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1. Introduction 

Recently, Pegg and Barnett [1-3) have shown that a Hermitian 

optical phase operator ¢8 exists. It can be constructed from the 

phase states. This r.esult contradicts the long-lasting common 

belief that no such operator can be constructed. Witli the use of 

this operator unitary operators exp(±i¢8 ) can be constructed and a 

.Polar decomposition of the photon annihilation operator can be 

performed. This new formalism makes it possible to describe the 

quantum properties of optical phase in a direct way within quantum 

mechanics. There is no need for semi-classical or phenomenological 

methods. 

In quantum optics, a special attention is paid in recent 

years to a class of optical field states that are called squeezed 

states [4]. These are nonclassical states with phase sensitive 

noise, and it is very interesting to study their phase propert1es 

on the grounds of the new phase formalism. 

Phase properties of the ideal squeezed states, or the two­

photon coherent states of Yuen [5], have been examined by Sanders 

et al.[6], Yao [7] and Fan et al.[8] with the use of the Susskind­

Glogower [9] phase formalism with the non-unitary phase operators. 

Recently, Vaccaro and Pegg [10) have re-examined phase properties 

of such states from the point of view of the new Pegg-Barnett for­

malism. The ideal squeezed states are a special class of squeezed 

states with the minimum uncertainty. They are not, however, the 

only squeezed states. 

Quite different squeezed states can be produced during the 

evolution of the anharmonic oscillator. High degree of squeezing 

that can be obtained from the model was shown by Tanas and Kielich 

[11) for the two-mode version, and by Tanas [12) for the one-mode 

version of the anharmonic oscillator. A physical situation in 

which the model can be applied is a propagation of laser light in 

a nonlinear Kerr medium. Since squeezing that can occur in such a 

process depends on the intensity of light propagating in the 

medium, Tanas and Kielich [11) referred to such squeezing as self­

squeezing. This is the field itself that squeezes its own quantum 

fluctuations due to self-interaction via the nonlinear Kerr 

medium. Consequently, the states of the field produced in such a 



process can be referred to as self-squeezed .states. Squeezing in 

the same process was later considered by Kita~awa and Yamamoto 

[ 13] who used name crescent• squeezing because of the crescent 

shape of the quasiprobability distribution contours obtained in 

the process. The evolution of the quasiprobability distribution 

Q(a,a*) in the anharmonic oscillator model has been considered by 
V V 

Milburn [14), Milburn and Holmes [15), Perinova and Luks [16) and 

Daniel and Milburn [ 17]. Recently, the two-mode version of the 

model considered by Tanas and Kielich [ 11] was re-examined by 

Agarwal and Puri [18). 

Phase properties of the states produced in course of the 

evolution of the anharmonic oscillator have been stud_ied by Gerry 

[19) within a framework of the Susskind-Glogower formalism and by 

Lynch [ 20 J who applied the concept of measured phase operators 

introduced by Barnett and Pegg [21)." 

In this paper, we re-examine the phase properties of the 

field generated by the anharmonic oscillator using the new phase 

formalism of Pegg and Barnett [1-3). The phase probability density 

is obtained for such states, and the expectation values of the 

Hermitian phase operator as well as the variances of the phase 

operator are calculated as functions of the evolution time. These 

phase characteristics cannot be obtained in earlier phase forma­

lisms. The cosine and sine functions of the phase operator as well 

as their variances are calculated and compared wtth the correspon­

ding results of the Susskind-Glogower formalism and the measured 

phase concept. 

2. The Hermitian phase formalism 

The new formalism recently introduced by Pegg and 

Barnett [1-3) to describe the phase properties of a single mode 

field has successfully overcome the difficulties associated with 

the existence of the Hermitian phase operator. Pegg and Barnett 

[1-3) have shown that the Hermitian phase operator can be const­

ructed from the phase states. As the Hermitian phase operator is 

constructed, quantities like expectation values of the phase ope­

rator and/or variances can be calculated for given state of the 

field. It is also possible to get the phase probability density 
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whit:h is a very spectacular phase characteristic of the optical 

field. These are new characteristics of the field accessible for 

investigation due to the new formalism. Of course, such phase 

functions as cosine and sine and their variances, which in the 

Pegg-Barnett-formalism are actual cosine and sine functions of the 

Hermitiari phase operator, can also be studied and compared with 

their counterparts in the Susskind-Glogower or measured phase 
formalism. 

Here, we adduce the main formulas of Pegg and Barnett [l-3) 

which we will use in the paper to study the phase properties of 

• the a:1harmonic oscillator _states. Their approach is based on int­

roducing a finite (s+l) -dimensional ·subspace '¥ spanned by the 

number states IO>, 11>, .••. , Is>. The Hermitian phase operator 

operates on this finite subspace, and after all necessary expec­

tation values have been calculated in '¥, the value of s is 

allowed to tend to infinity. A complete orthonormai basis of (~+l) 
states is defined on'¥ as 

s 

lem>=(s+l)-1/
2 L exp(ineJ In>, 
n=O (1) 

where 

em=e0+2rrm/(s+l) , (m=0,l, ... ,s) 
(2) 

The value of e0 is arbitrary and defines a particular basis set of 

(s+l) mutually orthogonal phase states.·The Hermitian phase ope­
rator is defined as 

¢e= " e · I e ><e I L m m m (3) m=o 

Of course, the phase states (1) are eigenstates of the phase ope­

rator (3) with the eigenvalues em restricted to lie within a phase 

window between 

can be defined 

rater ¢e• This 
eigenvalue 

e0 and e 0+2rr. The unitary phase operator exp(i¢e) 

as the exponential function of the Hermitian ope­

operator acting on the eigenstate fem> gives the 

exp(iem), and can be written as [l-3) 
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exp(i¢0)=10><ll+ll><21+ ... +ls-l><sl 

+exp[i(s+l)0
0

] ls><0I 

and its Hermitian conjugate is 

• A + A 

[exp(i<t>0)] = exp(-i<t>0) , 

(4) 

(5) 

with the same set of eigenstates lem> but with eigenvalues 

exp(-iem). 
To make further comparisons easier, Jt is useful to relate 

this new·operator to the Susskind-Glogower phase operator, which 
is given by the following relation [10) 

(exp(im¢0)> <[exp(i¢e)r> = 

!,!: < { :t:ln><n+ml + exp[i(s+l)0 0 ]:t:ls.;.n><m-l-nl} > 

< e~p(im¢
5

G) > + 

+ !,!: < {exp[i(s+l)eJ:t:ls-n><m-1-nl} ), (6) 

where the Susskind-Glogower phase operator is given by 

(I) 

e~p(im¢
5

G) = L ln><n+ml. (7) 
n=O 

In contrast to the Pegg-Barnett unitary phase operator, the 
Susskind-Glogower exponential operator is defined as a whole and 
is not unitary. From the definition (7) and the definition 

e~(-im¢5c) 

one gets for m=l 

A + 
= [ exp ( im<f, sc)] (8) 

4 

( 
l 

'e~p ( i<f, SG) e~p ( -iq, SG) 

e~p(-i<t>SG)e~p(i<t>SG) 

1, 

1 - I o><o I 
(9) 

which explicitly .shows the non-unitary of the Susskind-Glogower 
phase operator. 

When "physical states", according to their definition by Pegg 
and Barnett [2,3), are considered, there are some additional use­
ful relations ·between expectation values in such states of the 
Pegg-Barnett phase operators and of the. Susskind.;.Glogower phase 
operators. For example, the following relations hold [10) 

(exp(im¢0)>P = (e~p(i~-¢
5
c)>P , (10) 

A 1 A A 

(cos<f>e>P = 2 < exp(i<t>0) + exp(-i<t>0) >P 

A 

(cos<(> sc>p (11) 

(sin~0> P 
1 A A 

TI< exp(i¢0) - exp(-i<t>0) >P 

(sin<(> 5 c> P (12) 

2· 1 A A 

(cos <f>e>P = 4 < exp(i2¢0) + exp(-i2q,
8

) + 2 >P 

A 2 1 = (cos ¢ > + -4 < ( I 0><0 I)> SG p p (13) 

2 A 1 A A 

(sin <f>e> P = - 4 < exp ( i2¢0) + exp (-i2<1>
8

) - 2 >P 

(sin
2
¢ > + -4

1 <(I0><OI)> SG p p (14) 

where the subscript p refers to a physical state expectation 
value. We will use these relations later in the paper to describe 
phase properties of the states produced in the anharmonic 
oscillator model 
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3. The anharmonic oscillator evolution 

We are interested in phase properties of light propagating 

through a nonlinear Kerr medium. If the medium is isotropic and 

the light is circularly polarized, the propagation process can be 

described by the anharmonic oscillator model [11,12]. The model is 

defined by the Hamiltonian 

with 

H = hwa•a + H 
I 

H = !.h,ca•2 a 2 

I 2 

(15) 

(16) 

where a and a+ are the annihilation and creation operators of the 

field mode, and K is the coupling constant which is real and can 

be related to the nonlinear susceptibility x< 3
> of the medium. We 

assume the medium as being lossless. 

Since the number of photons n=a + a is a constant of motion, 

the Heisenberg equations of motion for the field operators can be 

solved exactly, which allows for getting exact analytical solu­

tions for the field variances and predicting a high degree of 

squeezing [11,12] in the model. 

To study phase properties of the field generated in the an­

harmonic oscillator model, we need to know the state evolution of 

the field rather than the operator evolution. Since the inter­

action Hamiltonian (16) commutes with the free Hamiltonian (15), 

the free evolution of the state can be factored out (we will drop 

it altogether later on) and the state evolution of the system is 

described by the Schrodinger equation 

ih~tU(t) = H1U(t) , (17) 

where U(t) is the time evolution operator, and H
1 

is the inter­

action Hamiltonian (16). In the propagation problem, when the 

light propagates in a Kerr medium, one can make the replacement 

t=-z/v to describe the spatial evolution of the field instead of 

the time evolution. After this replacement the solution to equa­

tion (17) is given by [13] 

[ 
-r· • ] U(-c) = exp i 2n(n-l) , (18) 
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where' 

-r=Kz/v 
(19) 

is the dimensionless length of the nonlin~ar medium (or time in 

the time domain), and n=a+a is the photon number operator. If the 

state of the incoming beam is a coherent state la
0
>, the resulting 

state of the outgoing beam is given by 

11/1(-C)) = U(-r) la
0

) 

en n 

exp(-ja0 j
2
/2) l ~ exp[i;ncn-11] In> 

n=ovnT , (20) 

The state (20) has additional phase factor with respect to the 

coherent state ja0>, and b~cause of the quadratic depe~dence o~ n 

this extra phase cannot be simply added to the phase of the cohe­

rent state. So, the state (~0) differs essentially from the cohe­

rent state I a0>. It is known [ 11-16] that such states lead to 

squeezing. The state (20) differs, however, from the ideal 

squeezed state [5]. It can be referred to as self-squeezed state. 
On introducing the notation 

1/2 (' ) a
0
= N. exp l.cp

0 
, 

n/2 
N 

b = exp(-N/2) vnT n 

equation (20) can be rewritten as 

11/1(-r)> = ni/nexp {i[ncp0+ ;~(n-1)]}1n> 

(21) 

(22) 

(23) 

Since the number of photons' is a constant of motion, and is 

equal to N, the state (23) is a "physical state", in the meaning 

of Pegg and Barnett [2,3], for any finite N. Of course lim bn=0. 
n~ 

This means that all formulas concerning physical 'states can be 

directly applied to this state, and all phase properties required 

can be easily calculated. some of these properties are discussed 
in detail in the next Section. 
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4. Phase properties of self-squeezed states 

The states that we refer to as self-squeezed states are defi­

ned by the superposition (23) of the number states, which for 

given T describes a definite state of the outgoing field. The sta­

tes depend on the value of T and for some special T values they 

become a discrete superposition of coherent states (22-24]. 

Initially (T=O) the state is a coherent state la0> with the phase 

~o defined by equation(21). Since at T=O this state belongs to a 

class of partial phase state, we will choose the initial phase 

a ,appearing in equation (2), in the way convenient for descrip-
o . 

tion of partial phase states [3], namely 

rrs 
8 0 = qio- S+l 

If we introduce a new phase label 

s 
µ = m - 2 

(24) 

(25) 

which goes in integer steps from - ~to~- the phase distribution 

becomes symmetric inµ. According to equations (1),(2) and (23)-

(25), we obtain 

(B
11

1"1(T)> = (s+l)-inniobnexp {-i[na11- ½n(n-1)]} , 

where 

a
11
= µ2n/ (s+l) , 

(26) 

(27) 

and bn is given by equation (22). From equation (26) we can easily 

obtain the phase probability distribution in the form 

2 1 + 
l<B11 !"1(T))I = s+l 

2 
s+l 'b b f.. n k 

n>k 

x cos {cn-k)8µ - ½[ncn-1)-k(k-1)]} 

(28) 

For T=O this expression goes over into the corresponding expres­

sion for partial phase states given by Pegg and Barnett (13]. 

In the limit as s tends to infinity, the continuous phase 

variable can be introduced replacing µ2rr/(s+l) bye and 2rr/(s+l) 

by d8. This leads to a continuous phase probability distribution 

8 

j• 

t 

r 
{ 

,. 

given by the formula 

P(8) = 2~ {1+2J/nbkcos[(n-~)8 - ½(n(n:1)-k(k-l)J]} , (29) 

with the normalization 

1l 

I P(8)d8=1 (30) 

-rr 

For T=O, formula (29) describes the phase probability distribu­

tion for a coherent state - a member of_ partial phase states. In 

this case P(B)=P(-8),i.e. ttie phase distribution is symmetric in 

e. This symmetry is broken when the nonlinear propagation takes 

place and T;tO. In this case, the phase probability distribution 

P(8) exhibits some new and very interesting features. 

Despite the apparent simplicity of the formula (29), it is 

not easy to predict the shape of P(8) because of the double summa­

tions appearing in the formula. Since the. amplitudes b have 
n 

Poissonian character, i.e., they are peaked at n=N, the series is 

rapidly convergent for not too large N, and can be evaluated nume­

rically. On the other hand, for large values of N the summations 

can be replaced by integrals, and some analytical approximations 

for P(8) are possible. 

For small number of photons the direct numerical evaluation 

of formula (29) can be performed. The results are shown in Figs.1-

3. In Fig.l the phase probability distribution P(8) is plotted 

against a in the polar coordinate system for various values of T, 

and for N=0.25 (Fig.la) and N=4 (Fig.lb). It is seen from Fig.la 

that .for T=O the distribution P(8) has elliptic shape which, 

however, cannot be associated. with sque!?zing, as it is the case 

f~r the weakly squeezed vacuum (10], because it describes a cohe­

rent state with the mean number of photons N=0.25. As T increases, 

the in-phase quadrature component becomes squeezed [12], but the 

shape of P(8) becomes less elliptic. For T=rr when the maximum of 

squeezing appears[25], the shape of P(e), although symmetric, is 

far from being elliptic. This means that in the case of self-

· squeezed states generated by the anharmonic oscillator the simple 

iden~ification·of the elliptic shape of P(8) with squeezing is not 

possible. In Fig.lb the polar coordinate shapes of P(8) are shown 
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., 
for N=4. The initial coherent state phase distribution assumes a 

lengthened leaf shape, which rotates and c~anges its shape as the 
evolution proceeds. For i:=rr, P(0) splits into two separate leaves. 
The same distributions as in Fig.l are shown in Fig,2, but this 
time P(0) is plotted against 0 in the Cartesian.coordinate system. 
The splitting of the distribution into two peaks for i:=rr is 

already visible in Fig.2a, and becomes quite evident in Fig:2b. 
This splitting reflects the fact that the state of the anharmonic 
oscillator evolves in this case into a superposition of two cohe­

rent states (22,23). This means that the phase distribution P(0) 

can be related to the shape of the quasiprobability distribution 

Q(a,a*) in the complex a plane [ 14]. If ,: is taken. ·as 2rr/n 

(n=2,3,4, .•• ) the shape o~ P(0) in polar coordinates exhibits n­
fold symmetry confirming generation of discrete superp~sitions of 
coherent states with 2, 3, 4,... components [ 24]. This is shown 

convincingly in Fig.3. 
If the mean number of photons in the field is large, N»l, the 

approximate method used by Barnett and Pegg [ 2] to describe the 
phase distribution of coherent states can be applied for finding 

the phase distribution. In this case the Poisson photon number 

distribution is well approximated by a continuous Gaussian 

distribution 

Nn 
P(n) = exp(-N)nT 

-1 ✓2 [ (N-n)
2 

] z (2rrN) exp -~ ' 

which is normalized so that 

J P(n)dn = 1. 

(31) 

If the square root of P(0) is substituted into equati?n (26) and 
the integration over n (instead of the• summation) is performed, 

one eventually arrives at the following result for the phase pro­

bability distribution 

P(0) = 1 [ (0-8)2 ] 
--- exp -
~ ~ 

(32) 
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where 

B = rp + -c( N - ! ) 0 2 , (33) 

cr2= N ( -c
2 

+ 
4

~ ) (34) 

The distribution (32) is a Gaussian distribution with the mean 

given by equation (33) and the dispersion given by equation· (34). 

This means that the mean phase is shifted by -cN (we can drop~ for 
. 2 

N»l) during the evolution. This result agrees with the operator 

solution [12] 
+ . 

a(-c) = exp[i-ca (O)a(O)]a(O) (35) 

If the operators are replaced by the classical amplitudes a, 

N= I a 12, the shift in phase by -cN is immediately seen. Equation 

(34) says that the dispersion of the resulting Gaussian distribu­

tion of phase increases with -c. Since .all the time the photon 

distribution remains Poissonian with the variance <(t.Nf>=N, the 

phase-photon number uncertainty relation takes the form 

<{ ti¢ 8)2)(( liN)2) = ( ¼ + N2-C2) (36) 

which means fast expansion of the uncertainty product during the 

evolution. One should, however, keep in mind that the approxi­

mation (32) works well only when the Gaussian is not too broad. 

Otherwise, the exact formula (29) should be used to calculate the 

mean phase and the variance. 

The mean value of the phase in the self-squeezed state (23) 

can be written as 

<l/l(-r)l¢ell/l(-C)) = rpo+ ~n J {2 L bnbk 
n>k -n 

x cos {<n-k)e - ½[n(n-1) - k(k-1)]}} eda = 

rp - 2 'b b (-l)n-ksin {![n(n-l)-k(k-1)]} 
o L n k n-k 2 n>k 

and the variance of ¢8 is given by 

14 

(37) 

<I/IC-r> I (ti¢e) 
2 

II/IC-r» 

+ 4 ' b b 
•nfk n k 

2 n 
3 

n-k 
{=!_l___cos 

2 
(n-k) 

{
2 L b b {-l)n-k 

n>k n k ~ sin 

{Hn(n-l)-k(k-1)]} 

{Hn(n-l)-k(k-1)] }r 
(38) 

If we put -r=O in formulas (37) and (38), the results for a cohe­

rent state with the phase rp
0 

are recovered [3]. It is clear from 

(37) and (38) that the nonlinear evolution of the system .leads to 

essential changes in botq the mean value of the phase and its 

variance. 

The results (37) and (38) are illustrated graphically in 

Figs.4-6. In Fig.4 the evolution of the mean phase is shown for 

N=0.25. The mean value of phase oscillates within a narrow range 

of values around zero. In Fig.5 the evolution of the phase 

variance for N=0.25 is plotted. The variance goes up initially, 

.reaches a plateau and goes down to the initial value when -c 
approaches ·2rr. All resu~ts are periodic in -c with the period 2rr. 

It is interesting to note that for -c=n, when squeezing' approaches 

its maximum, the phase variance has large value,i.e., the phase of 

the field is badly defined. In fact there is a shallow local 

minimum at this point, but with the large value of the variance. 

The results for N=4 are presented in Fig.6. The amplitude of the 

phase oscillation becomes larger, and the value of the phase 

variance goes up even higher and starts to oscillate around the 

value rr2/3. This means that the state of the field for most of the 

period of the evolution has its phase variance close to the state 

with randomly distributed phase. This tendency is even more 

pronounced when the mean number of photons increases. 

Such phase characteristics of the field as the phase distri­

bution P(8), the expectation value of the phase operator and its 

variance are quantities that can be obtained within the Pegg­

Barnett . formalism only, and cannot be compared to any other 

approach so far. 

There are, however, phase characteristics of the field that 
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have' their counterparts in' other formalisms. Such are, for 

example, the cosine and the sine functions of the phase and their 

variances. To calculate the expectation values of the cosine and 

the sine functions of the phase ..f~ take into account the fact that 

the self-squeezed states produced by the anharmonic oscillator are 

physical states, for which the last term on the right-hand side of 

equation (6) vanishes, and the relation (10) holds. This gives us 

00 

<¢(t:) lexp(im¢8 ) 1¢(t:)> = I <¢(t:) ln><n+ml¢(t:)> 
n=O 

oo exp {im[rp + !2 (m-1+2n)]} 
Nm/2 I b2 a . 

n=O n [(n+l)(n+2) ... (n+m)J1 12 (39) 

where equations (21)-(23)' have been used. From equation (39), in 

agreement with (11) and (12), we obtain immediately the following 

expressions for the expectation values of the cosine and sine 

functions of the phase 

00 cos (rp +nt:) 
<¢(t:) lcos¢el¢(t:)> = N112 I b2 a 

n=O n (n+l) 112 ( 40) 

00 
sin(rp +nt:) 

<¢ (t:) I sin¢e I¢ (t:)> = N112 I b2 a 
n=O n (n+l) 112 , ( 41) 

where bn is given by equation (22). 

Similarly, according to equations (13), (14) and (39), we get 

the results 

<¢ (t:) I cos2¢8 I¢ (t:) > 
1 1 ~ 2 cos[2rp +(2n+l)t:] 
2 + 2 N L. b __ .....:,a ___ -=. 

n=O n [(n+l)(n+2)J1'2 
( 42) 

<¢ (t:) I sin
2
¢8 I¢ (t:) > 

1 1 ; 2 cos[2rp +(2n+l)t:] 
2 - 2 N L. b n -:----=a ___ _ 

n=o [(n+l) (n+2 )] 112 
(43) 

These are the results for the Pegg-Barnett definition of the phase 
2· 2· operator and, of course, we have (cos ¢

8
>+(sin ¢

8
)=1. Again, for 

t:=O these results correspond to the coherent state with the phase 

~a and the mean number of photons N. The Susskind-Glogower results 
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differ from (42) and (43), according to (13) 

quantity 

1 I 12 1 
4 1<~(~) 0) = 4 exp(-N) , 

and (14), by the 

(44) 

which is negligible for N»l, but is essential when N is small. For 

small values of Nall the summations in equations (40)-(43) can be 

evaluated numerically for given ~, and the evolution of these 

quantities can be obtained. This allows us to evaluate the 

variance of the phase cosine or sine and compare it to the 

susskind-Glogower result as well as to the measured phase result 

[21]. The results for the vari~nce of the phase cosine are shown 

in Fig.7. In Fig.7 the evolution of the variance is presented for 

three different definitions of the phase cosine. The measured 

phase concept is based on.the quadrature phase measurements that 

are used in squeezing measurements. The phase cosine is defined in 

this case as approprietely normalized field quadrature [2i] 

A 1 + 
cos~ = 1 ( a + a ) , 

m 2(N+2)1✓2 
( 45) 

and the cosine variance is simply equal to the approprietely nor­

malized variance of the quadrature field component. The exact exp­

licit expressions for such variances in the anharmonic oscillator 

model has been given by Tanas [12], and we will not repeat them 

here, although we use them to evaluate the variance presented in 

the figure. The same formulas were used by Lynch [20] who dis­

cussed phase uncertainties of the anharmonic oscillator model com­

paring his results with the results of Gerry [19] obtained within 

the Susskind-Glogower formalism. All the results are compared in 

Fig. 7a for N=0. 25. There is no difference in shape between the 

Pegg-Barnett and the Susskind-Glogower curves, they are only shif-
. 1 -N 
ted by 4e . The shape of the curve based on the measured phase 

concept is slightly different, although it reproduces main fea­

tures of the other curves. In fact, this curve is identical, apart 

from the scale, with the corresponding quadrature phase variance 

(see [25]). The same curves, but for N=4, are drawn in Fig.7b. 

This time the differences are rather small, but again the resemb­

lance to the corresponding quadrature phase variance (see [14]) is 

l8 

Fig.6 

4.0 (!)//Jc/) 
1r2/3 

2.0 

(¢e) 

0.0 -<po 

N=4 
- 2-i.o 3.0 6.0 

T 

Plot of the mean value and the variance of the phase 

operator as a function of~, for N=4 and~ =0 
0 

maintained. The differences between various phase definitions in 

the phase cosine variance will disappear as N will increase. 

Here, the relation between the phase properties of the field 

and squeezing becomes more transparent. Apart from the direct re­

lation of the measured phase concept to squeezing, because of the 

similarity of the curves, one can expect squeezing for the in­

phase component of the field if the variance of the phase cosine 

falls below its value for a coherent state. Since squeezing of the 

in-phase component of the field means squeezing of the uncertainty 

of the field amplitude, the uncertainty of the phase becomes 

large. It is clearly seen when comparing Figs.5 and 7a, for ~=n, 

for which the maximum of squeezing in the in-phase component 

appears (for N=0.25). The variance of the phase sine has its maxi­

mum at this point. 
If the anharmonic oscillator model is used to describe propa­

gation of laser light in a nonlinear Kerr medium the realistic 

values of~ are very small [11,12] because of the smallness of the 

nonlinear susceptibility of the medium. Even in this case large 

degrees of squeezing are possible [11,12] if the mean number of 

photons N becomes large. 
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Fig.7 The evolution of the variance of the phase cosine 

function. Results for different approaches are compared: 

PB-Pegg-Barnett, SG-Susskind-Glogower, m.ph-measured phase 
a) N=0.25; b) N=4. 
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5 .. Conclusions 

We have discussed th~ phase properties of the self-squeezed 

states generated by the i:o·nlinear evolution of the anharmonic os­

cillator. The new Pegg and Barnett formalism has been used to 

describe the phase properties of such states. The phase distribu­

tion P(8) has been obtained and illustrated graphically for 

various evolution times (lengths of the medium) "' and different 

values of the mean number of photons N. This phase distribution 

exhibits a number of interesting features. It has been shown that 

in this case an elliptic shape of P(8) in the polar coordinate 

system cannot be associated with squeezing. Another interesting 

feature that has been pr~dicted is the n-fold symmetry of the 

phase distribution if c is taken a 2rr/n (n=l,2, ••. ). This confirms 

earlier .results [22--24] that the states o.f the anharmonic oscil­

lator evolve in this case into a discrete superposition of cohe­

rent states with n components. We have calculated the mean value 

of the phase and its variance in the self-squeezed states. At the 

initial stage of the evolution the mean value of the phase increa­

ses, and later st.arts to oscillate around the initial coherent 

state phase ~
0

• The variance of _the phase increases initially at a 

high rate, and later oscillates around the value rr2/3, i.e. the 

value for the states with random distribution of phase. This means 

that for most of the period of the evolution, the anharmoriic 

oscillator states (for N>l) are close to the states with random 

distribution of phase. These unique phase properties of the anhar­

monic oscillator states were possible to obtain due to the new 

Pegg-Barnett phase formalism. 

The phase cosine and sine functions as well as their varian­

ces has also been calculated using the new formalism and the 

results compared to the results of the Sussk~nd-Glogower formalism 

and the measured phase concept. In view of these results, the 

relation between phase properties of field and squeezing is estab­

lished. It is shown that, at least qualitatively, squeezing can be 

predicted from the knowledge of the phase properties of the field. 
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ra~or U., Trutaci> P. 
cI>asOBbie CBOHCTBa caMOC:lKHMalOII\HXCH COCTO.HHHH' 
reHepapyeMbIX aHrapMOHHqecKHM OC~.HTOPOM 

E 17-90-340 

C ToqKH gpeHH.H HoBoro ~asosoro ~OPMaJIHsMa IIerra-Bap­
HeTTa o6cY)KAeHhl $a90Bhle CBOHCTBa CaMOC'1CHMalOIIJ;HXC.fl COCTOH­
HHH, t'eHepnpyekbIX B npo~ecce 9BOnro~HH a.HrapuoHaqecKoro 
ocqHJJJI.HTopa. )1.n.sr 9pMHToaot'o ~asosoro onepaTopa nonyqenw 
pacnpeAe.ttetlit.fl d>asM, ee cpe,iµm:e gaaireHwt H Mcnepc.im, a 
9BOJlt04W1 9Tmt Bem{qHd npoltn:JiIOCTPRPOBaHa rpalpltqeCKH. 
TaK~e paccqnTaiihl cpeA1tne sHaqean.s u AlfCnepcHH onepaTopos 
KOCHHYca n CHHYCa ~a3hl. 3TH pesynbTaThl ~pasHHBaJOTC.H K-aK 
C pesynbTaTaMH, no.nyqeHHbtMll Ha OCHOBe ~OpMa.JIHSMa Cacc­
KHHAa-rnorosepa, Ta~ u c'pesYni>TaTauu, nonyqettuwm Ha 
ocHoBe KOH~enwtn H3MepHMOH $a31Ji. KpaTKO odcy,ir,tteHa B9aHMO­
CBlt9b !-1'.e~y Ol(aTnef.f H d,aso1:rwm csotiCT:aru.m nort11. 

Pa6oTa ab1nonaeHa u Jla15opaTopmt Te.ope'r1tttec1<01! IPH3Ht(l{ 
orum. 

OpenpffffT' 061.e,!Ufaenuoto HHCTK-ryra 11.t(eplll,Dt iiCcne,®sailkA, nyon -1990 

Gantsog Ts., tana.€ R. 
Phase Properties of Self-Squeezed States 
Generated by the Anharmonic osdllator 

The phase properties of the self-squeezed states gene­
rated during the evolution of the anharmonfc osci11ator 
are discussed from the point of view of the rtew phase 
formalism of Pegg and Barnett. The phase distri.bud.on, 
the expectation values and the variances of the Henni­
tian phase operator are obtained and their evo1utiort il­
lustrated graphically. The mean values for the phase co­
sine and sine functions as w~ll as their variances are 
also calculated. The results are compared to the Suss­
kind-Glogo-wer formalism l'esults and the results based 
on the measured phase concept. 'the relation i>etween 
squeezing and the phase properties of the field is short-
ly discussed. - - · 
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