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1 . INTRODUCTION 

In the very rich branch of theoretical physics concerned 
with the investigation of various exactly solvable models the 
problems of interacting many-fermion systems are both as of 
the most interest and of the most source of difficulties 11-8/. 
Historically these problems were first posed by Thirring/9/ · 
and Schwinger 1101 in relativistic field theory of massless 
fermions in one space dimension. The nontrivial interaction 
was taken to be bilinear in the densities having essentially 
bosonic properties. After the proper modification of the va­
cuum and transition to the particle-hole picture these models 
were reduced to a free-boson problem, but the description of 
global properties of the system in all charge sectors was 
not trivial because of the difficulties inherent in local quan­
tum field theory. By the correct procedure of bosonization the 
more general Luttinger model1111 was also diagonalized. In each 
charge sector the excitations were represented as coliective 
fluctuations of the bosonic nature 1121 . The origin of solvabi­
lity of the massive generalization of all these models also 
lies in the possibility of bosonization/13/ and reduction to 
the well-known integrable sine-Gordon model1141 

The progress in the investigation of solvable nonrelativis­
tic fermion systems was also almost complete based on the re­
sults obtained earlier in the boson models. For example, the 
eigenvalue problem for a finite number of fermions interacting 
via a delta-function potential was solved by McGuire 115/, Gau-

.din11G/, Yang/3/ and Takahashi 117/ only after the complete 
investigation of the analogous bosonic system by the Bethe an­
satz1181 . The description of the latter in the second quanti­
zation scheme can be reduced to the problem of solution of 
the quantum nonlinear Schrodinger equation directly connected 
with the general quantum inverse scattering method 1191 . For 
the corresponding fermion problem such a connection seems to 
be much less transparent1 201 . 

For the purposes of solid-state physics the most important 
problem of that kind is the search for nontrivial solvable 
models of interacting electrons in the periodic field of an 
ionic lattice. In the first quantization picture one must con­
sider the usual nonrela · ·s · _many-p~tticle Hamiltonian 
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I I. 

H(1) 
N p2 N 

= I [ -2J + W (xj ) ] + I V (xj - xk) , W (x . + a) = W (x J ) • 
j=1 m J>k J 

(1) 

The fermionic nature of interacting objects lies in the 
synnnetry properties ofH{l) eigenvectors. It would be natural 
to conclude that the search for solvable models must be based 
on the investigation of the internal synnnetries of (1) for 
various potentials W and V. However, in this way, one finds 
only very strange, highly singular potentials having no clear 
physical interpretation. If W and V are not reduced to sin­
gularities at some isolated points, the single known example 
of integrable models of the type (1) is the Sutherland/21/ 
system ( V(x) = A sin-2wx) ) in the three-parametric J'eriodic 
external field W(x) = A1 cos (2wx + 8) + A2 cos 4wx 122 . The 
transition to the second quantization by the standard procedu­
re is questionable in that case because of the strong V singu­
larity. 

On the other hand, the use of the second-quantized Hamil­
tonians historically was more fruitful. Stimulated by the 
famous Lieb - Wu solution1281 of the one-band Hubbard model1241 
based on the slight modification of the Bethe ansatz, a num­
ber of fundamental studies of one-dimensional fermionic models 
have been performed 16, 7, 25· 801. The Lieb - Wu results were 
also extended to the more preferable cases of arbitrary elect­
ton density 129/ and two degenerated bands/81/. 

All extensions of that type of the Hubbard model contain 
a typical shortage. The hopping term describing the process 
of electron transition from one localized state to another 
is supposed, except for the trivial case of constant infinite­
range hopping/82,88/, to be restricted to nearest-neighbour 
states. The approximations corresponding to this regime beco­
me much more clear after the inverse transition from the ori­
ginal Hubbard Hamiltonian to the first-quantized model of 
type (1). One finds that the nearest-neighbour hopping may be 
obtained only if W(x) in ( 1) is chosen as an attractive Cro­
nig - Penney potential W =-AI 8(x - an) in the limit of the 

n 
infinite strength A of delta. functions. The interaction in 
the Hubbard model corresponds to the McGuire - Yang pair del­
ta potential with a strength inversely proportional to A 
(cf. 

1841
). So the first quantized description of the Hubbard 

Hamiltonian is highly singular and seems to be far from the 
real physical situation. 

The aim of the present paper is the investigation of the 
possibilities of constructing .the second-quantized solvable 
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models with a more general type of nontrivial hopping than the 
nearest-neighbour one ("overjumping11 model). The full lattice 
fermionic Hamiltonian can be obtained-from (1) by introducing 
the second-quantized operators on the base of orthonorma1·wan­
nier functions. In theone-band approximation that reads 

H<2> = I 
i, j,CT 

+ + I t.J. aiu a,, · j k f 
1 1, , • 

, 
CTCT + + 

I,~ ijkf aiu a Ju' aiw, aeu 
CT, CT (2) 

1,j,k,f.(;;Z 

here aju are the anninilation operators for the electrons of 
spin projection u in the Wannier state at site j , {a .lu , a :u,J= 
= Bjk Bou' , ,.t 1j is the real synnnetric hopping tensor. The struc­
ture of ~kf is specified as follows: 

uu' _ ..!!_ (1-8 ij) 8 (3) 
~iJkf - 2 8u,-u 8jk 8 te 81r + 2 (Vij jkBif +lij Bik Bjf). 

The first term in (3) coincides.with the usual Hubbard one 
and the two others correspond to direct and exchange intersite 
interactions. The main question posed here consists in the fol­
lowing: is it possible to find any combination of three second­
rank synnnetric tensors t, V, I such that the model becomes 
solvable? 

In this paper we present only the partial solution of that 
problem. There are at least two motivations which forced us 
to present this stage of investigation. First, we believe that 
it will be stimulating for searching the general solution sin­
ce nobody (to our knowledge) has been able to propose a~y sys­
tematic method of comstructing solvable fermionic models with 
nontrivial non-nearest-neighbour hopping. Even for the stan­
dard one-dimensional Hubbard model the relatively complicated 
extra integrals of motion and connection. to Lax and Yang -
Baxter regular procedures have been established only very re­
cently185·871. Second, mathematical problems of constructing 
the exact solutions in the nonlocal case seem to require a 
much more sophisticated technique for fermionic systems. Even 
for bosons (for example magnons in quasi-Heisenberg spin cha­
ins) this problem is still open. These reasons inspire us to 
describe herethe nontrivial exact eigenvectors of the extended 
version (2-3) of the Hubbard Hamiltonian. Various cases of the 
extended Hubbard model have been of great interest in recent 
years in describing quasi-one-dimensional conductors 187·89/ . 
In view of all the difficulties and shortcomings of various 
approximate solutions of the Hubbard model and its extended 
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versions any rigorous information is of particular importance. 
The complementary study of the exact and approximate soluti­
ons/40/ of those models certainly can provide an insight into 
the real nature of the relevant general solution. 

The paper is organized as follows. In Sec. II we derive 
the algebraic equations for states of two interacting elect­
rons. In Secs. III and IV we find the solutions to these equa­
tions for some tensors t, V, I with the use of the Weier­
strass theory of elliptic functions. The last Section is de­
voted to the discussion of some hypotheses and ways of further 
development. 

II. THE EQUATIONS FOR TWO-ELECTRON STATES 
ON AN INFINITE LATTICE 

Let us write the basic Hamiltonian (2-3) in a more conveni­
ent form, 

(2) 
H · = h 1 + h2 + h3 , 

h 1 = It.. (a·\a.t +a: a. ) , 
• • lJ . 1 J 1.1, J J, 
1, J ' 

1 
h2 =U~ NitNi +-

2 
_;_vij (Nit+Ni.i.)(Njt+Nj,i.), 

1 1 ;,= J 
(4) 

h3 J- IT. [N.tN.t+N. N. +a:ta. a: a. +a:a.ta:ta.], 
,-K. i -/, j '°iJ 1 J lJ, J J, 1 · 1 + J + J t 1 J, 1 J J J, 

where t and .i. denote up and down electron spins, N jt = a7t a j t • 
We shall consider in detail the case an infinite lattice, i.e. 
-oo<< i, j < oo • The modifications to periodic boundary condi­
tions will be discussed in the last section. We shall also 
suppose that all three tensors t , V , I depend on their indi -
ces only through the distance between the sites I 1-j I . 

The simplest eigenvector of H(2) is the pure vacuum IO> 
having zero eigenvalue (such a vacuum state without any partic­
les is taken for convenience): 

ajt IO> = aj+ I 0> = O for all j (;; Z . (5) 

It is evident that in this case one-electron states are descri­
bed by quasi-free or plane-wave-like states with quasimomenta 
p i:;;_ (0, 217): 
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t/1 P t = I exp (i k p) a! t I O > , 
k 

"1p.i. = ! exp(ikp) a; ,1.I 0 >. 

The dependence of the eigenvalues on pis completely deter­
mined by the Fourier transform of the hopping tensor 

c = I t. j +k exp(ikp) 
p k J' • 

(6) 

The eigenvalue problem for.two-electron states is much less 
trivial. Let us introduce the relevant "elementary" states 

tt + + ' H + + l O t.i. +' + iµ = a a I 0> , if, = a O a >, t/1 n · = an a IO > • 
em e t mt em L+ m + Lm L t m + , 

By this definition we immediately find . 
tt tt tt ) t J, '"<' t + t .J, 

h
1 

1/fo = I (t .n 1/f. -t. 1/1 ,O , h
1

t/Jn = ~ (t.nt/1. +t. 1/fo. ) , 
Lm j JL Jm Jm. J<- Lm j J L Jm Jm LJ 

h 
tt tt t+ t+ 

21/lem= Vemt/lem' h2t/Jem =(UcSem+Vem)t/lem' 
(7) 

t t tt 

h 3 t/lem = - 1em t/Jem ' 
t.J, t+ 

h 1/ln = lo 1P n • 3 Lm Lm IDL 
Let us now construct two-electron eigenvectors as follows 

(a) tt (a) H - , u 
1/f = I Z O 1/ln , 1/1 = I Zn VJ n , 1/1 t+ = I Zn 1Pn , t t n ' LID LID .l,.J, n LID LID n LID Lm 

c.
1

m L,m c., m 

(8) 

where the tensors Z (a) and Z must be determined from the ei -
genvalue equation H(2) iµ = c iµ • Note that, according to the Pauli 
principle z(a) is antisymmetric while Z has no definite sym­
metry properties. 

By using (7) and (8) one can obtain the equations for z(a) 
and Z in the explicit form: 

i (t ·£ Z ~a) - t. z<_a)) + (V0 - I e - d zJa) = 0 , 
j=-00 J JID JID JL LID ID Lm 

(9) 

00 ~ - - -

I (t.
0 

Z. +t. Zn.)+ (V0 +US£ -c)Z0 +1 0 Z ·0 =0. 
j=-oo Jt Jm, JID LJ LID ID ' LID LID mL 

(lo) 

The tensor Zem in (10) can always be represented as a sum of• 
its symmetric and antisymmetric components, 

5 



z = z(a) + z(s) 
fID fID fID 

z (s, a) = .!._ (Z ± z ) 
fID 2 fID IDf 

each of them must ober (10). It is easy to see that the re­
sulting_rSuation for z~~ coincides with (9) and for the sym-
metric ZeID (10) reduc~d to · 

OO -cs) - (s) - (s) 
.I (t.eZJ.ID+tJ.IDZJ·f)+(UBo +Ve +Ie -dZn =0. J=-oo J LID ID ID LID 

(11) 

If the U term is here omitted, (11) is just the equation for 
two-magnori wave functions in a quasi-Heisenberg XXZ ferromag­
net with the Hamiltonian 

00 

[ ( X X y y 1 Z Z ] ( ) H =. ~ t.k aj ak +a. ak) + 2 (V.k +1.k) a. ak • 12 
J, k = -oo J J J J J 

So even in the general case of non-nearest-neighbour hopp­
ing we obtain a certain correspondence between fermionic and 
bosonic models despite the absence of the Jordan - Wigner type 
diffeomorphism. This corresponden may serve as the key to 
the choice of the hopping tensor:. it must be taken from some 
integrable spin model oL the type (12). Recently possible 
candidates for this role have been proposed 141·431. In the re­
maining part of this paper we shall consider the most general 
case 1431 

{ 

0, 

t -
jk - ~ TT -2 

t - [sinh-(j - k)] , j -/, k 
K2 K 

j = k 
ImK = o. 
ReK > 0 

(13) 

and investigate the solutions of "bosonic" eq. (10) and eq.(9) 
of the "pure fermionic" nature. 

III. SYMMETRIC SOLUTIONS 

Let us start with the calculation of the energy of one­
electron state (6) with the hopping (13) briefly discussed 
also in 1431 • 

The closed form of the trigonometric sum 
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TT 2 .. TT -2 
£(p) = t 0 I -exp(ikp) [ sinh-k] •., 

k=-oo K2 . K. _ 
11m~1 < ~ 

K, 
(14) 

00 

may be· obtained by the methods of Weierstrass elliptic func­
tion theory. Let us construct the function of the complex va­
riable x, 

(15) 
00 

• TT 2 , · . . TT -2 
F(x) = t

0 
~ - exp(1kp) [ smh--:(k + x)] , · 

k=-oo K 2 K 

which has the following quasiperiodicity properties: 

F(x+l) = exp(-ipJF(x), F(x+w) =F(x). w =iK, (16) 

This function has a pole singularity at the point x = 0. 
The expansion of Fin ~he vicinity of this point contains the 
term with £ (p) , 

1 TT 2 
F(x) = t

0 
(- - -) + E(p) + O(x) • 

x 2 3K2 
(17) 

Note that it is the only singularity of F(x) on the torus 
C/r obtained by factorization of the complex plane C by the 
lattice of quasi periods r = m 1 + m2 w , m1, m 2 t;; Z •. Now we con­
struct the function G(x) with the same quasiperiodicity (16) 
and singular term as in (17) by using Weierstrass functions 
P(x) , ((x) , a (x) defined on the same torus C/f: 

a(x +r) · 
G(x) = -A---exp(Bx)[ P(x) - P(r) + M((x +r) -((x) -((2r) + ((r))], 

a(x -r) 

The constants A, r , 8, I),. are determined from the relations 

8 +.((.!..)r = -ip, 8w + ((~)r = 0, A=to, Al),. =(2((r) + 8),t 0 , 
2 2 

which can be simply obtained by using the standard properties 
of Weierstrass functions/44/. The result is 

A= t r· pw o' = ---, 
TT 

p <,) -1 <,) P<u 
8 = -((-), /),.=TT [p ((-) - 2 ((-)). 

TT ~ 2 4rr (18) 
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The difference R(x) = F(x) - O(x) is, by construction, an 
analytic function of x without any singularities in the full 
complex plane C. According to the Liouville theorem 1441 R(x) 
would be equal to a constant and due to the relation R(x + 1) = 
= exp (-ip) R (x) this constant must be exactly zero. By compar­
ing the terms independent of x in the decompositions of F(x) 
and G(x) near x = 0, we finally have 

E(p) = t0 [ ~ - P(r) - (2((r) + 8}{((2r) + 8) - <2((r) + o) 
2 

] (19) 
3K2 2 

with rand o given by (18). 
The next step is the calculation of a slightly more compli­

cated sum 

00 

S(p, f) = I 
k=-oo 

17
2 . 1T -2 1T 

- exp(1kp) [ sinh-k] coth-(k + f), f t;;. Z 
K2 K K (20) 

k I o,-e 

The appropriate function which may be constructed by Weier­
strass theory is 

F
1 

(x) = ; 1T 2 (. [ 1T ] -2 1T ( n ~ 2 exp 1kp) sinh-(k + x) coth- k + t. + x) 
k=-oo K K K 

with the quasiperiodicity relations (16) and pole singularity 
like (17). Arguments of the type used above lead to the follow­
ing closed form of (20): 

S(p, f) = 2:..coth~[ E(P) 
K K 

1T 2 

K2 sinh2.1:L (l + 2exp(-ipf))] + 

K (21) 
712 

+---·· 
K 

2 
sinh2.!tl_<1 - exp(-ipe)) f(p) , 

K 

where 

p (L) p<u 
f(p) = -((-) -((-). 

" 2 21T 
(22) 
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Now we are ready to construct the solution of eq.(11) as 
follows 

Z~~ =(1-Bfm ){cothy[exp(i(p1f +p2 m))+exp(i(p2 f +p 1m))] + 

+[ +[exp(i(p1 f +p2 m)) - exp(i(p 2f +p1 m))]coth ;u -m)}. 
(23) 

The second term describes the distortion of the states of two 
free-propagating electrons due to interaction between them. 
By substituting (23) into (11) and using (19) and (21) it is 
easy to find that (11) is satisfied for all quasimomenta p , . . a 
llm p I < ~, a = 1, 2, if 

a K 

U = 0, 
21T 2 71 -2 . 

Vn +le = t -[sinh-(f -m)] , 
t.m m K2 K 

coth y = ~ l f (p 1 ) - f (p 2) ] . 
21T 

The eigenvalue which corresponds to the solution (23) is 

E(P1,P2) = E(P1) + E(P2) • 

(24) 

(25) 

(26) 

The tape of potentials (24) which is obtained.above leads 
to the constraint that any site of the lattice according to 
(23) cannot be doubly occupied. The case of real p1, p2 cor­
responds to the scattering states. Let us show that the bound· 
states are also possible for the complex quasimomenta (cf. 1451 

for Hubbard case). If llmpal > 0, the only situations in which 
Z~~ vanishes as I f -m I ➔ 00 are I coth,y I = 1. Taking for de-

finiteness p = !.. ± iQ , ImP = 0, ReQ > 0 we have from (25) 1,2 2 , 
the equation 

K [ p p - f(- + iQ) - f(- - iQ)] = 1. 
21T 2 2 

L PCi> ' iQCi> • R h et - = i" , - -- = r where A is real and O < er < 1. T e 
411 211 

above equation reduces to 

¢, (r) = ±..((!£.) + ~ + ((iA- r) - ((i.\+ r) = 0. 
/\ Cl) 2 K 

(27) 
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At fixed ,\ f. 0 the function ¢)r) has the following simple 
properties: 

¢,\ (0) = ~ ¢ (1) - 277 
K' ,\ --7, 

. 1 
¢,\ (2) = 0, d¢.\(0) < 0. 

dr 

The zero at r = 1/2 is trivial because after its substitution 
into (23) z?) vanishes. The nontrivial zero exists if and 
only if the ~erivative of ¢,\(r) on the interval (0,1/2) chan­
ges the sigh, i.e. 

d¢.\ 4 "' 1 1 -I =-<:{-)+PO.\--) + P(i.\ + -) = 
d r T= 1/2 cu 2 2 2 

(28) 

~ I [ sinh-2 .!.(i,\ + n - _!.) + sinh-2 .!.(i,\ + n + 1
2

)] > 0 , 
K2 n=-oo K 2 K 

The analysis of the behaviou~ of this sum as a function of,\ 

shows that at least for cot~> coth-
2
rr the inequality (28) 

K K . 

holds. So from (27) we conclude that for some values of real 
Q there are real total quasimomenta P defined by the formula 

p(fy) = P<~) + p,ciQ<u H2i:< -iQ"' ) _ 2" + 21Q i:< cu)] -1 
477 277 277 211 K 1T 2 

(29) 

The possible case of complex r needs a more thorough consi­
deration. It is likely that the bound.states (29) have the 
smallest possible energy at the. fixed total two-electron qua­
simomentum but the proof of this statement is now not complete. 

IV. ANTISYMMETRIC SOLUTIONS 

In the two previous Sections we have fixed the hopping ten­
sor and the combination Vem + Iem by (13) and (24) in the Ha­
miltonian (2-3). The remaining term Ve -le can be specifi­
ed by the requirement of the presence o°f exlct solutions to 
the equation (9) for the antisymmetric tensor z~a). The simp­
lest situation is evidently realized when Vf _mle =O, i.e. 
the electrons with the same spin projection cfJ1not ~nteract 
(note that just the same property is inherent in the Hubbard 
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model). The solution of (9) in this case has the form of the 
antisymmetrized ·combination of one-particle solutions 

z~~ (I) = exp[ i(p
1 
e + p 

2
m)] - exp[i(p2e + P.

1 
m)] 

with the eigenvalue E(p 1,p 2) = E(p 1) + E(P 2). 

(30) 

One can try to introduce a distortion due to nonzero inter­
action Vern - Iem by adding to (30) the term analogous to (23), 

z~~ (II) - !exp[ i(p1 e + P2 m)] + exp[ i(p2e + P1 m)] J coth: ( e -m). 

However, the use of the relations (19), (21) shows that (9) 
cannot be satisfied for any (Vern -Iern ) and combinations of 
quasimomenta. One needs to construct the principally new an­
satz to distort (30) by some interaction between·electrons. 

For that purpose le~ us consider the following trigonomet­
ric sum similar to (21), 

S(p, e) = I ~ exp(ipk) [ sinh..!k] -
2 

t.anh.:7..(k + e) 
k=-oo IC K K (31) 
kf.O 

and find for that an analytic expression through Weierstrass 
functions. As in the previous section, one can construct the 
function 

00 

Fe (x) = I 
k=-oo 

77 2 7T -2 7T - exp(ipk) [ sinh-(k + x)] t.anh-(k + e + x) 
K2 K · K 

(32) 

that is quasiperiodic as F(x) (16) but has on the torus C /r 
two pole singularities at the points x = 0 and X=c..>/2.generated 
by the terms with k = 0 and k = -e in (32): 

Fe (x) 
- n£ ( 1 1T 77 2 1 -2 11e)) t.anh- - + -------- --(-+cosh - + 

K X 2 1Te 1Te K 3 K 
XK cosh- sinh -

K K 

+ S(p, e) + O(x) near x = 0, (33) 

1T . 1Te -2 c., -1 
F (x) = - - exp(-ipe )[ cosh-] (x - -) e K K K 

near 
(i) 

X = 2 • 
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The proper combination Gt(x) of Weierstrass functions hav­
ing the same structure of singularities and quasiperiodicity 
contains five constants, · 

Ge (x) Aa(x+r) exp(x8)[P(x) - P(r) + a1 (((x+r) -((x) -((2r) + 
a(x -r) 

Ct) Ct) 

+ ((r)) + a2 (( (x + r) - ((x - -) - ((2r) + ( (r - -)) ] 
2 2 

which must be determined from (16) and pole terms in (33), 

A = tanh .!!!_ 
' K 

A 21'() 'IT -1 -2 'ITf 
u 1 = ... r + 8 - -A cosh (-) 

K K ' 

1T -1 -2 ( 'ITf ) ( n) 1)
2 

= - -A cosh - exp -ipc. 
K K 

and r and 8 as in (18). 
Comparing the first nonsingular terms in 

composition. of af (x) near x = 0 we have 
(33) and the de-

- 1rf 'IT 2 
S(p,f) = tanh-[ ---- H(p)] + 

K K2 cosh 2 (!i.) 
K 

(34) 

+ ..!.. cosh-2 ~ [ f(p) - exp (-ip f) g(p) ], 
K K 

where 

p ,,. (I.) p(I.) 
f(p) = - ... (-) - ((-)' 

" 2 2'11 

g(p) = ((r) + ((~) - ((2r),+ ((r - ~). 
2 2 

Note that f(p) and g(p) are odd functions of their argument. 
Let us search for the solutions of eq. (9) in the form 

12 

1:11 

-(a) 
Zfm = cothy[exp(i(p1£ + p2 m)) - exp(i(p2f + p1 m))] + 

(35) 
+[exp(i(p1e +p2m)) +.exp(i(p2f +p 1 m))]tanh..E:.(e -m). 
. K 

Calculating by (19) and (34) the infinite sums in the left-hand 
side we obtain 

«> - (a) - (a) - (a) I (t.eZ. -t. Z.e) + (Ve -le -dZe 
j=-oo J Jm Jm J m m m 

= (E"(P1) + E"(P2) -( +~: Ito K
2 

+ v 1 ~ c > 
cosh2 ..!..( f-m) em - em) Ze~ + 

K 

+ to[ ~(f(pl) - f(p2)) 
2'11 

2'112 
- co~h y] ------[ exp (i(p i + p2m)) -

K 2 cosh2 ..E:.( e -m) 
K 

"to 
(36) 

--------x - exp(i(p2e + P1 m))] - K cosh2-;(e-m) 

X [ g(p
1

) + g(p2)]( exp(i(p
1 

+ p J m) - exp(i(p l + p J f ) = 0 , 

The first term in the right-hand side of (36) reduces to ze­
ro if 

1em - Vern 
2"2to 

K2 cosh2~(e - m) 
K 

E" = E"(p1) + E"(p2) • 

(37) 

The absence of the second term is, as for symmetric solutions, 
guaranteed by the proper choice of the parameter cothy, 

coth y = !:.. [ f(p 1) - f(p2)] • 
217 

Most troubles are concerned with the last term having no 
analog in the symmetric case. It vanishes if and only if 
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the electron quasimomenta are ,not arbitrary but restricted 
by the transcendental relation 

g(p 1) + g(p2) = O. (38) 

The simplest possibility is p1 = -p2 which corresponds to 
zero total quasimomentum. So the ansatz (35) with (25) and 
(38) gives not a general but only a partial one-parametric 
solution to (9). At this stage we could not find any modifica­
tion of (35) free from the restriction (38). However we hope 
that it will be possible in the future. 

Let us discuss also the problem of antisymmetric bound sta­
tes with zeroth total quasimomentum. The decrease of z(a), 
when I e - m I ➔ 00 J can be reached only if em 

~f(p) = 1, 
1T 

211 O<lmp <-, 
K 

p = -P = p • 
1 2 

(39) 

In the case of a pure imaginary quasimomentum, p = 21Ti r, Im r = 0, 
K 

the solution of (39) is equivalent to the search for the ze-

roes of the function ¢(r) = ({r) + 21 r (( (),)
2

) - _7!. on an interval 
K · K 

0 < r < 1 with the exception of the point r = 1/2 at which 
zf~ identically vanishes. On the left and right ends of that 

interval ¢(T) tends to ± oo. Its derivative i2 can be written 
dr 

as an infinite sum, 

d¢ 2i Ct.> 
- = -P(r) + -(<2 ) 
dr K 

172 00 1T -2 
= - - I [sinh--(r - n)] , 

K2 n=-oo K 

which is negative at all real r • So ¢{r) has the only zero at 
0 < r < 1. By using the well-known properties of ( function, 

1 ((r + 1) = ((r) + 2((2 ), ({.!.) Ct) - ((~) 

2 2 111 ' 

it is easy to see that this zero is located just at the excep­
tional point r =1/2, so the bound states in this model do 
not exist at zeroth total quasimomentum. 
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V. DISCUSSION 

Returning to the original Hamiltonian (4) we see that the 
simplest two-electron problem on an infinite lattice has the 
exact solutions if 

U = 0 • tem 
172 

to----
K 2 sinh2 .!!..( e - m) 

K 

2 
Ve = t0 ..!..[ sinh - 2 .:!..( e - m) - o cosh-2 .:!..( e -m)], 

m K2 K K 

2 
. Iem = t 0 -¾-[sinh-2 .:!.. (e - m) + o cosh-2 .!.(e -m)], 

K K K 

(40) 

o=O or 1 

in both symmetric and antisymmetric cases. From our point of 
view this fact indicated that such models seem to be solvable. 
More convincing arguments may be obtained by analyzing the 
states with three or more electrons. In the complete symmet­
ric sector corresponding to the Heisenberg-chain type model 
one can show that the wave functions have a Bethe structure, 
i.e. depend only on one phase, which is expressed through 
quasimomenta as (25). The states of mixed symmetry with more 
than two electrons have not been investigated but our previo­
us experience shows that exact solutions can also be obtained. 

Note that the short-range hopping (40) is reduced to the 
nearest neighbour Hubbard one in the limit K ➔ 0 after a tri-

vial "renormalization" t 0 ➔ t0 K: exp(~~). However, the total 
1T K 

Hamiltonian does not tend to the Hubbard one because of U = 0 
and surviving of the exchange nearest neighbour intersite in­
teraction term in (40). To our knowledge models of that type 
have not been considered as candidates for being solvable. 
It would be interesting to check for them the possibility of 
constructing the standard Lax representation as it was done 
in 36 for the Hubbard case. 

By analogy with spin chains we can also assume that models 
of the type (40) would be solvable if Vern and Iem are modi­
fied as follows 

to112 211 211 
Ve = --[j(j + 1) sinh- -( e-m) - k(k+ 1) cosh- -( e -m)], 

m 2K 2 K K 
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t 772 
1

0 
= _o_ [j(j + 1) sinh-2.E.( e-m) + k(k + 1) cosh.,.2 .E.( e -m)]. (41) 

c.rn 2K 2 K K 

That "discrete" analogs of the well-known Poschl - Teller po­
tentials correspond to the possibility of expressing through 
Weierstrass functions the trigonometric sums which are simi­
lar to (21) and (31), 

s (n) (p, n 00 

I 
k /= 0, --£ 

112 exp(ipk) P (tanh-1:.(k + e), coth~(k + e), 
- n K 
K

2 sinh2 (.!t.k) K 
K 

-oo 

where P is an arbitrary polynomial of n-th power. However, 
no rigo:ous proof of the existence of exact solutions of ty­
pe (23), (35) in that case is now yet found. 

Another type of interesting problems is the investigation 
of excitations in more realistic and complicated than (5) 
"vacuum" basic states. The picture of particle-hole and hole­
hole interactions in a half-filled (ferromagnetically ordered 
ground state) band seems to be very similar to the case con­
sidered above but the propagation of excitations on the va­
cuum of antiferromagnetic type needs a more thorough analysis. 

The proper consideration of periodic boundary conditions 
consists in the change of trigonometric hopping and interac­
tion terms (40) into elliptic ones, 

- - <,) 

tern =t0 P(e-m), Vern =t
0

[P(e -m)+BP(e-m+ 2 )], 

Iern = to [ P<e -m) BP(e -m + ~)], 

where th~ real period of double periodic .Weierstrass P func­
tions must be equal to the riumber of sited N and the imagina­
ry period coincides with that of (40). As N tends to infinity, 

- 772 1 ~~ 
P(x) ➔ -(- + sinh --), 

. K2 3 K 

ii, w ) 77 2 1 . -2 77X 
J (x + - ➔ -(- - cosh -) 

2 K2 3 . K 

ahd the previous structure (40) appears. The two-particle 
exact solutions in the symmetric second were also investiga­
ted earlier but had a.much more complicated form 143/. 

To summarize, at this stage we tried to construct a sol­
vable nonlocal generalization of the original Hubbard model 
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without the U term. The case including that term requires 
further efforts. It is quite possible that a model like that, 
if exists, needs a more sophisticated than (3) form of inter­
action in the second-quantized representation. Nevertheless 
we hope that the solutions discussed above give an insight 
into the more general problem of introaucing solvable lattice 
models. From the algebraic point of view the most interesting 
questions here arise in constructing analytic integrals of 
motion commuting with the Hamiltonian (2). The finding of a 
regular procedure for that gives, according to the common 
wisdom, the most preferable proof of the solvability. In a 
much more simple Hubbard situation this procedure has been 
proposed only recently 135•371 and even the simplest integrals 
are relatively complicated 1371 • In our case of non-nearest­
neighbour hopping the standard routine based on the search 
for a-local transition matrix seems to be nonapplicable. For 
similar quasi-Heisenberg nonlocal spin chains only few integ­
rals of motion were constructed but any regular scheme was 
not found 1431 • This line of research seems to be most intri - • 
guing and promising for future studies. 
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·· lfuo3eM~eB B.11., Ky3eMcKHH A.n. · Ei 7-90-360 
TotJ1Ioe peweHHe HOBOH O,IUIOMepHOH ' 
<pepMHOHHOH CHCTeMbl Ha peWeTKe 

. Mb1 paccMaTpHBaeM o6o6meHHyro Mo.n;enb Xa66ap,n;a Ha 6ecKo­
He11Hoii O,IUIOMepHOH peweTKe, _!lKJIIOqarornyro npSIMoe H o6MeHHOe 
Me~3eJihHOe B3aHMo,n;eHCTBHe HepeJISITHBHCTCKHx· <pepMHOHOB CilH­

Ha 1/2. Mo,n;eJih ,n;onycKaer B03MO)KHOCTL nepecKoKa sneKTpOHOB 
'Me,K,D;y JII06hIMH y3JI~MH pewerKH, o,IUlaKo coxpaHSier KopoTKo,n;eii­
CTBHe,. xapaKTepHoe ,D;JISI CTaH,n;apTHOH .. ·Mo,D;eJIH Xa66ap,n;a. B O,IUIO­
H ,n;ayx:meKTPOHHOM ceKTopax HaH.n;eHhI SIBHhie TOllHhie pew~HHSI . 
nyTeM HCilOJih30BaHHSI TeopHH 3JIJIHrnHqecKlix <pyHK~HH. Beiiep­
WTpacca. O6cy:>K,D;aIOTC.fI BOilpOCbl IlOCTpOeHHSI o6mero peweHHSI H . 

,n;anLHeiiwero .Pa3BHTHSI TeopHH HHTerpHpyeMbIX pewerollHbIX ·<pep-· 
· MH·CHCTeM. 

Pa6oTa BbIIlOJIHeHa a na6opaTopHH TeopeTHlleCKOH q>H3HKH 
oumt 

. Coo61IleHHe 06-&eWU{eHHoro HHC1HTYTa .R,D;epHhIX HCcne,a;OB8HHH, )ly6H~ 1990 

Inozemtsev V .I., Kuzemsky. A.L. _ El 7~90-360 
Exact Solution of the New One-Dimensional 
Fermion System on a Lattice 

We investigate the problem of constructing the solvable models 
of nonrelativistic spin 1/2 · interacting fermions· on an infinite lattice .. 
The extended Hubbard model which includes the direct and exchange 

·.··intersite. interaction is considered ... The hopping term' in the Hamil-
tonian is not restricted to nearest neighbour sites (the "overjumping'' 
model) but the short-range character' of the standard Hubbard model 
is retained. The.solutions in one- and.two-particle sectors are obtained 
in· an explicit form by using the. theory of Weierstrass elliptic func-
tions. The. p_ossibilities_ of further development. of m.odels • of tliat type 
are also considered. . _ 

The investigation has •been , performed at the Laboratory of 
Theoretical Physics, JINR,' , .. ,.-, -. ' 
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