53 ® 6. Now

"the low symmetry phaée turns to be an "aﬁtiferromagnetic“ one which
means that each three nearest "classical particles” “tend to three
different Potts éfatesll/. This would méan that most of the particles
on sublattice A are for example in state 1, the ones on B - in state

2,‘énd those on C - in state 3. The invariance group ' of this phase

is,

10

The corresponding low symmetry phase is

AF

6123~ Bapc Y P41957645c U 219276050 U (P5195942645c
T )G U, | )6 F_ 6 ' (31)
P3l9526apc P, 195907 6apc » Bizs H - .
The decomposition of GH with respect to G?gi is,
. .
. . _AF
. 54 ’iglgpi|91’5123 ’ . : A 32)

which means that there are six antiferromagnetic states.

When M=0 (E x I'l) ® (E % K1) is a six dimensional irrep of
GH=0 /1/, while it’s a reducible representation - of 53 x G. This

situation corresponds to Landau’s case of phase transition with order

parameter belonging to a reducible representation in a "point" of the

phase diagramllSI. Now the ferromagnetic and the antiferromagnetic

'phases are with the same energy and accur as domains of the same
phase. Indeed the subgrnup of G:=o, that‘ preéerves the
antiferromagnetic phase discussed above is,

M=0 »
Giox = P3P 5P {GaRe? 2 (PgePsP4|Gape? s

(PosPosPo10.60pe? | ParPsiP, 19564500
P3P P5|0560pc) | PprPgrP5l958,pc0
(Pg1P4sP419080pc’ |, PyoP2+P5 19084,
{PgsPg2P5 195908450, Por P3Py 195906,pc) 2

) '3 . (33)

PgrPyrP g 195908,pc? P3P 2P51959,8,50

The first column is isomorphic to G and therefore,

M=o -~ -
G G UbBGE =6 s C2 s b ——s (ps,pb,p4|gl) . (343)

123
M=0 M=0
H

- .
The decomposition of G with respect to 8123 is,

=0 .
23 gi=(pi’pi’pi|gl) [} i=l..6
9,=(p 2P=sP5 10,0 Gg=(p5yP sP5]9,), G=(P5Po,P, |gg) - (35)

Obviously the coset representatives 6}, i=1,..,6, generate the six
antiferromagnetic domains, while the remaining ones generate the
three ferromagnetic domains.

All these considerations were made, as we pointed 6ut. when it
was taken for granted that the second degree terms are the leading

ones. However when [K + § L] « |L} this is not the case and one

11
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should take into aécount the third degree terms. A careful analysis
shows that the results that we reached are valid when K + % L =20
and L > 0. In the opposite direction in the (K,L) space: K + % L = o0,
L < 0 and in the region around it, however, neither the ferromagnetic
nor the antiferromagnetic phases are stable. In other words the

absolute minimum .is no longer in the subspaces © (M or

)
M R,I’M R’,l)’l=1’2' It flows away to different degrees Dfr’ireedom,
passing from one to another. Definitely in this situation a series of
incommensurate phase transitions occurs, which is a new feature we
notice on the phase digram. The latter is given on figure 4. All the
phase transitions seem to be of first order,; at least on this level
of investigation. This is due to the presence'o¥ third order terms in
(M. It is quite possible huwéver, that if one takes into account
the critical fluctuations, then the transitions could turn to be
second order ones as found in Ref.1.

To compare the results of Ref.1 and the present paper we
reproduce figure 4 in a new form un.figure S. Already in figure 4
we used a second set of variables K = K and'§ =M instéad of K and L
(cf. Eq-(13)). On fiqure 5 a projective space, obtained from the
space (T,K,M) is plotted. In other words one point on the latter
figure (K/T,M/T) corresponds to a whole line (AT,AK,AM) on figure 4.
The region IC of incommensurate phase transitions is not given in
Ref.1.

Finally we briefly review the results obtained using the
standard phenomenological Landau theory. As we already mentioned they
crucially depend on the symmetry of the free energy and the
transformation properties of the order parameter. Using the patural
transformation properties of M we conclude that the only commensurate
phases in this problem could be related to the representations ExI'l,

ExK1 and ExM1 of S_xG. (The definition of the representations I't, K1

3
and M1 of G are given in Ref.18.) A lattice of subgroups - possible
low symmetry phases, could also be obtained and naturally GT and 6?23

are two of these. The transitions should be first order ones as the
symmetry does not exclude third order invariants.

In the standard deificationAof Landau’s theory we have to
find what are the tensorial transformation properties of the order
parameter with respect to 6. Virtually the same result; as those just
quotated are obtained if we chose the representation I'S of 6 for this

purpose. The commensurate phases would then be related to the

14

representations 'S % T'l, IS x Ki, I'Sx Ml of G. To find these:

"natural® transformation properties of the order parameter, however

and the determipation of I'S in particular is- to greater “extent  a.

guess than a result of a well defined procedure.

Thus we see that our results agree with the phenomenological

theory but are less general andvinstead of ‘a variety of possibilities

consist in particular facts. This concretization +is not strange

having in mind that we used much more initial information (cf.

10.

"Eq.{(26)), than only the‘covariance properties of ﬁ.
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KOHEB 8 H., HGEB M.K- ; ne ;' E]7790f386if
nTpequeTHaﬂ, Monenb HOTTca c HBeTHoni S S
rpynnou CHMMeTpHH AR

HoxaaaHo, 4TO cuMweTpHﬂ FaMHanOHHaHa TpequeTHOH ‘Mo~
-penu ToTTca -onHCchIBaeTcs HeTpHBHaﬂbHMMH LBETHHIMH Tpymnnar-
“MH ‘W-Tuna’ H‘P—Tnna /nonrpynnm crnyeTeHus cuMMeTpnqecxon

" PpYTIIEI 83 c KpHCTannorpa¢qucxon rpPynnof cHMMeTpPHH Csv/

B, anGnHmeHHH HeonHoponHoro cpenHero TOJIA - HOCTpoeHH cooT-
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/groups of: the writh product of S3 and CG ) are found to

1Potts model. .The: correspondlng phase dlagram is construc-
(ted using the inhomogeneous mean field approx1matlon.,

.~ The 1nvest1gat10n has beenrperformed at the Laboratoryk\
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Nontr1V1a1 colour groups of W- type and P- type (sub—V';

requisite for describing the invariance of a three state 1

A series of 1ncommensurate phase tran51tlons is newly
found : : -




