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1. Goals of the work and basic relations 

Linear systems1> are often an acid test for beginning a study of 

a phenomenon which has not been the focus of interest among previous 
workers. In spite of their simplicity, the linear systems permit us to 

establish immediately many important physical and mathematical pecu
liarities of the object under investigation (1). The case in point is . 
what we call "steady-squeezing states". It may be noted that. well-
known coherent states (2) and (dynamic) squeezed ones (3-5) were first 

introduced in the linear framework. As a logical addition, it is 
therefore natural to begin the study of steady-squeezing st_ates in the 

linear approximation. 
On the· other hand, it should be emphasized that squeezed states 

are of general interest, since the bosonic systems for which the (dy

namic) squeezed states have been already observed (6,7) are not only 

present in quantum optics but also, for instance, in the theory of 

solids (8), in the theory of superfluidity (9,10), in nuclear physics 
[ 11, 12) , in high-energy. physics ( 13, 14) , etc. So, the squeezed states 

are very attractive objects especially as a phenomenon concerning fo
undations of quantum mechanics. 

constant squeezing in the quadrature components is obviously a 

property of a system during the evolution in time. Consequently, for 
explicit analysis it is necessary to concretize the Hamiltonian_of the 

system, determining the single-parametric dynamic group of the system 

(1). In this Letter, on the _basis of results obtained in a previous 

paper (15), the set of the wave functions {lsss>) realizing the 
steady-squeezing state will be found for the linear model system, cha

racterized by the Hamiltonian 
+ 2 +2 

H = w a a-+ r*a + r·a (1) 

Here w > O is the frequency of the Bose field quanta, f is the 
time-independent coupling constant. Be.sides the annihilation a and 

creation a+ operators one can define the canonical coordinate X
1 

and 

momentum X
2

• All these operators_ are introduced in the usual way 

[ a, a+ J = 1, [ X
1

, x
2 
J = i , ( 2) 

l)i.e. the systems for which the operator equations of motion are the 

linear ones: the Hamiltonian of such a system is a general bilinear 

form over the canonicalroordinates and rnoroent:a. 
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a=X +ix 
1 2, 

a+ = X - i X 
1 2 

(3) 

Let< ••• > mean the averaging over the sought-for steady-squeezing 

wave function I sss>. Therefore, for. an .operator O which we consider 

well~defined.on the wave function Is~~> one can write down 

<O> = <ssslOlsss>. (4) 

The variance ~perators for the state I sss> may be consequently 

written as 

.II.a= a - <a>, .II.a+= a+ - <a+>, (5) 

.II.X
1 

= X
1 

- <X
1
>, i=l,2. (6) 

tors 

show 

Explicit expressions determining the time evolution of the opera

.11.X:(t), .11.x:(t) and (.II.X
1

(t).II.X
2
(t) + .II.X

2
(t).II.X

1
(t))/2 •for syst~m (1) 

that if the averages for these operators obey the. relations) 

2Dsin(e) 
½<.11.X (t ).11.X (t ) + .11.X (t ).11.X (t )> = - ------ <.11.x2(t )>, 

1 D 2 D 2 D 1 D 1-2Dcos(e)+D2 1 D 
(7) 

<.II.X2( t )> = R <.ll.x2(t )>, 
2 D 1 D 

1+2Dcos(e)+D2 

R= ------
1-2Dcos(e)+D2 

(8) 

at the initial time t , then the variances <.II.X2(t)> and <.11.x2(t)> are 
D 1 , 2 

steady, i.e. are equal to their own initial values <.II.X2 
( t ) > and 

1 D 

<.11.x2(t )>. 
2 D 

The R parameter in formulae (7)-(8) characterizes the degree of 

the asymmetry between the values of the variances and, therefore, the 

degree of the squeezing if it occurs. Any one of the three independent 

averages in eqs. (7)-(8) may be given at will and one can always put 

it equal to such a value that there will be squeezing in the system. 

The quantities D and e are defined by means of the Hamiltonian 

constants: 

1 
D = 2lfl (w - -L2

-4lfl
2
), e = arg f. (9) 

It is very important to make here the following remark. One 

should not think that the problem of finding the steady-squeezing 

state is only the trivial problem of finding the eigenstates for 

Hamiltonian (1). For a system for which the initial state is one of 

2 lThere are the misprints in basic relations (52) and (54) of paper 

[ 15] : the factor 1/2 before the left-hand sides has been dropped. 

Also, in the formula (58) of [15] the"+" sign should be there instead 

of the 11 - 11 s'ign (see Errata [ 16]). 
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its eigenstates the averages are steady in time for all the operators 

which are time-independent in the Schrodinger picture. But the 

author's task is, and that is just the difference, to find such state 

lsss> that only the averages <.11.x2(t)>, <.11.x2(t)> and <.11.X (t).11.X {t) + 
1 2 1 2 

.II.X2(t).II.X1 {t)>/2 were constant in time although the averages of any 

other operators may have arbitrary evolution. Further we will show 

that the function I sss> may be chosen so that the average <a ( t ) > may 
. D 

have any a priori given value. Therefore, for example, the evolution 

of the average <a(t)> is not stationary at all (see the explicit ex

pressions for the time evolution of the operators in [15]). An addi

tional condition of the problem is the squeezing for one of the quad

rature variances, i.e. the fulfilment of the inequality <Ax2(t)> < 1/4 
I for one of the numbers i=l,2. 

Let the amplitude,<a(t)> of the Bose field be. a previously given 
parameter at the initial time moment t

0
: 

a = <a(t l> = <ssslalt l lsss>. 
0 1 D ( 10) 

Since it is the only parameter (besides the Hamiltonian constants) in 

relations (7)-(8), it is just the one which parametrizes the steady
squeezing wave function lsss>. Using identities 

2 

.11.X = 
1 

1 + 2 +2 
i (1 + 2.11.a .II.a+ .II.a + .II.a ), 

2 2 1 + +2 .II.X2 = 4 (1 + 2.11.a .II.a - .II.a - .II.a ), 

1 1 2 +2 
2 (.II.X1.II.X2 + .II.X2.II.X1) = 4i (.II.a - .II.a ), 

we obtain the following relations instead of (7)-(8) 

<.ll.a
2
(t )> = M (1 + 2<.11.a+(t ).11.a(t )>), 

0 0 D 

<.ll.a+
2
(t )> = M*(l 

D 

D exp(ie) 
M = -

1+ D2 

+ 2<.11.a+(t ).11.a(t )>), 
D D 

= -
exp{ie) 

-2- tanh ( 2artanh ( D) ) • · 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

.Equations { 14) - ( 15) are not quite convenient for determining the 

lsss> function. They have an infinite set of solutions and as it will 

be noted in the forthcoming subsection this set cannot be written down 

in a compact or, at least, in a visible form. The reason is that 

eqs.(14)-(15) connect the averages, i.e. the bilinear forms over the 

coefficients of wave function I sss> in any complete basis. One can 

determine the lsss> function in a unique way if one has an equation 

linear with respect to the I sss> function with the solution obeying 

3 



relations (7)-(8). This is the only equation for given values of a and 

M; let us find it. 

2. Fluctuation representation (F-representation) and the equation 

for steady-squeezing wave function 

For some wave function I '11> such that the average <'111 a ( t
0

) I '11> 

makes sense one can define the operators: 

+ + + 
F,i, = a - <'l'lal'l'>, F,i, = a - <'l'la 1'11> 

naturally obeying the commutation relation 

+ 
[F'l!' F,i,l = 1. 

(17) 

(18) 

Let us now make sure that· operators F,i, and F; are the creation 

and annihilation ones for the fluctuation quanta over the classical 

value of the field energy E = wl<'l'lal'1'>1 2 at the given field ampli-
. · • cl + · 

tude <'l'lal'l'>. At first we note that the vacu~m for F,i, and F,i, operators 

which we denote as IO>,i, is simply.the coherent state for the operator 

a corresponding to the eigenvalue <'l'lal'l'>: 

F '¥ I O>,i,=O; a I 0>,i,=<'11 I a I '11> I O>,i,; I O>,i,=exp{-rl <'11 I a I '11> I 
2

+<'111 a I 'l'>a +}IO>; (19) 

where IO> is the vacuum for the initial field: alO>=O. Therefore the 

states with definite number 'of fluctuation quanta over the classical 

value of the field energy E = wl<'l'lal'1'>1 2 at the given field ampli-
cJ 

tude <'l'lal'l'> are 

( + n ~ F,i,) 1 2 + n(-<'l'la+l'l'>)n-k n! 
ln>,i,= - IO>,i,=exp{-21<'1'1al'1'>1 +<'l'lal'l'>a }I (n-k)! k! lk>, (20) 

.rn-;- , k=l 

where lk> are the Feck states for the initial field. Calculating the 

mean of the quantum-number operator of the initial field over the 

state ln>,i, with the definite number of the fluctuation quanta one 

obtains: 
+ + + . 2 

,i,<nla aln>,i,= ,i,<nl(F,i, +<'l'la l'l'>)(F,i,+<'l'lal'l'>)ln>,i, = n,i,+l<'l'lal'l'>I, (21) 

while calculating the field amplitude over those very states one 

obtains: 

,i,<nlaln>,i, = ,i,<nl(F,i,+<'l'lal'l'>)ln>,i, = <'l'lal'l'>. (22) 

Consequently, annihilatiqn and creation operators of the fluctuation 

quanta change the value of the energy of the system, bui keep the gi

ven field amplitude <'l'lal'l'> constant. 
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To find the steady-squeezing wave function it is conv~nient to 

pass into the F-representation with I '11>= I sss>. Since in the case 
<'l'lal'l'>=<ssslalsss>=a, then according to eqs. (5), (6) and (10) 

F ( t ) = Ila ( t ) ; F + ( t ) = Ila+ ( t ) • ( 2 3 ) 
sss O O s ss O ~ ., 

In virtue of this relationship eqs.(14)-(15) takes the form 

<F+
2 

(t )> = M*(1+2<F+ (t )F (t )>), (24) 
s ss O ~ s ss O sss 0 

<F
2 

(t )> = M (1+2<F+ (t )F (t )>). 
sss O s ss O sss 0 (25) 

Let now ln>sss be the states (20) in which wave function 1'11> has 
be~n replaced by lsss>. We will find this lsss> function in the form 
of the expansion over the ln>sss states: 

0) 

lsss> = I en 
n=O 

In> 
sss (26) 

Determining the coefficients c one can easily pass into the initial 
Fock-represeritation_ for the ·o;erators a and a+ using (19)-(20) for 

wave function l'l'>=lsss>, i.e. replacing mean <'l'lal'l'> by the value of a 
parameter in these formulae. 

Obviously we cannot find any uniformly described class , of wave 

functions lsss> if we will use eqs. (24)-(25) for the mean values. 

There are only two equations while the coefficients en form an infi

nite set. However, we can require that instead pf (24)-(25) one of the 
relations for the operators 

+2 * + 
F ••• cto)lsss> = M (1+2 F ••• cto)F ••• cto))lsss>, (27) 

F
2 

(t )lsss> = M (1+2 F+ (t )F (t ))lsss> 
sss O s ss. 0 sss O ~ (28) 

should be fulfilled. If at least one of the equalities (27)-(28) is 

valid, then relations (24)-(25) are satisfied automatically. Yet, we 

show that equation ( 27) is not fulfilled for any I sss> of the form 

(26) with finite nonzero norm. Substituting expansion (26) into (27) 
we obtain 

' 0) 

I J (n+1l(n+2) Cnln+2>sss 

0) 

M* I (1+2n) Cnln>sss• (29) 
n=O n =O 

At the left-hand side of (29) the expansion begins from basis function 
12> . It means that 

sss 

s 



C = C = O. 
0 . 1 

{30) 

But if it is so, then the expansion at left-hand side of (29) begins 

from 14>••• as a matter of fact, which in its turn means that two more 

coefficients are equal to zero: 

c
2 

= c
3 

= o, (31) 

whence it follows that the expansion at left-hand side of (29) has 

already began froml6>•••· Continuing such reasoning we finally obtain: 

C = 0, n=O, 1, 2, 3, ••• oo • 
n 

(32) 

Thus equation (27) has no solutions of the form (26) besides zero so-
2 

lution. In other words the kernel of the operator F+ · (t ) · - H*(1+ 

2F+ (t )F (t ) ) is empty (except zero): 
sss O sss 0 

+2 
ker(F (t ) 

sss 0 
H*(1+2 F+ (t )F (t ))) = O. 

sss O sss 0 

sss 0 

(33) 

Nothing else is left for us, but to find the _set of states 

{lsss>} as a kernel of operator F2 (t) - H(1+2 F+ (t )F (t )): . 
sss O s ss O sss 0 

{lsss>} = ker(F2 (t) - H (1+2 F+ (t )F (t ))), 
sss O · s ss O sss O - . 

{34) 

i.e. to require the fulfilment of the equation (28) •. So, we take (34) 

as a definition of the class of steady-squeezing states with the given 

complex amplitude a for system (1) while equation (28) will be the 

basic one for the calculation of coefficients in expansion (26). 

3. Steady-squeezing state and some properties of it 

Substituting expansion (26) into equation (28) we find that 

00 00 

\ J (n-1)n c ln-2> L n sss 
H \ (1+2n) C In> . L n sss 

(35) 

n=O n=O 

Multiplying equality (35) by bra-state •• ~kl we obtain a recurrent 

relation: 

C k+2 

1+2k 
H :,.-:_-:_-_-_-_-_-_-_-_- C 

4(k+1)(k+2) k 
k=0,1,2, ... (36) 

which connects the coefficients C with numbers n of the same parity. 
n 

For this reason we will further distinguish two wave functions: the 

isss>ev wave function , the expansion of which over the number states 

In>••• contains only even n, and I sss> od wave function, which is a 
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superposition of the number states I n>sss with odd n. These wave func-
tions are of the form: 

00 k . 

lsss> = C L H o1o(1+4o0)(1+4o1) ... (1+4(~-1}) 
l2k> , ev 0 

4(2k)! 
sss k =O 

{37) 

00 
H

1
o1o(3+4o0)(3+4o1) ... (3+4(1-1)) 

lsss> = C L 121+1> od 1 

Tc21+1J! 
sss 

I =O 

(38) 

Here one 

<ssslsss> 
od od 

Firstly, we 

norm of the 

should make sure that the norms ev <sss I sss>ev and 

are finite in a region of the values of the parameter H. 

investigate the convergence of the series determining the 
lsss> wave function: ev 

00 

<ssslsss> = \ IC ·1 2, 
ev ev L 2k 

k =O 

IC 12 
IHl

2
k{lo(l+4o0)(1+4o1) ... (1+4(k-1))} 2 

2k 

Calculating the limit 

IC2k+212 
lim = IHl

2 
lim 

k➔ oo IC 12 k➔ oo .2k 

(2k) ! 

( 1+4k) 2 

(2k+1)(2k+2) = 4IH12, 

(39) 

IC 12
• 

0 (40) 

(41) 

we find that series (39) converges in the region IHI < 1/2. However, 

this inequality is fulfilled at all finite values of the quantities D 

and e by virtue of (16). Thus, the steady-squeezing wave function 

I sss> exists· at all the values of the constants w and f, allowing 

the diagonalization of the Hamiltonian (1) 3 ), and it is determined by 
the series (37). 

The above statements remain valid for the wave function 

as well, which is obvious from the following formulae: 

00 

od <sss I sss~d \ IC 12 L 21+1 , 

I =O 

3
li.e. at w > 2lfl. 

i 

lsss> od 

(42) 



IC 12 
21+1 

IHl 21 {1o(3+4o0)(3+4o1) ... (3+4(1-1))}2 

IC 1
2

• 
1 (21+1) ! 

(43) 

lim 
I ➔ 00 

IC 12 21 + J 

IC I 2= IHl2 lim 
21+1 l ➔ CO 

(3+41) 2 

{21+-2) (21+3) = 4IHl2. (44) 

Consequently, the wave function I sss> od exists and is determined by 

the series (38) 'at the same assumptions as the I sss>ev wave function. 

We normalize both these functions to one: 

<sss I sss> = <sss I sss> = 1 
ev ev od od 

( 45) 

and obtain the normalizing constants C
0 

and C
1 

(upto a constant phase 

factor): 

I Col . [ t, 
le, I • [ t, 

IHl 2 k{1o(1+4o0)(1+4o1) ... (1+4(k-1))}
2 l 

(2k) ! 

1 

2 

1 

IHl 21 {1o(3+4o0)(3+4o1) •.. (3+4(1-1))}2 

(21+1) ! 

r, 
The general form of the normalized lsss> wave function is 

( 46) 

(47) 

lsss> = A lsss> + B lsss> ; IAI = ./1-1B1
2

, IBI s 1. (48) 
, ev od 

It is evident ~hat lsss>ev and lsss>
0
d are orthogonal: 

ev<ssslsss>
0
d = O, (49) 

and the field amplitude is equal to a both for I sss> and for ev 
lsss> : od 

<ssslalsss> = <ssslalsss> = <ssslalsss> = a. (50) - - ~ ~ Let us show that the averages for any finite powers of operators 

F (t ) , F+ (t ) and F+ (t )F (t ) are finite and consequently 
sss O s ss · 0 s ss O sss O + 

the averages of any finite powers of a(t ), a+·(t) and a (t )a(t) are 
0 0 0 0 

finite too. As an example, we demonstrate this for the operator 

[F+ (t )F (t ) l" and function lsss> : 
sss O sss O ev 

00 

<sssl[F+ (t )F (t Jtlsss> = \ (2k)NIC 1
2 

= 
ev s s s O s s s O ev L 2k 

k=O 

.. 8 

1 
J 

1 
,} ,· 

00 

= 1col2 L IHl 2 k{1o(1+4°0)(1+4o1): .. (1+4(k-1))} 2 

(2k)N 

k=O 
(2k) ! 

Calculating the limit 

(2k+2)N IC 12 
2k+2 

(Zk+Z)N 

(51) 

lim 
k ➔ 00 (2k) N IC 12 

2k 

= IHl
2 

lim 
(Zk)N 

(1+4k) 2 

lim lZk+1) (Zk+Z) = 4IHl 2, (52) 
k ➔ 00 k ➔ 00 

we find that the series (51) determining the value of 

<sss I [ F+ ·( t )F ( t ) ]NI sss> converges in the whole region of 
ev s s s O s s s O ev 

the 

IHI < 1/2. One can easily physical values of the parameter M: 0 s 

carry out analogous calculations for all above-mentioned averages, but 

besides relations (41) and (44) one should take into account the 

following ones: 

m m 
<ssslF+(t ) 1F(t ) 2lsss> ·· = o, 

ev O O • od 
(53) 

if lm
1 

- m2 l is an even number, 

<ssslF+(t t 1F(t t 21sss> = <ssslF+(t t 1F(t t 21sss> = o. (54) 
eV O O ev od O O od 

if lm
1 

- m21 is an odd number. 

So there exist uniquely defined averages for any finite powers of 

a(t ), a+(t) ·and a+(t )a(t) operators over the wave functions 
0 0 0 0 

I sss>ev and I sss> od" · 

4. Variances and uncertainty relation in steady-squeezing states 

Using relations (11)-(12), equations (14)-(~6) and designation 

(23) we find that the forms of the quadrature component variances and 

of the uncertainty relation in steady-squeezing state (48) are 

2 

<t.X
1 
(t)> 

2 

= <t.Xl (to)> = 
1 + 
4 (1 + Z<t.a (t

0
)t.a(t

0
)>)(1+Z Re M) = 

(55) 
1 + 

= 4 (1 + 2 <F
55

!t
0

)F.
55

(t
0
)>) (1 - ZIMlcos(e)). 

2 

<t.X
2 

( t )> 
2 

= <t.X2(to)> = 
1 + 
4 (1 + ~<lia (t

0
)t.a(t

0
)>)(1-2 Re M) = 

(56) 
1 + 

= 4 (1 + 2 <Fss!t
0

)F.
56

(t
0

)>) (1 + ZIMlcos(e)). 
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2 2 2 2 
<~X1(t)><~X2 (t)> = <~X1(to)><~X2(to)> 

1 + 
= 16 ( 1 + 2 <F ( t ) F ( t ) >) 2 ( 1 

sss O s s s 0 4 IHI 2cos2 (a)). 

(57) 

2 2 

One can see that variances <~X1(t)> and <~X
2
(t)> turn into one another 

if the sign ,of cos(a) changes. Therefore we will consider only the 

case with cos(a) > o meaning the squeezing in quadrature X
1

. Further 

we note that the following derivative is positive: 

a IHI 

aTTT = 
alHI ao 1 
aD afrl = -l,...-:_-:_-_c:_-_-_-

~ w2-4 I f.l 2 
> o. (58) 

It means that IHI is a monotonously growing function of the modulus of 

the self-coupling constant lfl ~t fixed w. At the same time IHI is 

bounded at w > 2lfl by virtue of (16). Thus all values of variances 

(55)-(56) and uncertainty relation (57) depend on two parameters given 

on narrow fixed segments: o s cos(a) s 1 and o s IHI < 1/2. 

It should be mentioned here that if IHI = O then lfl = o, so Ha

miltonian (1) of the system becomes the Hamiltonian of the free osci

llator. In this case the wave function lsss>ev degenerates into the 

coherent state for the operator a(t
0

) corresponding to the eigenvalue 

a. Naturally, the mean <F+ (t )F (t )> becomes equal to zero, the 
sss O s s s 0 

variances become minimal and equal to each other, the uncertainty re-

lation becomes minimized. The wave function I sss> , in its turn, 
+ od 

changes over to the eigenstate of the F •• !t0)Fsss (t
0

) operator with 

the•eigenvalue equal to one, while both the variances and the uncer

tainty relation for this state are not minimized. 

As the value of the parameter IHI becomes nonzero then the value 

of the,parameter·lfl begins increasing byvirtue of (58); Therefore to 

know the qualitative behaviour of the variances when the parameter lfl 

increases from zero to w/2 it is sufficient to inve~tigate the depen

dence of the variances in the IHI parameter region from zero to one 

half. It is trivial to make this investigation numerically using the 

series of type (51) for calculation of the main quantity 
<F+ (t )F (t )>. 

sss O s s s 0 

Calculations of the variances were carried ·out with an accuracy 

of 10-
10 

on the "Microway 80386/387 11 computer for the following values 

of cos(e): 0.25; 0.50; 0.60; 0.70; 0.75; 0.80; 0.90; 0.95; 1.0 sepa

rately for the I sss> ev and I sss> od wave functions. There are not any 

reasons to calculate the above quantities for the superpositions of 

IO 

I sss> and I sss> because variances (55) - (56) have linear dependence 
ev od 

with respect to <F+ (t )F (t )> which turns out to be simply a sum 
SSS O SSS, 0 

of cor~esponding contributions of the I sss> and I sss> wave func-
. - ~ 

tions by virtue of their orthogonality (49) when we average 

F+ (t )F (t ) over (48): 
sss O sss 0 

<F+ (t )F (t )> = (1-1B1 2) <ssslF+ (t )F (t) lsss> + 
s s s O s s s O ev s s s O s s s O ev 

1B1 2 <ssslF+ (t )F (t) lsss> , 
od s s s O s s s O od 

(59) 

i.e. variances (55)-(56) are linear with respect to the contributions 

from each of the wave functions lsss> and lsss> . 
ev od 

As it should be expected the number of fluctuation quanta 

<F + ( t ) F ( t ) > turned out to be a rapidly increasing function of 
sss O sss 0 

IHI both for the I sss> ev and for the I sss> od wave functions indepen-

dently of the cos(e) value (Fig.I). In spite of this behaviour of 

<F+ (t )F (t )> the degree· of the squeezing is unbounded at cos(a)=l 
sss O s s s 0 

both for lsss>ev and, for lsss>
0

d (Fig.2); in this case it means that 

in expression (55) the decrease of the factor (1-2fHI) is faster than 

the increase of the factor ( 1+2<F+ ( t )F ( t )>) everywhere on the 
sss O sss 0 

segment oslHl<l/2. However, if cos(a)~l then variance (55) has unex-

pected minimum, i.e. beginning from some IHI value the factor 
. + 
(1+2<F (t )F (t )>) increases faster than the factor (1-21Hlcos(a)) 

sss O s s s 0 

decreases. It is seen from Fig.2 that at any positive cos(a) value the 

variance <~x2 ( t) > over the I sss> ·state has the interval correspon-
1 -

ding to the squeezing. For the lsss>
0

d wave function the squeezing 

exists only for the cos(e) values close to one. The uncertainty rela

tion is not minimized for both states and turns out to be an unbounded 

function of IHI at all values of cos(e) (Fig.3). 

It is also clear from the above consideration that the I sss> 
ev 

and lsss>
0

d wave functions are not the Gaussian pure states (GPS) [18]. 

Actually, one can obtain all single-mode GPS by "rotating" the set of 

minimum uncertainty states [18]. It .means that single-mode GPS have 

bounded uncertainty relation, in particular, for single-mode GPS one 

can always minimize the uncertainty relation choosing the phase of the 

field amplitude. On the contrary, in the case considered in this 

Letter the uncertainty relation does not depend on the phase of a at 

all. Thus, the I sss> and I sss> states we found do not belong to 
ev od 

the set of single-mode GPS. 
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Fig.1. Number of the fluctuation quanta plotted against the value of 

the parameter IHI: solid line: for the wave function lsss>
0
v; 

dashed one: for the wave function I sss> . Both 1 ines go to in-
. od 

finity as IHI approach the value 0.5. 
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Fig.2. The value of <t.X2 (t)> plotted against the value of the parame-
1 

ter IHI at cos(0) values: 0.25; 0:50; 0.60; Q.70; 0.75; 0.80; 

0.90; 0.95; 1.0 both for the wave function lsss>ev (solid lines) 

and for the wave function lsss>
0

d (dashed lines). The higher the 

value of cos(e) the lower is the location of the corresponding 

curve. 
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Fig.3. 
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0.5 

The uncertainty product <t.x2(t)><t.x2(t)> plotted against the 
. I 2 

value of the parameter IHI at cos(e) values: ·o.25; 0.50; 0.60; 

0.70; 0.75; o.ao; ·o.90; 0.95; LO both for the wave function 

I sss>ev (solid lines) and for the wave function I sss>
0

d (dashed 

lines). The higher the val~e of cos(0) the lower is the location 

of the corresponding curve. 

5. Final remarks 

The steady-squeezing states with an a priori given complex ampli

tude of the oscillator have been_explicitly built up for the simplest 

linear system. The properties of these states have been described. on 

the other hand, the interpretation of the results obtained does not 

give a clear picture of the behaviour of the wave functions in time 

because the Heisenberg representation was used. So, we need the 

schrodinger picture to follow the evolution of the states found. we 

will use the P-representation [19) for this purpose in a forthcoming 

article. 
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BaKacoB A.A. 
CTaUHOHapiio-cJKaToe cocTORHHe 
,nnR npocTethuel1: nHHel1:Hol1: CHCTeMhI 

El 7-90-332 

Onpe.neneHhl BonHOBbie cpyHKl.(HH, peanH3YIO~He TIOCTORHHOe 
C:lKaTHe O,ll;HOH H3 KBa,npaTypHbIX KOMTIOHeHT .nnR OCl.(HnnRTOpa C 
caMo,neHCTBI-IeM npH 3a,naHHOH KOMnneKCHOH aMnnHTy,ne Kone6a
HHH, MHO:lKeCTBO TaKHX BOnHOBbIX <pyHKl.(HH o6pa3yeT R,npo cnel.(H
anhHOro onepaTopa H pacna,naeTCR Ha ,nBa B3aHMHO-OpToroHanbHhIX 
TIO,ll;MHO:lKecTBa: no,nMHO:lKecTBO BOnHOBbIX <pyHKl.(HH, RBnRIO~XCR 
cynepno3Hl.(Hel1: COCTORHHH C . qeTHbIM qHcnoM KBaHTOB <pnyKTya-
1.(HH Han KnaccHqeCKHM 3HaqeHHeM :meprHH OCl.(HMRTopa, H TIO,ll;MHO
:lKeCTBO BOnHOBhIX <pyHKl.(HH, nocTpOeHHhIX Ha COCTORHHRX C HeqeT
HbIM qHcnoM KBaHTOB <pnyKzyal.(HH, Ben~HHa CTal.(HOHapHoro CJKa
THR KaK <pyHKl.(HR KOHCTaHTbl CaMQ,ll;eHCTBHR He MOHOTOHHa, a HMeeT 
HeO:lKH,naHHhlH MHHHMyM_. CTal.(HOHapHO-C:lKaThie COCTORHHR He MHHH
MH3HPYIOT COOTHOilleHHe Heonpe,neneHHOCTeH H He RBnRIOTCR raycco
BhIMH, 

Pa6oTa BhmonHeHa B na6opaTopHH R,ll;epHhIX npo6neM OHHH. 

Ilpenpm1T 061,e,i:umeeeoro uecmTyTa ~ep~x uccne.u;oBBHHu. ,Ily6ua 1990 

Bakasov A.A. El 7-90-332 
Steady-Squeezing State for the Simplest 
Linear System · 

Wave functions have been determined which realize constant 
squeezing for a quadrature component of the oscillator with self
action at an a priori given complex amplitude of the oscillator. The 
set of these. wave functions forms a kernel . of the special operator 
and is divided into two mutually orthogonal subsets: the subset of 
superpositions of the states with the even number of quanta of fluc
tuations over the classical value of the oscillator energy and the sub
set of superpositions of the states with the odd number of such quan
ta. The value of the squeezing is not a monotonous function of the 
self-action constant and it has an unexpected minimum. Steady-squeez
ing states do not minimize the uncertainty relation and are not Gaus
sian. 

The investigation has been performed at the Laboratory of Nuc
lear Problems, JINR. 
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