


1. Goals of the work and basic relations

Linear systemsl) are often an acid test fsr beginning a study of
a phenomenon whlch has not been the focus of 1nterest among previous
workers. In spite of thelr 51mp11c1ty, the linear systems permit us to
establish 1mmed1ate1y many important physical and mathematical pecu-
liarities of the object under investigation [1]. The case in point is
what 'we call "steady-squeezing states". It may be noted that.?uell—
known coherent states [2] and (dynamic) squeezed ones [3~5] were first
introduced in the linear framework. As a logical addition, it is
therefore natural to begin the study of steady-squeezing states in the
linear approximation.

on the' other hand, it should be emphasized that squeezed states
are of general interest, since the bosonic systems for which the  (dy-
namic) squeezed states have been already observed [6,7] are not only
present in quantum optics but also, for instance, in the theory of
solids [8], in the theory of superfluidity [9,10], in nuclear physics
[11,12], in high-energy physics [15,14], etc. So, the squeezed states
are very attractive objects especially as a phenomenon concerning fo-
undations of quantum mechanics.

Constant squeezing in the quadrature components is obviously a
property of a system ‘during the evolution in time. Consequently, for
explicit analysis it is necessary to concretize the Hamiltonian of the
system, determining the single-parametric dynamic éroup of the system
[1]. In this Letter, on the basis of results obtained in a previoﬁs
paper [15], the set of the wave functlons {|sss>) realizing the
steady-squeezing state will be found for the linear model system, cha-
racterized by the Hamiltonian

H=o0a%a+ f*a2 + f‘é+2. ' ' ; (1)

Here w > 0 is the frequency of the Bose field quanta, f is the
time-independent coupling constant. Besides the annihilation a and
creation a+'operators one can define‘the canonical coordinate X and
momentum xz. All these operators‘are»introduced in the usual way

+ i
[a, a}=1, [xl)le=il ) (2)

Dij.e. the systems for which the operator equations of motion are the

linear ones; the Hamiltonian of such a system is a general bilinear
form over the canonical
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i Cat=x - (3)
a=x1+1X2, a —X1 1x2’.‘ ‘ | ;
Let < > mean the avefaging over the sought-for steady-squeezing

e f i
wave function |sss>. Therefore, fo:“an;operator 0 which we consider
wellidefined'on the wave function Isss>lone can write down

A~
4
<0> = <sss|0|sss>. ) ‘ (4)
The variance operators for the state | sss> may be consequently
written as

i + + + 5
Aa = a -<a>, . Aa = a - <a >y o, ! (5

8%, = X = <Xp>, -i=1,2. ' ‘ ()

Explicit expressions determining the time evolution of the opera- -

: ) /2 - stem (1
tors Axf(t), AX2(t) and (8% (t)AX,(t) + A%, (t)AX (t))/2 for sy ) (1)
show that if the averages for these operators obey the relations
‘ 2Dsin(8) -
——— <X (1 )>, (7)
1-2Dcos(6)+D° " -
1+2Dcos(6)+D2

. o _ _Tepcesie (8)
> = R <AX3(t )> R= .
<Ax;(t,) ‘ 1 (%> 1-2Dcos (6 )+D? -

1 X (t)>= -
Z<BX ()X, (1)) + AX (€ )Ax, (t))

at the initial tiﬁe to, then the variances <Axf(t)>‘and <A:§(t)> are
steedy, i.e. are equal to their own initiel values <Ax1(to)> and
<AXZ(t )>. ’ ;

The R parameter in formulae (7)-(8) characterizes the degree of
the asymmetry between the values of the variences and, thefefore, the
degree of the squeezing if it occurs. Any one of the three independent
averagee'in‘eqs. (7)-(8) may be given at will and one can always put
it equal to such a value that there will be squeezing in‘the.system.
The quantities D and 8 are defined by means of the Hemlltonlan
constants: »

1
D= (w - Jw2-4|f|2), . 8 = arqg f. ) (9)

2{f]

It is very important to make here the following remark. ?ne
should not think that the problem . of finding the steady-squeezing
state is only the trivial problem of- finding the eigenstates . for
Hamiltonian (1). For a sysfem for which the initial state is one of

2)There are the misprints in basic relations (52) and (54) of‘paper
[15]: the factor 1/2 before the left-hand sides has been d?opped.
Also, in the formula (58) of f15]3the "4" sign should be there instead
of the "-» sign (see Errata [16]).° ' . ‘ 7

st

its eigenstates the averages are steady in time for all the operators
which ,are time-independent in the
author’s task is,

Schrédinger
and that is just the difference, to find such state
|sss> that only the averages <Axf(t)>, <Ax§(t)> and <Ax1(t)Axi(t) +
Axi(t)Axl(t)>/2 vwere constant in time although the averages of any
other operators may have arbitrary evolution.
that the function

picture. But the

Further we will show
|sss> may be chosen so that the average <a(t )> may

have any a priori given value. Therefore, for example, the evolution

of the average <a(t)> is not stationary at all (see the explicit ex~

pressions for the time evolution of the operators in [15]). An addi-~

tional condition of the problem is the squeezihg for one of the quad-
rature variances, i.e. the fulfilment of the inequality <Axf(t)> < 1/4
for one of the numbers i=1,2.

Let the amplitude,<a(t)> of the Bose field be a previously given
parameter at the initial time moment t:

‘a = <a(to)> = <sss|?(to)|sss>.- (10)
Since it is the only parameter (besides the Hamiltonian constants) in
relations (7)-(8), it is just the one which parametrizes the steady-

squeezing wave function Isss>. Using identities

2 1 2 2

Ax1 =7 (1 + 2Aa+Aa + Aa + Aat ) (11)
2 1 + 2 +2

sz =7 (1 + 24a"Aa - Aa - pAa ), (12)

1 1 2 +2

3 (Ax1sz + szAxl) =i (Aa‘ - Aa’ ), (13)

we obtain the following relations instead of (7)-(8)

<ta’(t)> = M (1 + 2<Aa+(to)Aa(t0)>), (14)
+2 x +

<da’ (t )> = M (1 + 2<ha (to)Aa(t0)>), (15)

D exp(ig) exp(ie)
M= - - = - > tanh(2artanh(D)).- (16)
1+ D

Equations (14)-(15) are not quite convenient for determining the
|sss> function. They have an infinite set of solutions and as it will
be noted in the forthcoming subsection this set cannot be wfitten down
in a compact or, at least, in a visible form.
egs. (14)-(15) connect the averages, i.e.
coefficients of wave function
determine the

The reason is that
the bilinear forms over the
|sss> in any complete basis. One can
|sss> function in a unique way if one has an equation

linear with respect to the Isss> function with the solution obeying



relations (7)-(8). This is the only equationlfor given values of a and
M; let us find it.

2. Fluctuation representation (F-representation) and the equation

for steady-squeezing wave function

For some wave function |¥> such that the average <¥|a(t))|¥>

makes sense one can define the operators:

Fy, = a - <¥|a|®>, F; = at- <ylat | (17)
naturally obeying the commutation relation
+ .
[Fy, Fgl = 1. : (18)
Let us now make sure that' operators FW and F; are the creation
and annihilation ones for the fluctuation quanta over the classical

value of the fleld energy E_ = w|<W|a|W>]2 at the givén field ampli-
tude <W|alw> At flrst we note that the vacuum for FW and F; operators

which we denote as |0> is simply. the coherent state for the operator.

a corresponding to the eigenvalue <¥la|¥>:

i 1 2 + A
Fw[°>w=°; a|0>w=<wla|w>|o>w, |o>w=exp{—§[<wlajW§| +<¥laj¥>a’ }[0>; (19)

where [0> is the vacuum for the initial field: a|05=0. Therefore the
states with definite number.of fluctuation quanta over the classical
value of the field energy E = wl<¥la]¥>]® at the given field ampli-

tude <¥|al¥> are

(Fg) (-<¥]a*|e>)™
[n>w= _— |0> exp{—-l<W|a|W>| +<W|alw>a )}: kT .|k>, (20)
n! =1

where |k>‘are the Fock states for the initial field. calculating the
mean of the quantum-number operator of the initial field over the
state In>w with the definite number of the fluctuation quanta one

obtains:

+ + + o T
W<"|a a|n>w_ W<n|(FW +<¥]a |w>)(FW+<w|a|w>)|n>w = nw+|<wialw>[ ,  (21)

_ while calculating the field amplitude over those very states one

obtains:

I = = . 2
W<n|a[n>w w<n[(Fw+<W|a|w>){n>w <¥|aje> (22)

Consequently, annihilation and creation operators of the fluctuation
quanta change the value of the energy of the system, but hkeep the gi-
ven field amplitude <¥|a|¥> constant. ’

To find the steady-squeezing wave function it is convenient to
pass into the F-representation with |¥>=|sss>. Since in the case
<¥|a|¥>=<sss|a|sss>=a, then' according to egqs. (5), (6) and (10)

_ . + +
F;ss(to)_ Aa(to), Fsss(t°)= Aa (to). . (23)
In virtue of this relationship eqgs.(14)-(15) takes the form v ‘
2
+ * S
<F =
L(t)> M (1+2<Fsss(to)Fsss(t°)>), (24)
F° (t)> = M (1+2<F" (t )F (t )> ' T
sS o 585 [+] SS5 [] )' N ’ (25)

Let now |n>sss be the states (20) in which wave function |¥> has

been replaced by |sss>. We will find this [sss> functién in the form
of the expansion over the |n>sss states:
«©
|sss> = E: c Inzss . (26)
n=0
Determining the coefficients.\cn one can easily pass into the initial
Fock-represeﬁtation‘for the operators a and at usiﬁg (19)~(20) for
wave function [¥>=|sss>, i.e. replacing mean <¥|a|¥> by the vaiue'of a
parameter in these formulae.

Obviously we cannot find any uniformly described class of wave
functions |[sss> if we will use egs. (24)-(25) for the mean ~values.
There are only two equations while the coefficients C,  form an infi-
nite set. However, we can require that instead of (24)- (25) one of the
relations for the operators

2

+ - ok + :
F . (t))]sss> =M (142 F__(t))F_ (t))|sss>, _ ‘ " (27)

SS
2 - +
F__(t))Isss> = M (1+2 FoasltIF  (t)) |sss> (28)

should be fulfilled. If at least one of the equalities (27)-(28) is
valid, then relat%ons (24)—(25) are satisfied automatically. Yet, we
show that equation (27) is not fulfilled for any |sss> of the form
(26) with finite nonzero norm. Substituting expansion (26) into (27)
we obtain

. 0 v
}: J(n+1)(n+2)'cn|n+2>sss
n=0

o

- u E: (1+2n) C_|n> . (29)

ss
n=0

At the left-hand side of (29) the expansion begins from basis function
|2>us. It means that



4 = = ‘ 30
%= 0. : (30)

But if it is so, then the expansion at left-hand side of (29) begins

from |4> as a matter of fact, which in its turn means that two more
SS8S B

coefficients are equal to zero:

c,=¢C, =0, (31)

whence it follows that the expansion at left-hand side of (29) has

already began from|6>“s. Continuing such reasoning we finally obtain: -

C =0, n=0,1,2,3,...0. (32)

Thus eqﬁation (27) has no solutions of the form (26) besides zero so-
N S : . 2

lution. In other words the Kkernel of the operator Fzﬁ(to)‘- H*(1+
+ . .

ZFsﬂ(tO)Fss(tO)) is empty (except zero):

2
ker(F,_(t)) - M*(1+2 F._(t)F__(t)))) = o. (33)

Nothing else is 1left for us,_ibut to find the set of states

{|sss>} as a kernel of operator sz(t ) - M{1+2 F' (t)F (t)):
SSS o 314 o] £SS o

{Isss>} = ker(F?_(t)) - M (142 F._(t)F__(t))), (34)

.

i.e. to require the fulfilment of the equation (28).. So, we take (34)
as a definition of the class of steady-squeezing states with the given
complex amplitude a for system (1) while equation (28) will be the

basic one for the calculation of coefficients in expansion (26).
3. Steady-squeezing state and some properties of it

Substituting expansion (26) into equation (28) we find that

[+ ) . e
E: J(n-l)n c |n-2> =M E: (1+2n) Cc |n> . (35)
n SS88 n SSS .

-n=0 n=0 3
Multiplying equality (35) by bra-state ss§k| we obtain a recurrent
relation:

1+2k
¢C «M————————oH0c¢c , k=0,1,2,... (36)

k+2 k
J(k+1)(k+2)

which connects the coefficients c with numbers n of the same parity.
For this reason we will further distinguish two wave functions: the
|sss>ev wave function , the expansion of which over the number states
|n>sss contains only even n, and |sss>od wave function, which is a

. the series (37).

superposition of the number states |n>
SS

: . with odd n. These wave func-
tions are of the form:

o0 k .
|sss> c E: M elo(1+4400)(1+401)... (1+4(k-1))
SSs = -
ev [ |2k> |, (37)
k=0 I (zk)! ) SSS
0 1 -
| M 010(3+400)(3+401)...(3+4(1~1)) ~ )
SSS>od = Cl Z " |21+1>sss. (38)

-
1]
Q

kJ(21+1)!

that the ~ev<sss|sss>ev -and
are finite in a region of the values of the parameter M.
investigate the convergence of the series détermining the
norm of the |sss>cv wave function: ' ‘

Here one should make sure - norms

<sss|sss>
od od

Firstly, we

o0 .
< _ N2
o ssslsss>ev E: |C2k|, . (39)
k=0 :
e |2 IM]%*{10(14400) (1+401)... (1+4(k-1)))>
I - lc 1. . 40
T (2k)! of (o)
Célculating the limit
c 2
y I 2k+2| 2 (1+4k)2 R
im —_ = |M|® '1i —_—_— = B e s
kK > ® |C2 lz | k imco (2k+1) (2k+2) a1ul%, “u
2k : ’

we find that series (39) converges in the region |M| ? 1/2. However,
this inequality is fulfilled at all finite values of the quantities D
and 8 by virtue of (16). Thus, the steady-squeezing wave function
[sss>—ev exists' at all the values of the constants w and f,

: . allowing
the diagonalization of the Hamiltonian (1)3)

» and it is determined by

The above statements remain valid for the wave function |sss>
as well, which is obvious from the following formulae: >
©

od<sss|sss§d = | ) ‘ (42)

3).
diie. at v > 2|f}.



[M]2" {10 (3+400)(3+401)...(3+4(1-1))}° R

1? |c. 2. (43)
214 (21+1)! ! :
2
Iczual 2 (3+41)2 . 2 :
i e 7 MM, Emmeny <A (aa)
21+1 . '

Consequently, the wave function |sss>od exists and is determined by
the series (38) ‘at the same assumptions as the Isss>e wave function.
. v

We normalize both these functions to one:
<sss|sss> = <sss|sss> =1 (45)
ev ev od od

and obtain the normalizing constants c, and c, (upto a constant phase

'factor):
~ * _ _1
2 [M]Z* {10 (14400) (1+401)... (1+4(k~1))}? 2
Il = Z . (46)
= (zk) |
_ L -t
X M| {10(3+400)(3+401)...(3+4(1-1))}° 2
el = | ) - (47)
(21+1)!
| 1=0 | .

The general form of the normalized |sss> wave function is

|a| = {1-1812, 8] = 1. (48)

It is evident that [sss>ev and }sss$od are orthogonal:

|sss> = A |sss> + B |sss> ;
, ev od

"<sss|sss>od = 0, (49)
and the field amplitude is equal to a both for [sss> ~and for

|sss> :
od

<sss|a|sss> = <sss|a|sss> = <sss|a|sss> = a. (50)
ev ev od od . . .

Let us show that the averages for any finite powers of operators
F (t), F' (t ) and F' (t)F (t) are finite and consequently
SSS [e] sss 0 sSS o] SsSs o + +
the averages of any finite -powers of a(to), a (to) and. a (to)a(to) are
finite too. As an example, we demonstrate this for the operator
[r* (t )F (t )1" and function |sss> :

o] SSS o ev

SSS

[*)
+ Ny N 2
= C =
ev<sss|[Fsss(to)Fsss(to)] |sss>cv 2: (2k)"| 2kl_
k=0

bl

N

. we find that the

(51)

~ , o IMIZ5{10(1+400) (1+401) ... (144(k-1)))?

= |c,| Z (2k) .

; . (2k)!
Calculating the limit

N 2 N
N (2k+2) lcz"hz[ | - (2k+2) . (1+4k)2 i
im = |M m - im = 4|M (52)

ko> w (2k)" IC“IZ k> m (2k)* K - ol 2k+1) (2k+2) ’ 7

series (51) determining the 'value of
+ N . .
evfsssl[Fsss(to)Fsss(to)]Isss>ev converges in the whole region of the
physical values of the parameter M: 0 = |M| < 1/2. One can easily
carry out analogous calculations for all above-mentioned averages, but
besides relations (41) and (44) one should take into account the

following ones:

+ ™ ™ . ‘
cv<sss|F (to) F(to) [sss>od = 0, (53)

if lm1 - m2| is an even number,

< |F+(t-)m‘F(t )mzl > = <sss|F(t )m‘F(t )mzl > =0 (54
evSSs o o 8887,5,8°58 (s o 88824~ 0. (54)
if Im1 - m2| is an.odd number.

So there exist uniquely defined averages for any finite powers of
a(to), a+(t0) "and a+(t0)a(to) operators over the wave functions
|sss>ev and |sss>°df-

4. Variances and uncertainty relation in steady-squeezing states

Using relations (11)-(12), equations (14)-(;6) and designation
(23) we find that the forms of the quadrature component variances and
of the uncertainty relation in steady-squeezing state (48). are

2 -] 1
<X (t)> = <AX (t))> = 7 (1 + 2<Aa+(t0)Aa(to)>)(1+2 Re M) =

(55)
1 v
== (142 <F:sgto)Fsss(to)>) (1 - 2|M|cos(8)).
2 2 1 v . -
<Ax2(t)> = <Ax2(to)> =3 (1 + g<Aa (to)Aa(t°)>)(1-2 Re M) =
‘ (56)

1 .
=5 (1+2 <F:s!(to)Fsss(t6)>)_ (1 + 2|M|cos(8)).



2 2 2 2
<Ax1(t)><Ax2(t)> = <Ax1(to)><Ax2(to)> =
‘ : (57)
1 + 2 2 2.
Y3 (1 + 2 <Fss£t0)Fsss(tO)>) (1 - 4]M|“cos®(0)).

2 2
One can see that variances <Ax (t)> and <Ax (t)> turn into one another

if the sign of cos(6) changes. Therefore we will consider only the
case with cos(e) > 0 meaning the squeezing in quadrature x Further
we note that the following derivative is positive:

alul 8|M| &p 1 ' .
a—If—I = 3D a'fl = > 0, - (58)

{w —4|f|

It means that IMI is a monotonously growing function of the modulus of
the self-coupling constant |f| at fixed w. At the same time |M| is
bounded at w > 2|f| by virtue of (16) . Thus all values of variances
(55)-(56) and uncertainty relation (57) depend on two- parameters given
on narrow fixed segments: 0 < cos(8) = 1 and 0 =< |M| < 1/2. v

It should be mentioned here that if |[M] = 0 then I1£f] = 0, so Ha-
miltonian (1) of the system becomes the Hamiltonian of the free osci-
-1lator. 1In thls case the wave function lsss> degenerates .into the
coherent state for the operator a(t ) correspondlng to the eigenvalue
a. Naturally, the mnean <F (t )F cee (t )> becomes equal to zero, the
variances become minimal and equal to. each other, the uncertainty re-
lation becomes minimized. The wave functlon |sss>v, in its turn,
changes over to.the eigenstate of the F (t)F cea (t ) operator with
the eigenvalue equal to one, while both the variances and the uncer-
tainty relation for this state are not minimized.

As ‘the value of the parameter |M| becomes nonzero then the value
of the .parameter-|f| begins increasing by virtue of (58). Therefore to
know the qualitative behaviour of the variances when the parameter I£]
increases from zero to w/2 it is sufficient to 1nvest1gate the depen-
dence of the variances in the [M| parameter region from zero to one
half. It is trivial to make this investigation numerically using the
series of type (51) for calculation of the main quantity
<F! (t JF___(t)>.

sss sss

Calculatlons of the variances were carried -out with an accuracy
of 107 on the "Microway 80386/387" computer for the following values
of cos(e) 0.25; 0.50; 0.60; 0.70; 0.75; 0.80; 0.90; 0.95; 1.0 sepa-
rately for the |sss$" and lsss>°d wave functions. There are not any
reasons to calculate the above quantities for the superpositions of

10

|sss>cv and Isss>°d because variances (55)-(56) have linear dependence
with respect to <F:s£E)Fsss‘t0)> which turns out to be simply a sum
of corresponding contributions of the lsss>ev and |sss>od wave func- )
tions by virtue ' of their orthogonality (49) when we average:
F:sgto)Fsss(to) over (48): -
<Fl (t))F___(t)> = (1-]B|®) _<sss|F. (t)F_ __(t )|sss>  +
(59)

B|? °d<sss|F:s£t0)Fsss(to)|sss>°w
i.e. variances (55)-(56) are linear with respect to the contributions
from each of the wave functlons |sss> and |sss>w.

As it should be expected the number of fluctuation quanta
<F:s£to)Fsss(to)> turned out to be a rapidly increasing function of
|{M| both for the |sss>ev and for  the |sss>od wave functions indepen-
dently of the cos(6) value (Fig.l1l). In spite of this behaviour of
<F:s£t0)Fss (t )> the degree of the squeezing is unbounded at cos(e) 1
both for |sss>ev and, for Isss>od (Fig.2); in this case it means that
in expression (55) the decrease of the factor (1-2|M|) is faster than
the increase of the factor (1+2<F:sgto)Fsss(to)>) everywhere on the
segment 0=<|M|<1/2. However, if cos(6)#1 then variance (55) has unex-
pected minimum, “i.e. beginning from some |M| value the factor
11+2<F:s£to)Fsss(to)>) increases faster than the factor (1-2|M|cos(g))
decreases. It is seen from Fig.2 that at any positive cos(8) value the
variance <Axf(t)> over the |sss>~ev state has the interval correspen—
ding to the squeezing. For the |sssaﬂ wave function the squeezing
exists only for the cos(6) values close to one. The uncertainty rela-
tion is not minimized for both states and turns out to be an unbounded
function of [M| at all values of cos(6) (Fig.3).

It is also clear from the above consideration that the |sss>ev
and Isss>od wave functions are not the Gaussian pure states (GPS)[IB].
Actually, one can obtain all single-mode GPS by "rotating" the set of
minimum uncertainty states [18]. It .means that single-mode GPS have
bounded uncertainty relation, in particular, for single-mode GPS one
can always minimize the uncertainty relation choosing the phase of the
field amplitude. On the contrary, in the case considered in this
Letter the uncertainty relation does not depend on the phase of a at
all. Thus, the !sss>cv and lsssaﬁ states we found do not belong to

the set of single-mode GPS.

11
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2 . 5. Final remarks

O 0.50 4

o . .

< The steady-squeezing states with an a priori given complex ampli-

s 0.25 4 tude of the oscillator have been ‘explicitly built up for the simplest
linear system. The properties of these states have been described. On

N\ L.
the other hand, the interpretation of the results obtained does not
0.00 — . . . .
0.0 0 02 ) 04 0.5 give ‘a clear picture of the behaviour of the wave functions in time

A
M pcrometer value because the Heisenberg representation was used. 5o, we need the
Schrédinger picture to follow the evolution of the states found. We

Fig.2. The -value of <Axf(t')> plotted against the value of the parame- . : : :
will use the P-representation [19] for this purpose in a forthcoming

ter [M| at cos(8) values: 0.25; 0.50; 0.60; 0.70; 0.75; 0.80;
0.90; 0.95; 1.0 both for the wave function |sss> (solid lines)
ev

article.

and for the wave function |sss>'Jd (dashed lines). The higher the
value of cos(6) the lower is the location of the corresponding

curve.
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BakacoB A.A. E17-90-332
CTalHOHapPHO-CXKAaToe COCTOAHME : o
ANIA IpOCTefiulel JIMHEHHO! CHCTEeMBbI

Ormnpenenexsl BONMHOBEIE (hYHKIUH, peanuayzoume MOCTOAHHOE
cXaTHe ONHOHM U3 KBaZpaTYpPHbIX KOMIIOHEHT AJIS OCLHHJUIATOPA C
caMoIefiCTBHEM MPH 3aJaHHOM KOMIUIEKCHOH aMIUIUTyIOe Koieba-
Huit. MHOXeCTBO TAaKHuX BOJIHOBBIX (yHKLMiI obpa3yer AZpO CIelH-
ATBHOrO OllepaTopa W pacHajiaeTcAd Ha [Ba B3aHMHO-OPTOrOHAJIBHBIX
[IOMHOXXECTBA: INOAMHOXECTBO BOJIHOBbIX (YHKIHUH, ABNAIILINXCA
Cynepro3uiuei COCTOAHHI 'C - UeTHBIM HHCIIOM KBaHTOB QUIyKTya-
LM Ha KJjaCCHYeCKMM 3HaueHHeM 3HePruM OCLUUUIATOPa, U IOAMHO-
’)KECTBO BOJIHOBBIX (YHKIMIA, MOCTPOEHHBIX Ha COCTOAHMAX C Heuer-
'HBIM 4HCJIOM KBaHTOB (nykryauuii. BemuuuHa CTallMOHapHOrO CXa-
‘THA KaK (QYHKIWA KOHCTaHTbI CAMOMeHCTBUA He MOHOTOHHA, a UMeeT
HEOXHUOaHHbI MMHUMyM. CraunoHapHO-CoxaThle COCTOSHUA He MHUHU-
MU3HNPYIOT COOTHOIIEHHe HeomnpeleeHHOCTel U He ABJIAIOTCA raycco-
BbIMH.

- Pabota BBIMONHEHZ B Ha6opa‘ropuu HJIeprIX npo6neM ousy.

npenpmrr O6bennnenHOTO MHCTHTYTa :uxepﬂbix uocnenonamli‘{. Iy6ua 1990 -

Bakasov A.A, ' ‘ E17-90-332
Steady-Squeezing State for the Simplest
Linear System

Wave functions have been determined which realize constant
squeezing for a quadrature component of the oscillator with self-
action at an a priori given complex amplitude of the oscillator. The
set of these wave functions forms a kernel of the special operator
and is divided into two mutually orthogonal subsets: the subset of
superpositions of the states with the even number of quanta of fluc-
tuations over the classical value of the oscillator energy and the sub-
set of superpositions of the states with the odd number of such quan-
ta. The value of the squeezing is not a monotonous function of the
self-action constant and it has an unexpected minimum. Steady-squeez-
ing states -do not minimize the uncertainty relation and are not Gaus-
sian.

The investigation has been performed at the Laboratory of Nuc-
lear Problems, JINR
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