


1. INTRODUCTION

In the very rich branch of theoretical physics concerned
with the investigation of various exactly solvable models the
problems of interacting many-fermion systems are both as of
the most interest and of the most source of difficulties/1-8/ ,
Historically these problems were first posed by Thirring/9/
and Schwinger 719/ in relativistic field theory of massless
fermions in one space dimension. The nontrivial interaction
was taken to be bilinear in the densities having essentially
bosonic properties. After the proper modification of the va-
cuum and transition to the particle-hole picture these models
were reduced to a free-boson problem, but the description of
global properties of the system in all charge sectors was
not trivial because of the difficulties inherent in local quan-
tum field theory. By the ‘correct procedure of bosonization the
more general Luttinger model/11  was also diagonalized. In each
charge sector the excitations were represented as collective
fluctuations of the bosonic nature/12/., The origin of solvabi-
lity of the massive generalization of all these models also
lies in the possibility of boson1zat10n/13/ and reduction to
the well-known integrable sine-Gordon model /14/

The progress in the investigation of solvable nonrelativis-
tic fermion systems was also almost complete based on the re-
sults obtained earlier in the boson models. For example, the
eigenvalue problem for a finite number of fermions interacting
via a delta-function potential was solved by McGuire/1%/', Gau-
.din/18/ | Yang/% and Takahashi’/17/ only after the complete
1nvest1§at10n of the analogous bosonic system by the Bethe an-
satz/18/ | The description of the latter in the second quanti-
zation scheme can be reduced to the problem of solution of
the quantum nonlinear Schrodinger equation directly connected
with the general quantum inverse scattering method/19/ | For
the corresponding fermion problem such a connection seems to
be much less transparent’20/

For the purposes of solid-state physics the most important
problem of that kind is the search for nontrivial solvable
models of interacting electrons in the periodic field of an
ionic lattice. In the f1rst quant1zat10n picture one must con-
sider the usual nonrelatj -manyzpagticle Hamiltonian
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The fermionic nature of interacting objects lies in the
symmetry properties of H(1 eigenvectors. It would be natural
to conclude that the search for solvable models must be based
on the investigation of the internal symmetries of (1) for
various potentials W and V. However, in this way, one finds
only very strange, highly singular potentials having no clear
physical interpretation. If W and V are not reduced to sin-
gularities at some isolated points, the single known example
of integrable models of the type (1) is the Sutherland /21/
system (V(x) = )\sin'zmx) ) in the three-parametric Periodic
external field W(x) = A;cos(20x +8) +Ap cos dwx /22, . The
transition to the second quantization by the standard procedu-
re is questionable in that case because of the strong V singu-
larity. '

On the other hand, the use of the second-quantized Hamil-
tonians historically was more fruitful. Stimulated by the
famous Lieb - Wu solution/23/ of the one-band Hubbard model’ 24/
based on the slight modification of the Bethe ansatz, a num-
ber of fundamental studies of one-dimensional fermionic models
have been performed /8:7:25-80/, The Lieb - Wu results were
also extended to the more preferable cases of arbitrary elect-
ton density/29/ and two degenerated bands/31/.

All extensions of that type of the Hubbard model contain
a typical shortage. The hopping term describing the process
of electron transition from one localized state to another
is supposed, except for the trivial case of constant infinite-
range hopping/32,33/ | to be restricted to nearest-neighbour
states. The approximations corresponding to this regime beco-
me much more clear after the inverse transition from the ori-
ginal Hubbard Hamiltonian to the first-quantized model of
type (1). One finds that the nearest-neighbour hopping may be
obtained only if W) in (1) is chosen as an attractive Cro-
nig - Penney potential W =-A§l 8(x~an) in the limit of the

infinite strength A of delta functions. The interaction in
the Hubbard model corresponds to the McGuire - Yang pair del-
ta peggytial with a strength inversely proportional to A

(cf. ). So the first quantized description of the Hubbard
Hamiltonian is highly singular and seems to be far from the
real physical situation.

. The aim of the present paper is the investigation of the
possibilities of constructing the second-quantized solvable
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models with a more general type of nontrivial hopping than the
nearest-neighbour one.("overjumping" model). The full lattice.
fermionic Hamiltonian. can be obtained -from (1).by,introducing
the second-quantized operators on the base of orthonormal Wan-
nier functions. In the one-band approximation that: reads - '

@ _ t.oara, &+ X 3 ¢af7,a-+"af'a'rai,i': ;
H i,jz,o if'» P ij. k2 o0’ “ijl o ® jo k” kg.,a,,, (2)

1,5kl

here 2, are the annihilation operators for the electrons of -

spin projection o in the Wannier state at site §, {a, , g;a,;=
= 8jk 8o’ 2,335 is the real symmetric hopping tensor. e struc-
ture of il is specified as follows: ‘

0% -5 5 s c 820 s s s 5,y (3
ikl T g o, -0 Tk T i iy 2 ij %l Ty %k %5070

- The first term in (3) coincides with the usual Hubbard one
and the two others correspond to direct and exchange intersite
interactions. The main question posed here consists in the fol-
lowing: is it possible to find any combination vathree second-
rank symmetric tensors t, V, 1 such that the model becomes
solvable?

In this paper we present only the partial solution of that
problem. There are at least two motivations which forced us
to present this stage of investigation. First, we believe that
it will be stimulating for searching the general solution sin-
ce nobody (to our knowledge) has been able to propose any sys-
tematic method of comstructing solvable fermionic models with
nontrivial non-nearest-neighbour hopping. Even for the stan-
dard one-dimensional Hubbard model the relatively complicated
extra integrals of motion and connection. to Lax and Yang -
Baxter regular procedures have been established only very re-
cently /35-37/ | Second, mathematical problems of constructing
the exact solutions in the nonlocal case seem to require a
much more sophisticated technique for fermionic systems. Even
for bosons (for example magnons in quasi-Heisenberg spin cha-
ins) this problem is still open. These reasons inspire us to
describe herethe nontrivial exact eigenvectors of the extended
version (2-3) of the Hubbard Hamiltonian. Various cases of the
extended Hubbard model have been of great interest in recent
years in describing quasi-one-dimensional conductors/37f9/ .
In view of all the difficulties and shortcomings of various
approximate solutions of the Hubbard model and its extended
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versions any rigorous information is of particular importance.
The complementary study of the exact and approximate soluti-
ons’/49/ of those models certainly can provide an insight into
the real nature of the relevant general solution.

The paper is organized as follows. In Sec. II we derive
the algebraic equations for states of two interacting elect-
rons. In Secs. III and IV we find the solutions to these equa-
tions for some tensors t, V, I with the use of the Weier-
strass theory of elliptic functions. The last Section is de-
voted to the discussion of some hypotheses and ways of further
development . '

II. THE EQUATIONS FOR TWO-ELECTRON STATES
ON AN INFINITE LATTICE

Let us write the basic Hamiltonian (2-3) in a more conveni-
ent form,

H(2)=h1+h2 +h3‘,
+ +
By =i2,- tij @grdje #3535, ),
1 .
hy, =0T % Ny Ny + ?iijvij (Njr+N; )Ny Nj ), (4)
-1 + + + +
by, = —_;Q—iij L INs N+ Ny N, Jtepa;ay e rala,al a; 1,

where t and + denote up and down electron spirns, Njr =a;; ajr .
We shall consider in detail the case an infinite lattice, i.e.
~00<< i, j < « . The modifications to periodic boundary condi-
tions will be discussed in the last section. We shall also
suppose that all three tensors t, V, I depend on their indi-
ces only through the distance between the sites |i-j]| .

The simplest eigenvector of H® is the pure vacuum |0>
having zero eigenvalue (such a vacuum state without any partic-
les is taken for convenience):

ajT|0>=aj$|o>’=o for all jcz. A (5)
It is evident that in this case one-electron states are deséri-

bed by quasi-free or plane-wave-like states with quasimomenta
p £ (0, 2n): ’ :
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Yooy = E exp(ikp)a;f|0>, Yo, = >;- exp(ik'p)ai-:;l 0>.

The dependence of the eigenvalues on p is completely deter-
mined by the Fourier transform of the hopping tensor

-«

e = 3t exp(ikp), ‘ ’ | (6)
k .

P joit+k
The eigenvalue problem for,two-eleqtroh states is much less
trivial. Let us introduce the relevant "elementary" states

w0y W _at at 10> to gt gt 0> "
l/!zm—a“amlw,tlfzm auaml , ¢Em me;l -

By this definition we immediately find

% " " s gt t Wty
R Rt M A

Tt te ty o _ (7)
h2¢fm= me"blm’ h.2¢ﬂm _(Usfm*-vfm)d}fm ’ ‘

't tt e o
g ==Y Yoo Bty =¥

Let us now construct two-electron eigenvectors as follows

(2) (2) z (8)

o W .

= =2 Z 9 ¢ = 3 ll, LI
l'bff— Z,Ein zfml/}ﬂm ’ "bu ) fm Y im T (o fm “lm
where the tensors Z(® and Z must be determined from the ei- '
genvalue equation f#2)¢==e¢ . Note that according to the Pauli
principle AT antisymmetric while Z has‘no definite sym-
metry properties. .

By using (7) and (8) one can obtain the equations for VAL

and 7 in the explicit form:

5 () (a) ; (a) _ ' (9)
.2 (tjzzjm-tjmzj2)+(vzm-lgm e)sz 0,
J:-—N

s (¢, 7 Z —az z =0. (10
j=§m(tje ij, +tjm Zgj) + (Vﬂm +U8zm -g)sz +IZm Zmﬂ 0 | ( -)

The tensor Zy  in (10) can always be represented as a sum of .
its symmetric and antisymmetric components,
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s _oa)  Z(s) 7(8,2) _1 & 7

2y = Zﬂm + me ’ me 2 (me * Zmﬂ )

each of them must obey (10). It is easy to see that the re-
sulting_scauation for Zé;) coincides with (9) and for the sym-
metric ngn (10) reduced to ‘

;

- ~(8) =(8)y = (8)
> (tjEij + 4 ng) + (U8em +V‘Zm +1p —e)Zem =0, (11)

J=—OO

If the U term is here omitted, (11) is just the equation for
two-magnon wave functions in a quasi-Heisenberg XXZ ferromag-
net with the Hamiltonian

-]

- X x y '.y 1
H- 3 [t,k (aj o, +0 o ) +-2—(Vjk ,+I

z
. J )ojzak ]. (12)

ji k= =00 Jk

'So even in the general case of non-nearest-neighbour - hopp-
ing we obtain a certain correspondence between fermionic and
bosonic models despite the absence of the Jordan - Wigner type
diffeomorphism. This corresponden may serve as the key to
the choice of the hopping tensor: it must be taken from some
integrable spin model of, the type (12). Recently possible
candidates for this role have been proposed/41'43/. In the re-
maining part of this paper we shall consider the most general
case 743/

. §=k |  Im =0,
t, = .

Ik i - Rex >0
¢ ——2-[sinh-Z-(j—k)] 2 ik :

K

(13)

and investigate the solutions of "bosonic" eq. (10) and eq.(9)
of the "pure fermionic" nature.

ITI. SYMMETRIC SOLUTIONS

Let us start with the calculation of the energy of one-
electron state (6) with the hopping (13) briefly discussed
also in/43/

The closed form of the trigonometric sum

g

g

00 2 . NN -
€)=ty = _’.'E_zexp(ikp),[smh_gk] 2

k=00

. lmpl < 22 (14)

méy be obtained by the methods. of Weierstrass elliptic func-
tion theory. Let us construct the function:of the complex va-
riable X, . L : . :

® gl - ‘ ,
Fx) =t S -—exp(ikp) [ siohTGksx)] ™2 o (15)
0k=—°° K 2 . K .
which has the following quasiperiodicity properties:
F(x+1) = exp(cip) F®), Fx+o) =F®, o=ix. (16)

This functioﬁ has a pole singularity at the point x = 0.
The expansion of F in the vicinity of this point contains the

term with € (p),

F(x) = tb(-lé- - 3—"—;) +e(p) + O(x) (17)
X K

Note that it is the only singularity of F(x) on the torus
C/T obtained by factorization of the complex plane C by the
lattice of quasiperiods I'=my+Mp @, My, Mp& Z . Now we con-
struct the function G(x) with the same quasiperiodicity (16)
and singular term as in (17) by using Weierstrass functions
Px), {&x), o(x) defined on the same torus C/I':

G(x) = _A.aﬁil.._)._exp(b‘x) [(P(x) - P@) +ALEx+1) -4 ~¢@r) + La)1-

- o(x -r
The constants A, r, 8, A are determined from the relations

5 +-{(-§-)r = -ip, dw + é(—;—’)r =0, A=tgy, AA =(2{(®) +8)-ty,

which can be simply obtained by using the standard properties
of Weierstrass functions/44/. The result is

. pw P @ -1 (/) Pw
A=t0, l"=-—;—, 8.= —;((-é—), A=n [p{(-z—) —24(;)]- (18)
7 -



The difference R(x) = F(z) - G(x) is, by construction, an
analytic function of x without any singularities in the full
complex plane €. According to the Liouville theorem 744/ R(x)
would be equal to a constant and due to the relation Rz +1) =
=exp(~ip) R(x) this constant must be exactly zero. By compar-
ing the terms independent of x in the decompositions of F(x)
and G(x) near x = 0, we finally have

a2 2
€@ =ty [ T2 - P - (L@ + D) +5) - Eé%:_ﬁ_] (19)

with r and & given by (18).

The next step is the calculation of a slightly more ;:ompli—
cated sum i

00

-2
- 7 . g -2
S, ) = 3 — exp(ikp) [ sinh—k] coth——: k+€), £€Z  (20)

ke K

k£ 0,-f

The appropriate function which may be constructed by Weier-
strass theory is ‘

o 2
FL®= 3 = exp(ikp) [ sinh-"(k + x)] ~ coth -7 (k + £+x)
k== K2 K K

w::.th the quasiperiodicity relations (16) and pole singularity .
]._1ke (17). Arguments of the type used above lead to the follow-
ing closed form of (20):

(1 + 2exp(-ipf))] +

S(p, e) = f—cothlf;[e(p) -

«2 sinn 21t ‘
K (21)
772 |
+ ~———— (1 - exp(-ipf)) £(p) ,
k ® sinh® .t
K
where
P, @ P |
f = o —) - —
® =2 k2. 22)
8

Y e

b (=gl

Now we are ready to construct the solution of eq.(1l) as
follows

Zﬁz =(1 - Blm ) {eoth y[ exp(i(p, £ + Py m)) + exb(i(pzl + plm))] + (‘23)
+[ +[expt(p, € +p,m)) - exp(i(p,? +p1m))1coth-'1:—( £-mi.

The second term describes the distortion of the states of two
free-propagating electrons due to interaction between them.

By substituting (23) into (11) and using (19) and (21) it is
easy to find that (11) is satisfied for all quasimomenta P,

mp_ | < 2%, a = 1,2, if

I, =t 2”2[sinh-:-(£-m)]'2 , (24)

u=-0, Vv fm x2

fm *

cothy = é‘;[f(pl) -fpy)] . (25)

The eigenvalue which corresponds to the solution (23) is

E(pln p2) = E(pl) + 6(92) . : ‘ (26)
The tape of potentials (24) which is obtained above leads
to the constraint that any site of the lattice according to
(23) cannot be doubly occupied. The case of real p;, pp cor-
responds to the scattering states. Let us show that the bound
states are also possible for the complex quasimomenta (c£./%%/
for Hubbard case). If |Imp,| > 0, the only situations in which
Z(e'z vanishes as | {-m| > =« .are |cothy| = 1.Taking for de-

finiteness Pys =.§- +1Q, ImP= 0, ReQ>0 we have from (25)
the equation ’ :

K P P

Let %E’:i){, - ig-s’-=r where A is real an‘d 0 < Rer <1, The
pa ;

above equation reduces to

NG A gy, 27, 4(1)(_ 1) —{iA+7) =0 : - (27)
[3) 2 K



At fixed A £0 the function ¢.)\(T) has the following simple
properties:

2 2 1 dé)
¢A-(0)=T, ¢A(1)=-——K—-—, ¢A(-§) —0, dT (0) < 0-
The zero at r = 1/2 is trivial because after its substitution

into (23) Z(es) vanishes. The nontrivial zero exists if and
only if the derivative of N (r) on the interval (0,1/2) chan-
ges the sigh, i.e.

dé) 4 0 1 1
—— = e— — -_— A —) =
= lT=1/2 w{(z)+f?(1)\ 2)+ P AN + 2)
(28)
S s (st Tl +n- L) £ stoh T (W an+ 2 >0,
K2 N==00 K 2 K‘ 2

The analysis of the behaviour of this sum as a function of A
shows that at least for cot-’—?- > coth—zz— the inequality (28)

K .
holds. So from (27) we conclude that for some values of real
Q@ there are real total quasimomenta P defined by the formula

(29)

- e e

i
2n K m

Po B 1_Q£ » =1Qw Qo 27 21Q c’o. ~1
A - P( 2”) + 9 (—5;—)[24'( - 4(-‘-2-)]

The possible case of complex r needs a more thorough consi-
deration. It is likely that the bound -states (29) have the
smallest possible energy at the fixed total two-electron qua-

simomentum but the proof of this statement is now not complete.

IV. ANTISYMMETRIC SOLUTIONS

In the two previous Sections we have fixed the hopping ten-
sor and the combination Vp_+1Ip, by (13) and (24) in the Ha-
miltonian (2-3). The remaining term Vo, -Ip, can be specifi-
ed by the requirement of the presence of exact solutions to
the equation (9) for the antisymmetric tensor Z(* . The simp-
lest situation is evidently realized when V, ='1, =0, i.e.
the electrons with the same spin projection do not interact
(note that just the same property is inherent in the Hubbard
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model). The solution of (9) in this case has the form of the
antisymmetrized combination of one-particle solutions

z® M expli(p, 2 +p,m)] - exp[i(p ¢ +p, m)] (30)
fm 1 2 2 1
with-the eigenvalue ¢(p;,ps) =e(p;) + e(@y).
One can try to introduce a distortion due to nonzero inter-
action Vp - Ip by adding to (30) the term analogous to (23),

Zé:) a. fexpli(p, £ + pznm)] +expli(p,€ +p,m)] }coth’f-( £-m).

However, the use of the relations (19), (21) shows that (9)
cannot be satisfied for any (Vg -Ip, ) and combinations of
quasimomenta. One needs to construct the principally new an-
satz to distort (30) by some interaction between -electrons.

For that purpose let us consider the following trigonomet-
ric sum similar to (21),

[

g(p, £) = X —”—Z— exp(ipk) [sinh—’:lk] -2 tanh-:-(k +0)

=wo00 K

x£0

(31)

and find for that an analytic expression through Weierstrass
functions. As in the previous section, one can construct the
function

F@x = 3 -7 exp(pk)lsinh-T(k+x)]" tanh-T(k+L +x) (32)
) k=—oo K2 K K .

that is quasiperiodic as F(x) (16) but has on the torAus. c/T
two pole singularities at the points x = 0 and x=0/2 generated
by the terms with k=0 and k= -f in (32):

2 . -
F, @ = tanh—':-zl;(—-lz— ' il L, cosh™® )
K
' XK coshlz- sinh f—e— “
K K
+ S(p, €) + O(x) nmear x=0, - (33)

- I exp(~ipt )[coshAiTL]"2 (x - 5"-)-1 near x =
K K K

Fz )

|
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The proper combination Gj(x) of Weierstrass functions hav-
ing the same structure of singularities and qua51per10d1c1ty
contains five constants,

Aa(x+r)

exp@d) [P @) - P@) + Ay (& +1) - L) - L) +
o(x -r)

Gz(x = -

+L0) + A, (& +r) - L - -“21) CORT L)

which must be determined from (16) and polé terms in (33),

A= tann-’i, Ay =24@) +6 - —A cosh‘z(.’.’_“.)

A =_._A cosh (

2 )exp(-ipﬂ)

and r and & as in (18).
Comparing the first nonsingular terms in (33) and the de-
comp051t10n of G (x) near x =0 we have

2
tanh—’-'i il +e(@] +

®  «k2cosh? (-"K—-) (34)

S, 0) =

+ L oosh™® Z0 7L e - exp(-ipE) g1,

where

£(p) = —”"- a4 - c(-g-jri) ,

&) = <) + é’(%) -£@r).+ L - -'-"2—).

Note that f(p) and g() are odd functions of their argument.

Let us search for the solutions of eq. (9) in the form

12

s

E )~ cothyl exp(1(p;f +p,m)) - exp(i(pf +p, m))] + (35)

+[exp(i(p; € +pym)) +exp(i(pyl +pym))]tanh-Z(l -m).

Calculating by (19) and (34) the 1nf1n1te sums in the left- hand
side we obta1n

5 (a) 5 (a) 5 (a)
J_S:_W(tJ ij -tjmzjz ) + (Vzm ~Lon —E)sz

2n2 fto

=(e(@y) + e(py) ~€ + +VZm ‘Ilm)%%ﬁ M

2
&% cosh® (¢ -m)
K

2r 2

+tol = 5o (@) - 1(py)) —cothy] lexp(i(p £ +p,m)) -

x 2 cosh® Z(f -m)
K

atg (36)

- exp(i(p,L +p,m))] - x
' KCOShg-E(Z-—m)

x[8(,) + 8®,)1lexpl(p, +p ) m) - expli(p,+PHL) = 0.
The first term in the right-hand side of (36) reduces to ze-
ro if :

2172t0

1 -V = ,
fm fm .
' ke coshE—Z(E -m)

(37)
€= ‘(pl) + €(pz) .

The absence of the second term is, as for symmetric solutions,
guaranteed by the proper choice of the parameter cothy,

K
cothy = 51-1[ f(p,) - f(p2)] .
Most troubles are concerned with the last term having no

analog in the symmetric case. It vanishes if and only if

13



the electron quasimomenta are not arbitrary but restricted
by the transcendental relation

gp,) + 8(py) =0. ‘ (38)

The simplest possibility is p, =-p; which corresponds to
zero total quasimomentum. So the ansatz (35) with (25) and
(38) gives not a general but only a partial one-parametric
solution to (9). At this stage we could not find any modifica-
tion of (35) free from the restriction (38). However we hope
that it will be possible in the future.

Let us discuss also the problem of antisymmetric bound sta-
tes with zeroth total quasimomentum. The decrease of Z(a),
when | £ -m| -+ « , can be reached only if {m

f—f(p) =1, 0<Imp<-&7— p,=-p _=p. (39)
w

In the case of a pure imaginary quasimomentum, p= _2"‘1_7, Imr =0,
K

the solution of (39) is equivalent to the search for the ze-

roes of the function ¢(r) =Z(r) + 217((2) - -;:-7- on an interval

0<r <1 with the exception of the point r = 1/2 at which
63) identically vanishes. On the left and right ends of that

interval ¢(r) tends to +«. Its derivative Tfé can be written
. . r
as an infinite sum, '

2
d¢“?‘)+“‘<‘“)“"§ s [sinh-Z—(r-n)]_z,

dT K N==—00

which is negative at all real r . So ¢(r) has the only zero at
0<r < 1. By using the well-known properties of { function,

Lr+1) = £0) +2¢(-;-), 4(-;-)m - (%) -,

it is easy to see that this zero is located just at the excep-
tional point s =1/2, so the bound states in this model do
not exist at zeroth total quasimomentum.

14

V. DISCUSSION

Returning to the original Hamiltonian (4) we see that the
simplest two-electron problem on an infinite lattice has the
exact solutions if

2
U=0, te = t . T
= « 2 sinh® -’-7:—(2 -m)
Voo = ---[S h~2 "(Z -m -6 COSh"z"(z -m)], (40)
m K2
gy = [sinh'2 ~ (£ -m) +5cosh‘2"(e -m)}, 5=0 or 1

in both symmetric and antisymmetric cases. From our point of
view this fact indicated that such models seem to be solvable.
More convincing arguments may be obtained by analyzing the
states with three or more electrons. In the complete symmet-
ric sector corresponding to the Heisenberg-chain type model
one can show that the wave functions have a Bethe structure,
i.e. depend only on one phase, which is expressed through
quasimomenta as (25). The states of mixed symmetry with more
than two electrons have not been investigated but our previo-
us experience shows that exact solutions can also be obtained.
Note that the short-range hopping (40) is reduced to the
nearest neighbour Hubbard one in the limit « » 0 after a tri-

K2
vial "renormalization" t; - to-——exp(—-) However, the total
-~ :

Hamiltonian does not tend to the Hubbard one because of U= 0
and surviving of the exchange nearest neighbour intersite in-~
teraction term in (40). To our knowledge models of that type
have not been considered as candidates for being solvable.
It would be interesting to check for them the possibility of
constructing the standard Lax representation as it was done
in 36 for the Hubbard case.

By analogy with spin chains we can also assume that models
of the type (40) would be solvable if VZ and IZ are modi-
f1ed as follows .

t w

\/ [§G+1) sinh~2 "(e-m) - k(k+1) cosh'z-(l -m)],

Em - 2K2
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2
(jg+1 smn‘2_’£( £-m) + k(k+1) cosh"’z—:-(’-(ﬂ -ml.  (41)

I
fm 2x 2

That '"discrete" analogs of the well-known Poschl - Teller po-
tentials correspond to the possibility of expressing through
Weierstrass functions the trigonometric sums which are simi-
lar to (21) and (31),

A o 2 el
s® @ gy = 3 1 SO o ann T +2), com Tk +0),
K

k£0, £ <% gimh(Zy) «
K

- 00

where P is an arbitrary polynomial of n-th power. However,
no r1gorous proof of the existence of exact solutions of ty-
pe (23), (35) in that case is now yet found.

Another type of interesting problems is the investigation
of excitations in more realistic and complicated than (5)
"vacuum'" basic states. The picture of particle-hole and hole-
hole interactions in a half-filled (ferromagnetically ordered
ground state) band seems to be very similar to the case con-
sidered above but the propagation of excitations on the va-
cuum of antiferromagnetic type needs a more thorough analysis.

The proper consideration of periodic boundary conditions
consists in the change of trigonometric hopping and interac-
tion terms (40) into elliptic ones,

t

ty PUE-m), V, <t (P -m+5P(-m+ 3,

fm fm
L =tolFe-m) - 57 -m'+£°-)],
m

where the real period of double perlodlc Weierstrass 3’ func-
tions must be equal to the number of sited N and the imagina-
ry period coincides with that of (40). As N tends to infinity,

2mx

P(x) - {—Z—(El—+sinh_ =), ?(x+_) R __(__ - cosh 2_7(5)

and the previous structure (40) appears. The two-particle
exact solutions in the symmetric second were also investiga-
ted earlier but had a much more complicated form/43/.

To summarize, at this stage we tried to construct a sol-
vable nonlocal generalization of the original Hubbard model
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without the U term. The case including that term requires
further efforts. It is quite possible that a model like that,
if exists, needs a more sophisticated than (3) form of inter-
action in the second-quantized representation. Nevertheless
we hope that the solutions discussed above give an insight
into the more general problem of introducing solvable lattice
models. From the algebraic point of view the most interesting
questions here arise in constructing analytic integrals of
motion commuting with the Hamiltonian (2). The finding of a
regular procedure for .that gives, according to the common
wisdom, the most preferable proof of the solvability. In a
much more simple Hubbard situation this procedure has been
proposed only recently /3537 and even the simplest integrals
are relatively complicated/37/. In our case of non-nearest-
neighbour hopping the standard routine based on the search
for a.local transition matrix seems to be nonapplicable. For
similar quasi-Heisenberg nonlocal spin chains only few integ-
rals of motion were constructed but any regular scheme was
not found’#3/ | This line of research seems to be most intri-’
guing and promising for future studies.
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: klij/iHo:‘;aexvmeB‘B.I‘/I.', KyéeMcKHﬁ AJ'I EL 1 ‘,Ev’1‘7-t9'6‘-'360k .
“Towoe pelueHue HOBOM om{omepnof& : e R ‘“1\. ‘

sl dJepMHOHHOH CHCTEMBI Ha pelleTKe

Mm paccxvxa'rpmaaeM 0606mem1y10 MOJIeb Xa66ap11a Ha 6ecr<o-' :
;Heqnon om{omepnon  pelleTKe, BKIIOYAIOLIYIO npsaMoe U 06mem{oe o
Mexy3elnsHoe Baanmoneuc'rsne Hepenm'manc'rcxnx d)epMHOHOB cnn-.\
‘Ha-1/2. Mogens norrycxae'r BOBMO)KHOCTB nepecrcoxa 3ne1<'rponon ‘
} ‘Mexcn,y TI06BIMU . y31aMHU peme'rxn, O,I[HaKO coxpaHser KopOTKonen-‘
| cTBMe,  XapaKTepHOe mA CTaH/;apTHOM ‘Mopenu Xa66apna B opmo- -

~ +|'n [IBYX3/EKTPOHHOM - cexTopax HaiifleHbl FBHbIC TOUHbIC DEIIEHUA .
?nyTeM WCTIONb30BaHMA TEOPHH JUTHITHUECKHX dyuxumit. Beitep-

i urrpacca Ochxcnaro'rc;: Bonpocm noc'rpoemm on;ero pellleHus 1
maybHeHero. PasBUTHA 'reopnn mrrerpnpyemmx pel.l.le’I‘Ollelx d)ep-‘

1 MPI-CPICTeM o : , o

‘, OI/IHI/I

e CooneHHe OSieﬁ}mem-:oifo H'Hc'm'x;"yrabnepumz ucehenonahuﬁ. Ily6ua 1990

o

“Inozemtsev V.I. KuzemskyAL . U E17-90-360

: " Exact Solution of the New One-D1mens1ona1 W D e
‘Fermlon System on a Lattxce ; ~ ' ST : =

. We mvest1gate ‘the problem. of constructmg the solvable models -

. The extended Hubbard model whlch includes the direct and exchange"‘
‘t'fmters1te interaction is considered. ‘The hoppmg term in the Hamil- .
- toman is not restncted to nearest ne1ghbour sites (the ”overjumpmg” :

},51s retained. The solutions in one- and two-part1cle sectors are obtained
.| in-an explicit form by using the theory of Weierstrass elliptic func- .
| tions. The: poss1b111t1es of further development of models of that type ~
are also considered. ~ b
e The mvestlgatlon has 'been performed at the Laboratory of E
ELTheorehcal Phys1cs JINR. L g

= ;ﬂ,icommdnieatiohof the"Joix'{t“In'stitute‘foxj Nﬁeleei' Reeearch. Dubna 1990 =

Pa60'ra BbIl'IOJIHeHa B J'Ia60pa'ropnn 'reope'muecxon d)usmcn 1

of nonrelat1V1st1c spin 1/2 1nteract1ng fermions on an 1nf1n1te lattice.. |

: model) but the short-range character of the standard Hubbard model‘,_‘ 2




