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1. Introduction 

A problem of producing squeezed states of light has attracted 

a considerable amount of interest of physicists in recent . years 

[1]. Squeezed states have phase sensitive noise and it is interes

ting to reveal their phase properties. Phase properties of the 

ideal squeezed states have been examined by Sanders et al. [ 2], 

Yao [3] and Fan et al. [4) with the use of the Susskind-Glogower 

[5] phase formalism with the non-unitary phase operators. Another 

squeezed states, which are different from the ideal squeezed 

states, or the two-photon coherent states of Yuen [ 6] ,. are the 

states that can be produced by the anharmonic oscillator. Squee

zing in such a model has been shown by Tanas and Kielich [7] for 

the two-mode version and by Tanas [8] for the one-mode version of 

the anharmonic oscillator. Phase prop';!rties of such states have 

been .considered by Gerry [9] from the point of view of the 

Susskind-Glogower formalism, and by Lynch [10) from the point of 

view of the so called measured phase operators introduced by 

Barnett and Pegg [ 11]. Recently, Pegg and Barnett [ 12-14] have 

introduced a new formalism with a Hermitian phase operator which 

allows to smooth away difficulties inherent in the susskind

Glogower formalism. This new formalism has recently been used by 

Vaccaro and Pegg [15) to re-examine the problem of the phase pro

perties of the ideal squeezed states. They have shown that there 

are significant differences between the results based on the two 

formalisms, especially for fields of low excitation. 

In this paper, we examine the phase properties of the anhar

monic oscillator using the Pegg-Barnett formalism. The phase pro

bability density is obtained and the expectation values and vari

ance of the Hermitian phase operator are calculated. The expecta

tion values and variances for the cosine and sine functions of 

such an operator are also calculated. A comparison is made with 

earlier results based on the Susskind-Glogower formalism and the 

measured phase concept. 

2. The Hermitian phase operator 

The new formalism recently introduced by Pegg and Barnett 

[ 12-14] to describe the phase properties of a single mode field 

has successfully overcome the difficulties associated with the 

existence of the Hermitian phase operator. As the Hermitian phase 



operator is now at our disposal, we can pose anew some old ques

tions of phase properties of the field and formulate some new 

_questions. For e~ample, phase mean values, phase variances as well 

as phase probability densities can be calculated for various sta

tes of the field. Vaccaro and Pegg [15] have recently studied·the 

phase properties of the ideal squeezed states of light._ 

The idea of Pegg and Barnet~ [12-14] is based on introducing 

a finite (s+l)-dimensional subspace w spanned by the number states 

I O>, 11>, •.. , I s>. The Hermitian phase opera tor operates on this 

subspace. After the expectation values have been calculated in w, 

the value of sis allowed to tend to infinity. A complete ortho

normal basis of (s+l) states is defined on was [12-14] 

,where 

s 

le >=(s+l)-1
/

2 
\' exp(ine ) In>, 

m L m 
n=O 

0=0+2rrm/(s+l), (rn=O,l, ... ,s). 
m 0 

(1) 

(2) 

The value of 0
0 

is arbitrary and defines a particular basis set of 

(s+l) mutually orthogonal phase states. The Hermitian phase ope

rator is defined as 

s 

¢
0
= \' e I e ><e I L m m m 

(3) 
m=O 

and the states (1) are eigenstates of th~ phase operator (3) with 

the eigenvalues em, which are restricted to lie within a phase 

window between e and e +2rr. The unitary phase operator exp(i¢0 ) 
0 0 

when operating on le> gives the eigenvalue exp(ie ). This opera-
m m 

tor can be written as [12-14] 

exp(i¢0 )=IO><ll+l1><21+ ... +ls-l><sl+exp[i(s+1)0
0
]ls><OI, (4) 

and its Hermitian conjugate is 

A + A 

[exp(i¢0 )J = exp(-i¢0 ) (5) 

with the same set of eigenstates l0m> but with eigenvalues . , 

exp(-ie ) . 
m 

To relate this new operator to the susskind and Glogower 

phase operator one can use the relation [15] 

2 

<exp(im¢0 )> 

lim < 
s ---)00 

<[exp(i¢0 )t> = 

{ :i: [n><n+m[ + exp[ i_( s+1)8 0 I :i: I s-n><m-1-n[ 

< e~p(im¢ ) > + 
SC 

+ :~ < {exp[i(s+1)e0 1:t:ls-n><rn-1-nl} >, 

where the susskind-Glogower phase operator is given by 

00 

e~p(im¢sc> = I ln><n+rnl. 
n=O 

} > 

(6) 

(7) 

It should be emphasized "that in the case of Pegg-Barnett defini

tion we have the exponential of the Hermitian phase operator while 

in the Susskind-Glogower case the exponential operator is d~fined 

as a whole. 
For "physical states" [12-14] one obtains the following rela-

tions [15] 

<exp(im¢
0

)> = <e~p(im¢ )> 
p SC p 

(8) 

where the subscript p refers to a physical state expectatior 

value. 
For .the cosine and sine phase operators the relations arE 

[15] 

1 A A 

<cos¢
0

>P = 2 < exp(i¢0 ) + exp(-i¢0 ) >P 

A 

<cos¢sc>p , 

<sin¢0>P 
1 A 

TI< exp(i¢0 ) 

<sin¢ > , 
SC p 

exp(-i¢0 ) >P 

3 

(9) 

(10) 



2. 1 . . 
<cos ¢8 >.;t = 4 < exp(i2¢8 ) + exp(-i2¢8 ) + 2 >P 

<ccis 2 ¢ > + .!.4 < ( I O><O I ) > , 
SG p p 

(11) 

• 2· 
<sin ¢8 >P 

1 . . 
- 4 < exp( i2¢8 ) + exp(-i2¢8 ) - 2 >P. 

A 2 1 
= <sin ¢ > + -4 < ( I O><O I)> 

SG p p 
(12) 

The above relations will be used by us to describe phase proper

ties of the anharmonic oscillator. 

3. The anharmonic oscillator evolution 

The anharmonic oscillator model, phase properties of which we 

discuss in the paper, is described by the Hamiltonian 

+ 1 +2 2 H = hwa a + 2h1ea a (13) 

where a and a+ are the annihilation and creat~on operators of the 

field mode, and ,c is the coupling constant which is real and can 

be related to the nonlinear susceptibility x< 3
> of the medium if 

the anharmonic oscillator is used to describe propagation of laser 

light in a nonlinear Kerr medium. 

Since the number of photons a+a is a constant of motion the 

state evolution of the system is described, in the interaction 

picture, by the Schrodinger equation 

, d 
l.hdtU(t) H

1
U (t) , (14) 

where U(t) is the. time evolution operator and H is the nonlinear 
; I 

part of the Hamiltonian (13). In the propagation problem of light 

propagating in a Kerr medium one can make the replacement t=-z/v 

to describe the spatial evolution of the field instead of the time 

evolution. 

The solution of equation (14) is given by (16] 

[ 
-c· • ] U(-c) = exp i 2n(n-1) , (15) 

where 

-c=,cz/v (16) 

4 

I, 

is the dimensionless length of the nonlinear medium (or time in 

the time domain), and n=a+a is the number operator. If the state 

of the incoming beam is a coherent state la:
0
>, the resulting state 

of the outgoing beam is given by 

1¢(-c)> = U(-c) la:
0

> 

' 2 (X) a:~ [ "C ] 
= exp(-la:

0
1 /2) I - exp i 2n(n-1) In> . 

n=ovnf 
(17) 

If we introduce the notation a= N1
/

2 exp(i~ ), the state (17) can 
0 0 

be written as 

1¢(-c)> J/0 exp {i[n~0 + ½n(n-1)] }In> (18) 

where 

b 
n 

exp(-N/2 )N°/ 2 ;vnf (19) 

Since the number of photons is a constant of motion, and is equal 

to N, the state (18) is a "physical state" in the sense of Pegg 

and Barnett (13,14] for any finite N, and obviously lim b
0 

=O. 
n~ 

This means that the formulas for the physical states given in the 

previous Section can be directly applied to this s'tate, and all 

necessary phase properties of the outgoing beam can be calculated. 

4. Phase properties of the field 

In this paper we consider the phase properties of the field 

the state of which is given by .the superposition (18). Initially 

this state is a coherent state with the phase ~o and, thus, it is 

a partial phase state. We choose e
0 

in the way that is convenient 

for partial phase states (14] 

rrs 
8 0 = ~o- S+l 

and introduce a new phase index 

s 
µ=m-2'' 

(20) 

(21) 

which goes in integer steps from - ~to~- This makes the distri

bution symmetric inµ. With such assumption, according to equa

tions (1), (2) and (18), we obtain for the phase probability 

5 



distribution the following expression 

,l<8µll/l(-r)>l
2

= s~l + 
2 

s+l 
\bb 
L n k 

n >k 

x cos { (n-k)µ2rr/(s+l) - ½[ncn-1)-k(k-1)] }, 

(22) 

where bn are given by equation (19). When -r=O this expression goes 

over into the corresponding expres~ion given by Pegg and Barnett 

[14]. In the limit as s tends to infinity, we can replace 

µ2rr/(s+l) by e and 2rr/(s+l) by dB. This gives us a continuous 

phase probability distribution given by 

P(B) = 2~ {1+2 I bnbkcos[cn-k)e - ½[n(n-1)-k(k-1)] ]}, (23) 
n>k 

with the normalization 

Tl 
J P(B)dB=l 

-rr 

(24) 

For -c=O, expression.(23) describes the phase probability distri

bution for a coherent state. When the. nonlinear evolution is on 

(-c~O) the distribution P(B) acquires new and very interesting fea

tures. Some of these features are illustrated in Fig.1 where the 

plots of P(B) in the polar coordinate system are given for 

various values of-rand two different values of the mean number of 

photons N. For N=0.25 an~ -r=O, i.e., for the coherent state with 

the mean number of photons equal to 0.25, the distribution P(e) 

has more or_less elliptic shape which, however, has nothing to do 

with squeezing of the field. Quite opposite, when squeezing in the 

system increases the ihape of P(0) becomes less elliptic, for the 

maximum of squeezing which appears for -r=rr [17] the shape of P(B), 

although symmetric, is not at all elliptic. This means that the 

shape of P(e) is not related to squeezing in the simple way that 

the_ ellipt.ic shape of P(0) means squeezing. On the other hand, 

the shape of P ( e) can be related to the shape of the quasi-

* probability distribution Q(a,a ) which is clearly visible from 

Fig.lb, where, for -r=rr, the phase distribution P(0) splits into 

two separate parts. This corresponds to the superposition of two 

coherent states to which the anharmonic oscillator evolves [18] in 

this case. When -r is taken as 2rr/n (n=2, 3, 4, ... ) the shape · of 

P(e) shows n-fold symmetry, confirming generation of discrete 

6 
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'l 

superpositions of coherent states. with 2,3,4; ... components [19]. 

The phase distribution P(e) can be used to calculate the 

mean and the variance of the phase operator defined by equation 

(3). The results are 

Tl 
<1/1(-r) l~ell/l('C)> = cpo+ ;Tl I 2 l bnbk 

n>k -rr 

x cos {cn-k)e - ½[ncn-1) - k(k-1>]} ede = 

cp - 2 \ b b (-l)n-ksin {![n(n-l)-k(k-1)]} 
o L n k n-k 2 ' n>k 

(25) 

<l/lc-r> l< 6 ~e>
2

II/IC-r1> 
rr2 
3 

+ 4 l bnbk · (-l) n:k cos {½[ncn-l)-k(k-1)]} 
n>k (n-k) (26) 

{2 J:/nbk ~=t)n-\in {½[n(n-1)-k(k-l)J}r 

For -r=O, we get the results for a coherent state with the phase cp
0 

[14]. The nonlinear evolution of the system leads to a shift of 

the mean phase and essentially changes the variance. An example is 

illustrated in Fig. 2, where the evolution of the phase and its 

variance is plotted against -r, for N=4. The line rr2/3 marks the 

variance for the state with random distribution of phase. We have 

assumed cp
0
=0, and the window of the phase values is taken between 

-rr and rr. At the initial stage of the evolution the mean value of 

the phase as well as the variance go up. Later on the mean phase 

oscillates around zero while the variance becomes close to rr2/3 

until -r approaches 2rr, where the initial values are restored. So, 

most of the period of the evolution the field spends in a state 

which is very close to the state with randomly distributed phase. 

This effect is even · more pronounced when the number of photons 

increases. 

Phase characteristics of the field such as the phase distri

bution P(e), the expectation value of the phase operator and its 

variance can be obtained within the Pegg-Barnett formalism only, 

and cannot be compared to any other approach so far._ 

Other phase characteristics are the cosine and the sine func-

7 



tions of the phase and their variances. Using equations (7)-(12) 

and the state (18), we obtain the following results 

(X) Nn cos ( m:+cp ) 
<l/l('t') lcosef>ell/J('t')> = N1ne-N I 0 

n=O n! (n+l) 1 
/2 

(27) 

(X) Nnsin(n-r+cp ) 
<I/I ('t') I sinef>e I "1 ('t') > = N1/2e-N I 0 

n=O n! (n+l) i /2 
(28) 

2A (X) Nncos[(2n+l)'t'+2cp] 
<1/1(-r)lcos<f>ell/J(-r)> =½+½Ne-NI 

0 

n=O n! [( n+l) (n+2 )] 1/2 
, (29) 

<l/l(-r)lsin2ef>ell/J(-r)> = ! - ! Ne-NI 
Nncos[(2n+l)'t'+2cp] 

0 

2 2 (30) 
n=O n! [(n+l) (n+2 )] t/2 

It should be emphasized that according to the Pegg-Barnett forma

lism we deal with the sine and cosine funct,ions of the Hermitian 

phase operator ¢0 , while in the Susskind-Glogower formalism the. 

sine and cosine operators are defined as separate entities. In the 

case of the sine and cosine, according to (9) and (10), there is 

no difference between the expectation values obtained in both app

roaches because the state of the field produced in the anharmonic 

oscillator model is a physical state. However, the two approaches 

give different results ·for the squares of the sine and cosine of 
2A 2A 

the phase. Our formulas (29) and (30) show that cos ¢0+sin ¢0=1, 

which is not the case in the susskind-Glogower formalism. For -r=O, 

again the results correspond to a coherent state with the phase 

cp
0

• When 't'*O, the results (27)-(30) are rather complicated. 

However if N is not too large they can be easily evaluated numeri

cally. This allows us to compa~e results for the variance of the 

cosine of the phase obtained by different formalisms. This is 

shown in Fig.3. Since differences between various approaches are 

essential only for small N and vanish as N becomes large, we have 

chosen N=0.25 to illustrate them clearly. In Fig.3 the evolution 

of the variance of the cosine of the phase is shown for the Pegg

Barnett, Susskind-Glogower and so called measured phase of Barnett 
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for N=0.25; PB-Pegg-Barnett result, SG-Susskind-Glogower 

result, m.ph-measured phase result 

lO 

and Pegg (11) formalisms. The Susskind-Glogower variance is shif

ted with respect to the Pegg-Barnett result by ~e-N, according to 
4 

equation (11). The measured phase result is slightly different in 

shape, although it reproduces main features of the Pegg-Barnett 

result, and locates itself between the other two results. The 

phase properties of the anharmonic oscillator, in a bit different 

form, have been discussed by Gerry [ 9] who used the susskind

Glogower f?rmalism, and by Lynch [ 10] from the point of view of 

the measured phase formalism. The measured phase formalism is 

directly related to squeezing and the shape of the variance of the 

cosine of the phase is in fact the appropriately normalized 

variance of the field (8,17). 

5. conclusions 

We have discussed the phase properties of the field generated 

in course of the evolution of the anharmonic oscillator from the 

point of view of the new phase formalism introduced recently by 

Pegg and Barnett (12-14). This new formalism constructs the Hermi

tian phase operator and allows to pose, for the first time, the 

question of the properties of the phase itself. We have obtained 

analytical formulas for the phase distribution, the expectation 

value of the phase operator and its variance. The phase distri

bution P(a) for the anharmonic oscillator model has interesting 

features, some of which have been illustrated graphically. In par

ticular, this distribution confirms earlier results (18,19) that 

discrete superpositions of coherent states can be generated during 

the evolution of the anharmonic oscillator. We have shown that the 

shape of the phase distribution in the polar coordinate system 

cannot be directly related to squeezing of the field. The evolu

tion of the mean value of the phase and its variance show some 

oscillations, but for N>l, the phase variance becomes close to 

rr2/3-the value for the randomly distributed phase, except for the 

short time limit. The variances of the sine and cosine functions 

of the phase operator have been calculated. A comparison of our 

results with earlier results is made showing essential differences 

when the number of photons is small. For large number of photons 

all the results become indistinguishable. 

The phase distribution of the field can be considered as an 

alternative description with respect to the quasiprobability dist-

II 



ribution Q(a,a*), which has often been used to describe the anhar

monic oscillator evolution [ 16, 19-22]. It is probably the most 

spectacular to compare the two descriptions for ~=2rr/n when 

discrete superpositions of coherent states appear [ 18, 19], but 

this will be done elsewhere [23]. 

References 

[1] Special issues:J.Mod.Optics 34(1987),No.6/7: 

J.Opt.Soc.Am.B4(1987),No.10 

[2] B.C.Sanders,S.M.Barnett and P.L.Knight,optics Comm.58(1986)290 

[3] O.Yao,Phys.Lett.A122(1987)77 

[4] Fan Hong-Yi and H.R.Zaidi,Optics Comm.68(1988)143 

[5] L.Susskind and J.Glogower,Physics 1(1964)49 

[6] H.P.Yuen,Phys.Rev.A13(1976)2226 

[7] R.Tanas and S.Kielich,Optics Comm.45(1983)351: 

Optica Acta 31(1984)81 

[8] R.Tanas,in Coherence and Quantum Optics,Vol.5 eds.L.Mandel and 

E.Wolf(New York:Plenum)p.645 

[9] C.C.Gerry,optics Comm.63(1987)278 

[10] R.Lynch,Optics Comm.67(1988)67 

[11] S.M.Barnett and D.T.Pegg,J.Phys.A19(1986)3849 

[12] D.T.Pegg and s.M.Barnett,Europhy~ics Letters 6(1988)483 

[13] S.M.Barnett and O.T.Pegg,J.Mod.Optics 36(1989)7 

[14] D.T.Pegg and s.M.Barnett,Phys.Rev.A39(1989)1665 

[15] J.A.Vaccaro and D.T.Pegg,Optics Comm.70(1989)529 

[16] M.Kitagawa and Y.Yamamoto,Phys.Rev.A34(1986)3974 

[17] R.Tanas,Phys.Lett.A141(1989)217 

[18] B.Yurke and D.Stoler,Phys.Rev.Lett.57(1989)13 

[19] A.Miranowicz,R.Tanas and S.Kielich Quantum Optics.,in press 

[20] G.J.Milburn,Phys.Rev.A33(1986)674 

[21] G.J.Milburn and C.A.Holmes,Phys;Rev.Lett.56(1986)2237 

[22] D.J.Daniel and G J Milburn,Phys.Rev~A39(1989)4628 

[23] Ts.Gantsog and R.Tanas,to be published 

Received by Publishing Department 
on May 17, 1990. 

12 

raHQOr u., TaHaCb P.. El7-90-336 
<I>a30Bble CBOHCTBa COCTOHHHH aHrapMOHHqecKoro 
OC~JIJIHTOpa 

lfayqeHb) qJa30Bble CBOHCTBa _aHrapMOHHqecKoro OCQHJlJIHTopa 
C ITPHMeHeHHeM HOBOro 3PMHTOBOro qia30Boro qJOPMaJIH3Ma Iler
ra H BapHeTTa·. <l>a30Boe pacrrpegeneHHe, cpegHee 3Hat.1eHHe H 
AHcrrepCHH qia30Boro orrepaTopa BbltIHCJieHbl H rrpoHJIJIIOCTpHpo
BaHbl rpaqJHtiecKH, Pe3YJibTaTb) AJIH AHCrrepcHH KOCHHYCa qia-
3bl rroJiyqeHbl H cpaBHeHb) C paHee rroJiyqeHHblMH pe3YJibTaTaMH 
Ha OCHOBe gpyrHX ITOAXOAOB, 

Pa6oTa BhlITOJIHeHa B fla6opaTOPHH TeopeTHtieCKOH qJH3HKH 
Ollilll. 

IlpenpHHT 061,e,i:urneHHOro HHCmTyra .RAepHJ,IX uccneAOBaHHH. ,lly6Ha 1990 
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Phase Properties of the Anharmonic Oscillator 
States 

Phase properties of the anharmonic oscillator are 
stµdied using the new Hermitian phase formalism of Pegg 
and Barnett, The phase distribution, the expectation 
value of the phase operator and its variance are calcu
lated and illustrated graphically, The results for the 
variance of the cosine of the phase are obtained and 
compared to earlier results based on other approaches, 

The investigation has been performed at the Labora
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