


1. Introduction

Recently, Pegg and Barnett [1-3] have shown that a Hermitian
optical phase operator ée exists. It can be constructed from the
phase states. This result contradicts the 1long-lasting common
belief that no such operator can be constructed. WitH the use of
this operator unitary operators exp(ti&e) can be constructed and a
polar decomposition of the photon annihilation operator can be
performed. This new formalism makes it possible to describe the
quantum propertiés of optical phase in a direct way within quantum
mechanics. There is no need for semi-classical or phenomenological
methods.

In quantum optics, a special attention is paid in recent
years to a class of optical field states that are called squeezed
states [4]. These are nonclassical states with phase sensitive
noise, and it is very interesting to study their phase properties
on the grounds of the new phase formalism.

Phase properties of the ideal squeezed states, or the two-
photon coherent states of Yuen [5], have been examined by Sanders
et al.[6], Yao [7] and Fan et al.[{8] with the use of the Susskind-
Glogower [9] phase formalism with the non-unitary phase operators.
Recently, Vaccaro and Pegg [10] have re-exanmined phase properties
of such states from the point of view of the new Pegg-Barnett for-
malism. The ideal squeezed states are a special class of squeezed
states with the minimum uncertainty. They are not, however, the
only squeezed states.

Quite different squeezed states can be produced during the
evolution of the anharmonic oscillator. High degree of squeezing
that can be obtained from the model was shown by Tanas and Kielich
[11] for the two-mode version, and by Tanas [12] for the one-mode
version of the anharmonic oscillator. A physical situation in
which the model can be applied is a propagation of laser light in
a nonlinear Kerr medium. Since squeezing that can occur in such a
process depends on the intensity of 1light propagating in the
medium, Tanas and Kielich [11] referred to such s&ueezing as self-
squeezing. This is the field itself that squeezes its own quantum
fluctuations due to self-interaction via the nonlinear Kerr
medium. Consequently, the states of the field produced in such a
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process can be referred to as sélf—squeezed_states. Squeezing in
the same process was later considered by Kitaqawa and Yamamoto
[13] who used name crescent squeezing because of the crescent
shape of the quasiprobability distribution contours obtained in
the process. The evolution of the quasiprobability distribution

Q(a,a*) in the anharmonic oscillator model has been considered by
v v

Milburn [14], Milburn and Holmes [15], Perinova and Luks [16] and
Daniel and Milburn [17]. Recently, the two-mode version of the
model considered by Tanas and Kielich [11] was re-examined by
Agarwal and Puri [18].

Phase properties of the states produced in course of the
evolution of the anharmonic oscillator have been studied by Gerry
[19] within a framework of the Susskind-Glogower formélism and by
Lynch [20] who applied the concept of measured phase operators
introduced by Barnett and Pegg [21].

In this paper, we re-examine the phase properties of - the
field generated by the anharmonic oscillator using the new phase
formalism of Pegg and Barnett [1-3]. The phase probability density
is obtained for such states, and the expectation values of the

.

Hermitian phase operator as well as the variances of the phase
operator are calculated as functions of the evolution time. These
phase characteristics cannot be obtained in earlier phase forma-
lisms. The cosine and sine functions of the phase operator as well
as their variances are calculated and compared with the correspon-
ding results of the Susskind-Glogower formalism and the measured

phase concept.

2, The Hermitian phase formalism

The new formalism recently introduced by Pegg and
Barnett [1-3] to describe the phase properties of a’ single mode
field has successfully overcome the difficulties associated with
the existence of the Hermitian phase operator. Pegg and Barnett

[1-3] have shown that the Hermitian phase operator can be const-

ructed from the phase states. As the Hermitian phase operator is
constructed, quanti%ies like expectation values of the phase ope-

rator and/or variances can be calculated for given state of the
field. It is also possible to get the phase probability density
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which is a very spéctaculaf‘phase characteristic of the optical
field. These are new characteristics of the field accessible for
investigation due to the new formalisn. Of course, such phase
functions as cosine and sine and their variances,
PeggTBarﬂettvformalism are actual cosine and sine functions of the
Hermitian phase operator, can also be studied and compared with

their counterparts in the Susskind-Glogower or measured phase
formalism.

which in the

. Here, we adduce the main formulas of Pegg and Barnett [1-3]
which we will use in the paper to study the phase Properties of
‘the anharmonic oscillator states. Their approach is based on int-
roducing a finite (s+1)~dimensional ‘subspace ¥ spanned by the
number states [0>,|1>,...,|s>. The operator
operates on this finite subspace, and after all necessary expec-
tation values have been calculated in ¥,

Hermitian phase

the value of s is
allowed to tend to infinity. A complete orthonormal basis of (s+1)
states is defined on ¥ as .

-4
|6m>5(s+1)4/22:exp(inem)ln>, » (1)
=0
where "

emzeo+2nm/(s+1) » (m=0,1,...,s) . ) (2)

T » . ) Iy )
he value of 60 i1s arbitrary and defines a particular basis set of

(s+1) mutually orthogonal phase states.:The Hermitian phase ope-
rator is defined as

¢ "Emzoe“ l6><e | . _ (3

Of course, the phase states (1) are eigenstates of the phase ope-
rator (3) with the eigenvalues 6 restricted to lie within a phase

win i 3
dow between 60 and 60+2n. The unitary phase operator exp(i¢e)

can beadefined as the exponential function of the Hermitian ope-

rator ¢6. This operator acting on the eigenstate |8 5 gives the
. R m

eigenvalue exp(lem), and can be written as [1-3]



exp(i$9)5|0><1|+|1><2|+...+|s-1><s|
+exp[i(s+1)eo]|s><0| , (4)

and its Hermitian conjugate .is
[exp(1dg)]7= exp(-id) , | | ' . (5)

with the same set of eigenstates |9m> but with eigenvalues
exp(—iem). ) : .

To make further comparisons easier, it is useful to relate
this new' operator to the Susskind-Glogoﬁer phase operator, which
is given by the following relation [10]

<exp(imdy)> = <[exp(idg)]™ =

8 - R B m-1
lim ¢ { Z |n><n+m| + exp[i(s+1)eo] Z |s4n><m—1—n|} > =

80 n=0 n=0

< eﬁp(im¢sc) >+

m-1

+ 1im < {exp[i(s+1)ed Z Is—n><m-1-n|} >, (6)
8 )M n=0

where the Susskind-Glogower phase operator is given by

[+ 4]

e§p(im¢sc) = Z | n)<n+m| . : . i (7)
n=0

In contrast to the Pegg-Barnett unitary phase operator, the
Susskind-Glogower exponential operator is defined as a whole and
is not unitary. From the definition (7) and the definition

[exp(img)]* , (8)

eﬁp(-im¢sJ

one gets for n=1

‘er(i¢sc)e§p(-i¢sc) 1,

(9)

e§p(—i¢sc)e§p(i¢sc) 1 - |oxo] ,

which explicitly’shows the non-unitary of the Susskind-Glogower
phase operator. '

When "physical states", according to their definition By Pegqg
and Barnett [2,3], are considered, there are some additional use-
ful relations ‘between expectation values in such states of the

'Pegg-Barnett phase operators and of the Susskind-Glogower phase

operators. For example, the following relations hold [10]
<exp (indg)>, = <exp(imp )5 | | . ao
<co§$e>p = %-(exp(i&e) + exp(-i&e)~>p =
= (oS¢ > ‘ (11)
(sin$e>p = 5% < exp(idy) - exp(—i&e))p =

= <s£n¢sc>p ' (12)

<cos®4g> = 3¢ exp(i2¢,) + exp(—iZ&e) vz,

= <C852¢sc>p + % <(lo><ol)> ' (13)
(sin2$e>p = - % < exp(i2$e) + exp(—izée) -'2‘>p
= ¢sin®g > + 1 <(lo><ol)> . ‘ (14)

where the subscript p refers to a physical state expectation
value. We wi;l use these relations later in the paper to describe
phase properties of the states produced in the anharmonic
oscillator model



3. The anharmonic oscillator evolution

We are interested in phase properties of light propagating
through a nonlinear Kerr medium. If the medium is isotropic and
the light is circularly polarized, the propagation process can be
described by the anharmonic oscillator model [11,12]. The model is
defined by the Hamiltonian
. H = hwa'a + H, , (15)

with
H = %hxa’za2 , (16)

where a and a' are the annihilation and creation operators of the
field mode, and k is the coupling constant which is real and can
be related to the nonlinear susceptibility xm) of the medium. We
assume the medium as being lossless.

Since the number of photons n=a'a is a constant of motion,
the Heisenberg equations of motion for the field operators can be
solved exactly, which allows for getting exact analytical solu-
‘tions for the field variances and predictihg a high degree of
squeezing [11,12] in the model.

To study phase properties of the field generated in the an-
harmonic oscillator model, we need to know the state evolution of
the field rather than the operator evolution. Since the inter-
action Hamiltonian (16) commutes with the free Hamiltonian (15),
the free evolution of the state can be factored out (we will drop
it altogether later on) and the state evolution of the system is
described by the Schrdédinger equation

1h—U(t) = HU(t) , (17)

where U(t) is the time evolution operator, and H is the inter-
action Hamiltonian (16). In the propagation problem, when the
light propagates in a Kerr medium, one can make the replacement
t=-z/v to describe the spatial evolution of the field instead of
the time evolution. After this replacement the solution to equa-

tion (17) is given by [13]

u(z) = exp[igﬁ(ﬁ—l)] , (18)

Pp——

—

where:

T=K2/V (19)

is the dimensionless length of the nonlinear medium (or time in

+
the time domain), and n=a'a is the photon number operator. If the

state of the incoming beam is a coherent state Ia >, the resulting
state of the outgoing bean is given by

¥ (T)> = u(T) o>

00
o
= exp(-|a,|?/2) § —2
n=0vVn.

exP[ign(njl)]|n> - : (20)

The state (20) has additional pPhase factor with respect to the
co?erent state ]a°>, and because of the quadratiC’éeﬁeﬁdence on n
this extra phase cannot be simply added to the phase of the coﬁe-
rent state. So, the state (20) differs essentially from the cohe-
rent state [ao>. It is known [11-16] that such states lead to
Squeezing. The 'state (20) differs, however, from the ideal
squeezed state [5]. It can be referred to as self-squeezed state.
On introducing the notation

o gir2 .

o= N exp(lwo), ' (21)
Nn72

b = - '

= exp(-N/2) — : (22)

equation (20) can be rewritten as

«©

lv(T)>y = Zl)exp { [nw + En(n 1)]}|n> . _‘ (23)

Siqce the number of photons‘is a constant of motion, and is
equal to N, the state (23) is a "physical state", in the meaning

of Pegg and Barnett [2,3], for any finite N. Of course 1lim b =0.

n-)o
This " means that all formulas concernlng phy51ca1 states can be

directly applied to this state, and all phase properties requiread

can be easily calculated. Some of these properties are discussed
in detail in the next Section.



4, Phase properties of self-squeezed states

The states that we refer to as self-squeezed states are defi-
ned by the superposition (23) of the number states, which for
given t describes a definite state of the outgoing field. The sta-
tes depend on the value of T and for some special T values they
become a discrete superposition of coherent states [22-24].
Initialiy (t=0) the state is a coherent state |a0> with the phase
'R defined by equation(2l). Since at t=0 this state belongs to a
class of partial phase state, we will choose the initial phase
eo,appearing in equation (2), in the way convenient for descrip-

tion of partial phase states [3], namely

= ¢ - 15 (24)
6y = ¥~ Se1 ¢

If we introduce a new phase label

w=m-5 , (25)

s . : .
which goes in integer steps from - % to 3. the phase distribution

becomes symmetric in u. According to egquations (1),(2) and (23)-
(25), we obtain :

©, ¥ () = (s+1)4/i2;bnexp {-i[neu- %n(n-l)]} , (26)

where

9u= u2m/ (s+l) , (27)

and b is given by equation (22). From equation (26) we can easily
n :
obtain the phase probability distribution in the form
2 1 2
I<GMIW(r)>| = s+1 + s+1 z bnbk

n>k

(28)
x cos.{(n-k)eu - %[n(n-l)—k(k-l)]}

For t=0 this expression goes over into the corresponding expres-
sion for partial phase states given by Pegg and Barnett [13].

In the limit as s tends to infinity, the ;ontinuous phase
variable can be introduced replacing u2m/(s+1l) by 8 and 2n/(s+1)
by d6. This leads to a continuous phase probability distribution

given by the formula

P(8) = z_lﬁ {1+2 anbkcos[(n-k)e - %[n(n-.l)-k(k-l)]]} , (29)
n>k .
with the norm&iiéation
n .
I P(6)de=1 . (30)
—n i .

"For T=0, formula (29) describes the phase probability distribu-

tion for a coherent state — a member of partial phase states. In
this case P(8)=P(-0),i.e. tlie phase distribution is symmetric in
6. This symmetry is broken when the nonlinear propagation takes
place and t#0. In this cdse, the phase probability distribution
P(8) exhibits some new and very interesting features. '

’ Despite the apparent simplicity of the formula (29), it is
not easy to predict the shape of P(8) because of the double summa-
tions appearing in the formula. Since the. amplitudes q] have
Poissonian character, i.e., they are peaked at n=N, the series is
rapidly convergent for not too large N, and can be evaluated nume-
rically. On thé other hand, for large values of N the summations
can be replaced by integrals, and some analytical approximations
for P(8) are possible.

For small number of photons the direct numerical evaluation
of formula (29) can be performed. The results are shown in Figs.1-
3. In Fig.l1 the phase probability distribution P(8) is plotted
against ¢ in the polar coordinate system for various valﬁesvof T,
and for N=0.25 (Fig.la) and N=4 (Fig.1lb). It is seen from Fig.la
that for t=0 the distribution P(8) has elliptic shape which,
however, cannot be associated with squeezing, as it is the case
fqr the weakly squeezed vacuum [10], because it describes a cohe-
rent state with the mean number of photons N=0.25. As T increases,
the in-phase quadrature component becomes squeezed [12], but the
shape of P(8) becomes less elliptic. For t=n when the maximum of
squeezing appears[25], the shape of P(8), although symmetric, is
far from being elliptic. This means that in the c&se of self-

‘squeezed states generated by the anharmonic oscillator the simple

identification of the elliptic shape of P(€) with squeezing is not
possible. In Fig.lb the polar coordinate shapes of P(8) are shown

9
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Fig.1 Phase probability distribution P(8) plotted against @
in the polar coordinate system for various values of T,

and a)N=0.25; b)N=4
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for N=4. The initial cohééent state phase distribution assumes a
lengthened leaf shape, which rotates and changes its shape as the
evolution proceeds. For T=n, P(8) splits in&o two separate leaves.
The same distributions as in Fig.1 are shown in Fig.2, but this
time P(8) is plotted against © in the Cartesian coordinate system.
The splitting of the distribution into two peaks for =T=n is
already visible in Fig.2a, and becomes quite evident in Fig.2b.
This splitting reflects the fact that the state of the anharmonic
oscillator evolves in this case into a superp051t10n of two cohe-
rent states [22,23]. This means that the phase dlstrlbutlon P(a)
can be related to the shape of the quasiprobability dxstrlbutxon
Q(a, ) in the complex a plane [14]. If T is taken. -as 2n/n
{(n=2,3,4,...) the shape of P(8) in polar coordinates eXhlbltS n-
fold symmetry confirming generation of discrete. superp051tlons of
coherent states with 2,3,4,... components [24]. This is shown
convincingly in Fig.3.

If the mean number of photons in the field is large, N»1, the
approximate method used by Barnett and Pegg (2] to describe the
phase distribution of coherent states can be applied for finding
the phase distribution. In this case the Poisson photon number
distribution is well approximated by a continuous Gaussian
distribution

n

P(n) = exp(—N)gT

2
& (2nN)'”2exp[- LE%%l— ] , . (31)

which is normalized so that

I P(n)dn = 1 .
If the square root of P(6) is substituted into equatipn (26) and
the integration over n (instead of the summation) is performed,

one eventually arrives at the followihg result for -the phase pro-
bability distribution

1 (6-8)2
P(6) = exp[- -—————] , : (32)

éndz 20°
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Fig.2 Plot of P(8) against @ in the rectangular coordinate

system for various values of T, and a)N=0.25; b)N=4
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5ap +x(n-1], | S )

=N | ©* + — . (34)
aN? :

The distribution (32) is a Gaussian distribution with the mean
given by egquation (33) and the dispersion given by equation‘(34).
This means that the mean phase is shifted by TN (we can drop % for
N»1) during the evolution. This result agrees with the operator
solution [12] '

a(t) = e>§p[1ra+(0)a(0)]a(o) . - (35)

If the operators are replaced by the classical amplitudes a,
: N=|a|2, the shift in phase by TN is immediately seen. Equation
(34) says that the dispersion of the resulting Gaussian distribu-
tion of phase increases with t. Since .all the time the photon
distribution remains Poissonian with the variance <(AN)®>=N, the
phase-photon number uncertainty relation takes the form

BN = (F + e, (36)

which means fast expansioﬂ of the uncertainty product during the
evolution. One should, however, keep in mind that the approxi-
mation (32) works well only when the Gaussian is not too broad.
Otherwise, the exact formula (29) should be used to calculate the
mean phase and the variance.

The mean value of the phase in the self-squeezed state (23)
can be written as '
‘ n

W 18plu(e)> = o+ 3= | {znzkbnbk

-

x cos'{(n—k)e.- % n(n-1) - k(k-l)]}} e6de =

n=k
- ¢,- 2nZkbnbk(;i'])< sin {g[n(n—l)-k(k—l)]} , (37)

and the variance of &9 is given by-

14

:

R 2
W) | (8dg) % 0()> =

(-1)"™ T 1y
+ {nzkbnbk ?;:;Tz-cos {i[n(n 1) k(k—l)]} (38)

2
n-k
- {znZkbnbk rﬁ:}lt) sin {g—[n(n—l)—k(k—l)]}} .

If we put t=0 in formulas (37) and (38), the results for a cohe-

rent state with the phase ¢, are recovered [3]. It is clear from
(37) and (38) that the nonlinear evolution of the system leads to
essential changes in both the mean value of the phase and its
variance.

The results (37) and (38) are illustrated. graphically in
Figs.4-6. In Fig.4 the evolution of the mean. phase is shown for
N=0.25. The mean value of phase oscillates within a narrow rangé
of values around zero. In Fig.5 the evolution of the phase
variance for N=0.25 is plotted. The variance goes up initially,

reaches a plateau and goes down to the initial value when T

approaches 2m. All results are periodic in t with the period 2m.
It is inferesting to note that for t=n, when squeezing'approaqhes
its maximum, the phase variance has large value,i.e., the phase of
the field is badly defined. In fact there is a shallow local
minimum at this point, but with the large value of the variance.
The results for N=4 are presented in Fig.6. The amplitude of the
phase oscillation becomes larger, and the value of the phase
variance goes up even higher and starts to osciilate around the
value n2/3. This means that the state of the field for most of the
period of the evolution has its phase variance close to the state
with randomly distributed phase. This tendency is even more
pronounced when the mean number of photons increases. o

Such phase characteristics of the field as the phase distri-
bution P(8), the expectation value of the phase operator and its
variance are gquantities that can be obtained within the Pegg-
Barnett . formalism only, and cannot be compared to any other
approach so far.

There are, however, phase characteristics of the field that

15
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Fig.4 Plot of the mean value of the phase operator as a function
of t, for N=0.25 and $,=0
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Fig.5 Plot of the variance of the phase operator as a function
of t, for N=0.25 and $,=0
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have ' their counterparts'vin‘ other formalisms. Such are, for
example, the cosine and the sine functions of the phase and their
variances. To calculate the expectation values of the cosine and
the sine functions of the phase we¢ take into account the fact that
the self-squeezed states produced by the anharmonic oscillator are
physical states, for which the last term on the right-hand side of
equation (6) vanishes, and the relation (10) holds. This gives us

W (T) |exp(impy) [¥(T)> = ) <Y (T) |n><nm|¥(T)>
n=0

m/2

. T ‘
o .2 exp {im[p + 5(m-1+2n)])

=N n 1s2 ! (39)

n=o0 [(n+1)(n+2)...(n+m)]

where equations (21)-(23) have been used. From equation (39), in
agreement with (11) and (12), we obtain immediately the following
expressions for the expectation values of the cosine and sine

functions of the phase

cos(¢0+nt)

W) |cosdg|u()> = N7 § b7 1) (40)
. ® sin(p_+nt)
W(T) |singgly(r)> = N2y 2 ——2 =, (41)

no " (n+1)
where bn is given by equation (22).
Similarly, dccording to equations (13), (14) and (39), we get
the . results :

cos[2¢o+(2n+1)t]

Wty |cos?pylu(t)y = 2 + L nyp? . (42)
A | GI 4 2 2 WLo [(n+1)(n+2)]:/2
. cos[2¢ +(2n+l)T

W (T)|sin’dyfy(T)> = % - % N Y 29, ] . (43)

n%o " [(n+1)(n+2)]"72

These are the results for the Pegg-Barnett definition of the phase
operator and, of course, we have <coszée)+<sin2&8>=1. Again, for
T=0 these results correspond to the coherent state with the phase
. and the mean number of phdtons N. The Susskind-Glogower results

17



differ from (42) and (43), according to (13) and (14), by the
quantity . .

Hw (@ 05]® = § exp(-N) , . (44)

which is negligible for N»1, but is essential when N is small. For
small values of N all the summations in equations (40)-(43) can be
evaluated numerically for given T, and the evolution of these
quantities can be obtained. This allows us to evaluate the
variance of the vphase cosine or sine and compare it to the
Susskind-Glogower result as well as to the measured phase result
[21]. The results for the variance of the phase cosine are shown
in Fig.7. In Fig.7 the evolution of the variance is presented for
three different definitions of the  phase cosine. The measured
phase concept is based on the quadrature phase measurements that
are used in squeezing measurements. The phase cosine is defined in
this case as approprietely normalized field quadrature [21]

css¢m= —————l—i——ia (a + a+] . (45)
2( N+ 3 ] : :

and the cosine variance is simply equal to the approprietely nor-
malized variance of the quadrature field component. The exact exp-
licit expressions for such variances in the anharmonic oscillator
model has been given by Tanas [12], and we will not repeat them
here, although we use them to evaluate the variance presented in
the figure. The same formulas were used by Lynch [20] who dis-
cussed phase uncertainties of the anharmonic oscillator model com-
paring his results with the results of Gerry [19] obtained within
the Susskind-Glogower formalism. All the results are compared in
Fig.7a for N=0.25. There is no difference in shape between the
Pegg-Barnett and the Susskind-Glogower curves, they are only shif-
ted by %é*. The shape of the curve based on the measured phase
concept is slightly different, although it reproduces main fea-
tures of the other curves. In fact, this curve is identical, apart
from the scale, with the corresponding quadrature phase variance
(see [25]). The same curves, but for N=4, are drawn in Fig.7b.
This time the differences are rather small, but again the resemb-
lance to the corresponding quadrature phase variance (see [14]) is

18
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Fig.6 Plot of the mean value and the variance 6f the phase
operator as a function of t, for N=4 and ¢0=0

maintained. The differences between various phase definitions in
the phase cosine variance will disappear as N will increase.

_Here, the relation between the phase properties of the field
and squeezing becomes more transparent. Apart from the direct re-
lation of the measured phase concept to squeezing, because of the
similarity of the curves, one can expect squeezing for'the in-
phase component of the field if the variance of the phase cosine
falls below its value for a coherent state. Since squeezing of the
in-phase component of the field means squeezing of the unce:tainty
of the field amplitude, the uncertainty of the phase becomes
large. It is clearly seen when comparing Figs.5 and 7a, for t=m,
for which the maximum of squeezing in the in-phase component
appears (for N=0.25). The variance of the phase sine has its maxi-
mum at this point.

If the anharmonic oscillator model is used to describe propa-
gation of laser light in a nonlinear Kerr medium the realistic
values of T are very small [11,12] because of the smallness of the
nonlinear susceptibility of the medium. Even in this case large
degrees of squeezing are possible [11,12] if the mean number of
photons N becomes large. ’
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Fig.7 The evolution of the  variance of the phase cosine
function. Results for different approaches are compared:
PB-Pegg-Barnett, SG-Susskind-Glogower, m. ph—measured phase
a) N=0.25; b) N=4
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5. .Conclusions

We have discussed thq phase properties of the self-squeezed
states generated by the qohlinear evolution of the anharmonic os-
cillator. The new Pegg and Barnett formalism has been used to
describe the phase properties of such states. The phase distribu-
tion P(9) has been obtained and illustrated graphically for
various evolution times (lengths of the medium) T, and different
values of the mean number of photons N. This phase distribution
exhibits a number of interesting features. It has been shown that
in this case an elliptic shape of P(8) in the polar coordinate
system cannot be associated with squeeziﬁg. Another interesting
feature that has been predicted is the n-fold éQmmetry of the
phase distribution if t is taken a 2m/n (n=1,2,...). This confirms
earlier results [22-24] that the states of the anharmonic oscil-
lator evolve in this case into a discrete superposition of cohe-
rent states with n components. We have calculated the mean value‘
of the phase and its variance in the self-squeezed sﬁates. At the

initial stage of the evolution the mean value of the phase. increa-
ses, and later starts to oscillate around the initial coherent
state phase Py The variance of the phase increases initially at a
high rate, and later oscillates around the value 13/3, i.e. the
value for the states with random distribution of'phase. This means
that for most of the period of vthe evolution,  the anharmonic
oscillator states (for N>1) are close to the states with random
distribution of phase. These unique phase properties of the anhar-
monic oscillator states were possible to obtain due to the new
Pegg-Barnett phase formalism. o

The phase cosine and sine functions as well as their varian-
ces has also been calculated using the new formalism and the
results compared to the results of the Susskind-Glogower formalism
and the measured phase concept. In view of these results, the
reiation between phase properties of field and squeezing is estab-
lished. It is shown that, at least qualitatively, squeezing can be
predicted from the knowledge of the phase properties of the field.
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Famor u., Tanacs P. - - E17-90-~340
dasosble cpoiicTBa camocxnuammHXCﬂ COCTOAHUIT, ‘
reuepupyeublx aHrapMoHu4e CKUM OCHHIJIATOPOM

C Touxku apeHua HoBoro daszosoro dopmanmama Herra—Hap-
HeTTa oﬁcmeﬂu tbaSOBble CBOHCTHA CaMOC)KHMa}OIUBXCH cocroa—
HH, IeHepHpYeMbX B npouecee 3IBOMOLUM aHrapMOHHYECKOTo
ocyumnaropa. s apmutosoro $asosoro oneparopa NONYueHs
pacnpenenchita dasi, ee cpefHmMe sHaueHis b gucnepcuu, a
IBOMONHA ITHUX Benuuud npouimwcTprpoBada rpaduuecku.
Takxe paccunTalb cpegHué sHaveHua U HUCHepCHI OnepaToposB
KOCHHYCca H cuRyca dasti. FTH pesyibTarsl CpaBHUBARTCH Kak
C pesynapraramy, nonyueHHMMu Ha ocHose dopManHaMa Cace-
kunfa-<I'norosepa, Tax ¥ ¢ pesynbrarTaMi, monyueHHsMy Ha
oc¢HoBe KoHuenhMH Hamepumoil dasti, Kparkxo obcyxmena B3auMo-
¢BR3p Mexny cxaruem i dasoseiMiz eBoficTBamMit nosis,

PabBord phinoaHesa B HaﬁopaTopuH Teopewaqecxoﬁ dusuKu
ousil,

Hpenpimt O6bennHEHHOTO MHCTUTYTS AePHEIX HCCIEROB ML, Hy6ra 1990

Gantsog Ts., Tanaé R, E17-90-340
Phase Properties of Self-Squeezed States
Geneérated by the Anharmonie Oscillator

The phase properties of the gelf-gqueezed states gene-
rated during the eVqut1on of the anharmonic oscillator
are discussed from the point of viéw of the new phase-
formalism of Pegg and Barnett. The phase d1str1but1on,
the expectation values and the variances of the Hermi-
tian phase operator are obtained and their evolution il-
lustrated graphically. The mean values for the phase co-
sine and sine functions as well as theitr variances are
also calculated, The results are compared to the Sugs~
kind-GClogower formalism results and the results based
on the measured phase concept, The relation between
squeez1ng and the phase propertxes of the field is short-
ly discussed.

The investigation has been performed at the Laboratory
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