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. 
1. INTRODUCTION 

This work is devoted to the so-called 1/;3 - 1/; 5 nonlinear Schroedinger 

(NLS) equation: 

(1.1) 

where A= 82 f8o.:~ + ... + 82 / 8o.:1, and a, a 3 , a 5 are positive constants.1 

Equation (1.1) arises in a great number of physical contexts. Chrono

logically, the first one seems to be a gas of bosons interactin!) via the 

two-body attractive and three-body repulsive 6-function potential which 

is described quasiclassically just by (1.1) [1,2]. Other condensed matter 

applications include e.g. the ,P- theory of superfluidity [3] and the prob

lem of defectons [4]; more recently similar equations were also discussed 

in connection with the high- T, superconductivity [5]. In the theory 

of magnetism the problem of spin complexes and magnetic solitons can 

be reduced, under the weak excitation condition, to the solution of the 

very same eq.(l.1). For example, if we have the one-axis ferromagnet 

in the longitudinal magnetic field Hz = H, with the anisotropic energy 

E .. = -6M;/2 + IM~/4, then the coefficients of eq.(l.l) have the fol

lowing meaning: a 1 = 6-1 + H, a 3 = (6- 31)/2, a 5 = -(6 + 31)/2 

[6]. 
The applications of the 1/;3 - 1/;6 NLS equation are not limited to the 

condensed matter problems, however. It is met in various branches of 

biophysics [7], nonlinear optics [8], plasmas [9], and even in the nuclear 

hydrodynamics [10]. Depending on the context, the corresponding space 

dimension, D varies from 1 to 3. 
In this paper we shall be concerned with the range of parameters such 

that a1a5 /a~ < 1/4. Here, introducing p0 > 0 and A, 

- = -2 +- - 3
- 1 + A 3 a2 ( 

Po 4 a1a5 

( 0 < A/ Po < 1 ), and making the transformation 1/;(o.:, t) = lrP(f3o.:, {3't) 

with /32 = ia•14 and 1 2 = ~(a3/a6)(A+2p0 )-t, eq.(1.1) can be rewritten 

as 

irJ>, + Ar/J +(I 4> 1
2 -po)(2A +Po- 3 I</> 1

2 )</> = 0. (1.2) 

This form is more convenient for finding solutions. 

1There is no loss of generality in requiring that a 1 be positive, for the trivial 

substitution 1/J(x, t) == eiwt,j;(z 1 t) changes o: 1 to any desired value: & 1 = a: 1 + w. 
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In applications both the vanishing boundary conditions are consid
ered, ¢(x, t) --+ 0 and the non-vanishing ones: 

I ¢(x, t) 1
2 

--+ Po as x 2 
--+ oo. (1.3) 

It is the latter case that will be dealt with below. Since in the boson gas problem the homogeneous time-independent solution ¢ = ,fPO of 
eq.(1.2) is usually interpreted as the Bose condensate, the conditions 
(1.3) are called "the condensate boundary conditions". [In this paper we 
always apply to the boson gas interpretation of eq. (1.1) for it seems to 
be the most explicit.] 

In Ref.(ll] the equation (1.2) was found to possess, under the condi
tions (1.3), a new type of soliton solutions describing rarefaction bubbles 
in the condensate.' These nontopological solitons exist a.t 0 < A < p0 and have the remarkable property to survive passing to arbitrary higher 
dimensions. (In the case oflumps3 this property is not surprising but it 
becomes nontrivial for solitons with non-vanishing boundary conditions. 
To compare, note that the kinks and vortices of the repulsive 'lj;3 NLS do 
not have stationary localized analogues in D = 3 (12]). However, regard
less of the dimension, the quescent "bubbles" proved unstable [11,13]. 

In the present study we address ourselves to the question of whether the travelling bubble can be stable. Here our treatment will be restricted to the one-dimensional situation for in this case the bubble solution to eq. (1.2) is known explicitly (11]: 

¢,(z,t) = ¢,(i) = y'2Pocosh(e/2- ip) (1.4) 
V(2po- A)(A2 + v')- 112 +cosh e 

where e = (c2
- v2

)''''"· 

i = :z:- vt, (1.5) 

v denotes the velocity of the soliton (I v I< c), and c = [4p0 (p0 - A)]lf2 
is the velocity of sound. The "twisting angle" p is also defined by v: 

v ( c
2

- v
2 
)''' sin2p = "2 A' +v' , (1.6) 

2 Actually we believe that the solitonic bubbles can have a definite interpretation 
in each field where the .p3 - .p• equation arises, and there should be concrete physical effects that the bubbles a.re responsible for. The first results in this direction are presumably due to L.Masperi who has pointed out in his recent work [14] that this 
type of excitations is capable of explaining the phase diagram of the H e3 - H e4 
mu:ture. 

3 As usual, by lumps the multidimensional solitons are meant that are localized along any direction. 
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-'lr/4 < ll < 7r/4. Asymptotically we have 

as i -> ±oo. (1. 7) We expect the D = 1 case to have much in common with the two- and three- dimensional situations that we plan t.o analyse in future publications. 
It was conjectured earlier on the base of some approximate analysis that one-dimensional bubbles can stabilize when movmg sufficiently fast [11]. Later, numerical simulations were performed [15] revealing that the bubble becomes anomalously long-lived when v exceeds certain velocity Vc· However, the authors of Ref.(15] were unable to determine whether the bubble becomes really stable or the instability growth rate diminishes extremely but remains non-zero at v > vc. Our main result here4 is that the critical velocity Vc such that the "bubble" is stable in the supercritical domain, indeed exists. This conclusion is obtained in the numerical solution of eq.(l.2) linearized in the vicinity of the soliton (1.4). We also provide a simple qualitative explanation of the critical velocity appearance as well as of the slow bubble's instability itself, in terms of the Bose gas problem. 

2. LINEARIZED STABILITY 

In order to examine the stability of the "bubble" (1.4) against small perturbations we take a solution to eq.(1.2) ofthe form ,P(:c, t) = ,P,(i)+ /5</J(:c, t) and linearize with respect to 15</J. Assuming for 15</J the ansatz 15</J(:c,t) = [f(i)+ig(i)]e>.t with i as in (1.5) and J,g,>. real, we arrive at the eigenvalue problem 

where 

H.y = >.Jy 
y(±oo) = 0, 

tf d H.=-- d:c2 I +v d:c J + U.(:c), 

y(:c) = ( f(:c)) g(:c) ' ( 0 -1) J = 1 0 , 
I is the identity matrix, and 

U ( ) __ ( F + 2F.4>h 
" "' - 2Fp</JR¢I 

4This result has been announced briefly in {16]. 
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In eq.(2.4) ¢R and ch stand for the real and imaginary part of eq.(1.4): 
¢,(z) = ¢R(z) + i¢1(x), and p =I ¢, I'= ¢~ + ¢}. Finally, F = F(p) = 
(p- p0 )(2A +Po- 3p ), FP = dF fdp = 2(A + 2p0 - 3p), and the tilde over 
" has been omitted in (2.3)-(2.4). 

It is not difficult to realize that any solution of eq.(1.2) depends, up to 
a scaling transformation, only on a single parameter A/ p0 . Accordingly, 
we set, without loss of generality, p0 = 1. The eigenvalue problem (2.1)
(2.2) was analysed then numerically at 20 equally spaced values of A 
from the range (0,1). For each A a single positive eigenvalue>.= >. 1 was 
found, depending continuously on v. 

The function >.1 ( v) which looks similar for each A, is depicted in Fig.l. 
It is seen that >. 1(v) tends to zero as v approaches some critical velocity 
vc, indicating that the soliton is stable for v 2: vc. To determine the 
stability domain it remains only to find the precise value of vc; actually, 
we have to be able to compute Vc to any prescribed accuracy. However, at 
this point we meet with certain computational difficulties whose nature 
can be understood by analysing the structure of the spectrum of the 
operator J-1 H •. 

3. THE SPECTRUM STRUCTURE 

First, let us determine the location of the continuous spectrum. At spatial 
infinities we have ¢R( ±oo) = ,.fPP cos JL, ¢r( ±oo) = 'f,.fPQ sin JL, 

U.(±oo)=c'( ~os2 JL =t=si~JLCOSJL) 
'fSlnJLCOSJL Sln2 JL ' 

and the characteristic equation for the system (2.1) is readily found: 

k4 + c2 k2 + (>.- ivk)2 = 0 (3.1) 

(we assume y(") ex e'l<z ). Now suppose >. = iv with v real, v # 0. 
Eq.(3.1) yields then 

v = vk± I k I ../k' + c2 • (3.2) 

From (3.2) it follows that for any>. = iv # 0 eq.( 3.1) has two real and 
two complex-conjugate roots. It is not difficult to show that in such a 
circumstance eq.(2.1) has two independent bounded solutions, so that 
the imaginary axis of>. is occupied by the double-degenerate continuous 
spectrum. . 

Next, let >. = 0. Then eq.(3.1) has two coinciding zero roots which 
we shall denote k±, k+ = k_ = 0, and a pair of complex conjugate 
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roots, k3 ,4 = ±iv' c2 - v2 • Consequently, we can have not more than two 
independent bounded solutions here, and in fact there are exactly two. 
The first one corresponds to the translational symmetry of eq.(1.2), 

Yo(z) = :., ( :~t:? ) , (3.3) 

where ¢R(z) and ¢1(:<) are the real and imaginary part of the "bubble" ¢,(:<). The second zero mode pertains to the U(l) symmetry: 

Yo(.,) = ( ~:(~"'/ ) · (3.4) 

[That y0 and y0 obey eq.(2.1) with A = 0 follows from the nonlinear 
equation (1.2) just by substituting ¢(.:, t) = ¢,(:<)]. As I ., I-> oo, Yo 
corresponds to k3,4 : y0(.,) _, ezp(- v' c2 - v' I ., I) and y0 corresponds 
to k± : yo(.,) --> const. 

Finally we consider the case of real A. In terms of 1< = ik eq.(3.1) is rewritten as 

(3.5) 

The function A(~<) defined in this way is plotted in Fig.2. It is seen that 
when I A I< X (where X is the smaller maximum of A(~<)), eq.(3.5) has 4 real roots, 1<3 < t<_ < 0 < 1<+ < 1< 4 • Consequently, the eigenfunction Yt (.,) pertaining to the positive eigenvalue At whose finding was reported 
in the previous section, satisfies, for At < X 

a.!l :z:-+ -oo 
as z ---+ +oo , (3.6) 

where C± are constant columns. As At _, 0 we have t<± --> 0,.1<3 --> -v'c2 - v2 , 1<4 --> v'c2 - v2• 
So, what happens to y1 (.,) when v _, v, - 0 and At ( v) --> 0? Since at 

A = 0 the eigenfunctions (3.3) and (3.4) exhaust the set of all bounded 
solutions, Yt(.,) should pass to the linear combination Co Yo(.,) + C.,y0(., ), eo, C., = const. No additional zero modes emerge at v = v" and this point is in no way isolated therefore. 

Thus one cannot determine v, simply as such v for which At ( v) van
ishes. In order to find the point of intersection of the curve At ( v) with the abscissa axis one has to apply some sort of extrapolation procedure 
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instead. Our extrapolation was based on a Taylor series expansion• 

(3.7) 

in the vicinity of v, (for v S v, ). 

4. NUMERICAL COMPUTATION 

Suppose v approaches v, - 0 and I<± --> 0. Then if we wanted the 
boundary conditions (2.2) to be satisfied to any prescribed accuracy, we 
would have to extend the integration interval to infinity. This computa
tional difficulty can be circumvented by invoking the asymptotics (3.6) 
and passing to the conditions of the form y. - "+Y = 0 at :1: = -oo 
and y. - "-Y = 0 at z = +oo. Next, for .A --> 0 eq.(3.5) yields 
~<± = .Aj(v ±c)+ O(.A2

) so that in the vicinity of the critical velocity 
the latter conditions simplify to 

(
dy ). ) I ----y -o 
dx V i= C z=±oo - . 

( 4.1) 

Our computational policy was to solve the inverse spectral prob
lem, i.e., for several sufficiently small values of .A we solved the problem 
(2.1),(4.1) to determine the corresponding v. In doing this we utilized 
the modified continuous analogue of Newton's method; details of the nu
merical algorithm are relegated to a separate paper [17]. We have found 
that c1 fc 0 in the expansion (3.7). The critical velocity was obtained 
then by the linear extrapolation of the resulting curve· .A1 ( v) to .A1 = 0. 
The values of v, pertaining to different A are collected in Table 1; the 
dependence v,( A) is illustrated by Fig.3 . 

It is seen that when A/ p0 --> 1, v, --> c/2 holds which is in complete 
agreement with earlier resnlts. Namely, in Ref. [11] it was shown that 
for A ~ p0 , eq.(1.2) reduces approximately to the Boussinesq equation 
whereas the Boussinesq soliton is known to be stable just for v ;::: c/2. 

5. INTERPRETA110N 

1. Although the analitical proof of the static "bubble's" instability is al
ready available [11,13], no qualitative interpretation of this phenomeno"n 

5 That the function >. 1 (v) is analitical at v = 'Vc is suggested by the results of 
numerical computation. However, the extrapolation procedure was organized in.such 
a way that even if there were a singularity at this point, our results for Vc would 
nevertheless remain true within the same accuracy. 
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Fig. 1 The instability growth rote 
~1 versus v / c, the velocity of the 
soliton in units of the sound velocity 
(c = 2vfpo- A). 

Fig. 2 The function ~( K) defined 
by eq.(9.5} for v > 0. The left 
maximum, X is attained at i< = 

( )
1/2 - 4c2

- v2
- Jv• + 8c2v 2 f../8 

and equals X = {(if - c2
) i< + 

2ii:3 }/v. 

0.5 ...--------------_.. Fig. 3 The critical velocity v, and 
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0.4 ' 

its one- and two-mode approxima
tions plotted against A. The solid 
curve I indicates v, as computed 
by solving the eigenvalue problem, 
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v. defined as a root of E •• ( v) = 0, 
and the solid curve III shows v:v 
defined by V(v:v) = 0 (sec.5). 
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Table 1 

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 v,/c 0.1301 0.1943 0.2461 0.2911 0.3317 0.3692 0.4044 0.4377 0.4695 

The critical velocities (velocities of stabilization), v., for different values of the parameter A. The accuracy is w-•, i.e.
1 

the last given figure differs from the true one not more tflan by one. 
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has been given so far. Also it would be very useful to realize physically 
why the moving soliton stabilizes. Here we propose a simple qualitative 
explanation of the both effects in the Bose gas terms. . 

Our treatment will be based on the integrals of motion of eq.(1.2). In 
the Bose gas terminoiogy, these are energy: 

momentum: 

E = j {I <Pz I' +(I <PI' -Po)'( I <PI' -A)}d:c 

= j{l tPz 1
2 +I tP 1

6 
-(A+2Po) I tP 1

4 

+Po(2A +Po) I <P 1
2 -Ap~}dz; 

p !i J ( <P:<P- </Jz</1*)(1 -Poll tP l2)d:c 

!i J ( <P:<P - </Jz</J*)d:c - poArg</J[ , 

and the total number of particles lacking in the condensate: 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

The last term in eq(5.3) is essential for solutions with non-trivial topology6 

i.e.,for those obeying ,P( +oo) # ,P( -oo ). If we use eq.(5.3) to evaluate the 
momentum of the soliton, we ensure that the relation of the Hamilton 
mechanics holds: dEidP = v. This fact has been observed by Ishikawa 
and Takayama [19] in the case of the moving kink of the repulsive <jJ3 

NLS equation. (Kulish et. al. [18] also use the definition (5.3) but their 
motivation is presumably different.) In fact, it is not difficult to demon
strate that adopting this definition for the momentum, dE I dP = v holds 
in NLS equations with any nonlinearity. 

We shall show that at v ? Ve the "bubble" realizes a minimum of 
E under P and N fixed, while at v < Ve the minimum is changed into 
a saddle. Identifying the unstable mode (i.e., the direction of the en
ergy decrease) we shall become able to understand both the nature of 
instability and the mechanism of the stabilization at hil$her velocities. 

2. So, let us pass to the analysis of the energy mmima under the 
condition that both P and N be fixed, cP = eN = 0. First of all, we 

6 The idea tha,t it is just the momentum integral with this additional term that 
is relevant for stability analysis, has been advanced first in the paper by Bogdan, 
Kovalev and Kosevich [6]. We are indebted to M.M.Bogdan for drawing it to our 
attention. 
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observe that in the case of bubbles the second condition can be ignored 
i.e., the minimum of E under both 8P = 8N = 0 can be always attained 
by a configuration with only 8P = 0. The proof is a simple generalization 
of the one given in Ref.[13] for the v = 0 case, and we only sketch it here. 

For travelling waves rf> = rf>(z-vt) eq.(1.2) amounts to the requirement 
(8E)p = 0, with N not necessarily being preserved by the variations. 
Next, the second variation is given by 

(5.5) 

where H. andy are as in (2.3-2.4), yT = (!,g), f = Re8rf>, g = Im8rf>. 
The constraint 8N = 0 is equivalent to F[/, g] = 0, where 

:F[f,g] = 2 j {r/>R(z)/(z) + •/>J(z)g(z)}dz (5.6) 

is a linear functional in the space of vector-functions (!,g). [We recall 
that rPR(i) and rPI(i) are the real and imaginary part of the "bubble" 
(1.4), respectively]. In view of the non-vanishing asymptotics of rf>,(i), 
we have by the Riesz theorem that :F is discontinuous both in £ 2 and 
in Sobolev's space W'- This fact implies, in turn, that the kernel space 
of :F (defined by the condition F[/,g] = 0), is dense in W 1 (see e.g. 
[20]). Speaking otherwise, for any (fo, go) there exists a sequence (fn, 9n) 
obeying :F[fm9n] = 0 and converging to (f0 ,g0 ) in Sobolev's norm, 

\\(f,g)\\w = Ju• + g' + 1; + g!}dz. 

Since the quadratic functional (5.5) is continuous in W 1 , 82 E[/n, 9n]n~= -> 

8' E[fo, g0 ] follows. Thus min(8' E)p_N = min(8' E)p. 
Defining rand 8 by rf> = ,;pei8 and r = p0 - p, eqs.(5.3),(5.1-5.2) read 

P =- j r8,dz, 

Eint = j {(po- r)3
- (A+ 2po)(Po- r)' + p~(A + Po)}dz, 

E0 
= f Hr!(Po- rt' + e!(Po- r) + Po(2A + Po)(Po- r) 

(5.7) 

-p~(2A + p0 )}dz. (5.8) 
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In eq.(5.8) E 0 stands for the contribution of the dispersion and E}nt 
for that of the nonlinearity. In other words, E0 corresponds to the kinetic 
energy of bosons while Eint to their interaction. Now consider r and 8 
pertaining to the "bubble" (1.4): </>, = y'P.ezp(i8,), r, = Po-p, and 
introduce a simple perturbation of the form 

r,(z)--> r(z) = ar,(bz), 8,(z)--> 9(z) = a- 19,(bz) (5.9) 

preserving the momentum (5.7). The energy (5.8) becomes then the 
function of a and b : 

E 0(a, b)= ~a2b I r!(Po- art'dz + ba-2 I 9!(Po- ar)dz 

-ab-1p0(2A + po) I rdz, 

E'n'(a,b) = b-1 I {(p0 - ar)'- (A+ 2po)(Po- ar? 

+p~(A + Po)}dz, (5.10) 

where the subscript "s" has been omitted at r and 9. The condition of 
that E(a, b) considered as a function of a have a minimum at a= b = 1, 
is (82E/8a2)l.=b=I > 0 while the minimum w.r.t. both variables occurs when 

V = (E •• Ebb- E~)~•=b=l > 0. 

From (5.10) we obtain the necessary derivatives: 

E~. = ~p~ I r!(Po- rt3 dz + 2 I 9!(3po- r)dz 

E~~· = 6 I r2(p0 - r)dz- 2(A + 2p0) I r2dz 

E~ = ~I r!(2po- r)(Po- rt 2dz- I 9!(2po- r)dz 

-po(2A +Po) I rdz 

E~'b' =I {3r3
- 2(po- A)r2 + Po(2A + Po)r}dz 
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Ef;' = 2 j { -r3 +(Po- A)r2 + Po(Po + 2A)r}dz (5.16) 

E~ = -2p0 (2A +Po) j rdz. (5.17) 

The expressions (5.12), (5.14) can be simplified by means of the relation 
8, = -~vrf(p0 -r) which follows from eq.(1.2) in the case of </>(z,t) = 
¢(z- vt). 

Having set p0 = 1 in (1.4), we evaluated the integrals (5.12)-(5.17). 
At small velocities, both E •• a.nd 'D were found to be negative. However, 
there a.re certain velocities v. and vv, v. < vv < vc such that E •• > 0 for 
v > v., and 'D > 0 for v > vv. The curves v.(A) and vv(A) are depicted 
in Fig.3. It is seen that for not too small A's, vv and even v. provide 
rather good approximations for Vc. Accordingly, the instability of the 
"bubble" can be interpreted qualitatively as the instability w.r.t. the a 
mode. 

The negative contribution to E •• comes exclusively from the part 
of the energy corresponding to interaction of bosons. More precisely, it 
comesfromtheseconditemin(5.13)arisingfromtheterm-(A+2p0 ) I</> 14 

in the Hamiltonian (5.2). Physically, this term corresponds to the two
body attraction so that it is just this part of interaction that is responsible 
for the slow bub hies' instability. 

4. In order to illustrate the latter statement, it proves helpful to 
consider the following toy model of the bubble. Let </>(z) be a real static 
configuration with 

¢2(z) = p(z) = { ~0 ' p, 
I"' I> L/2 
I"' I< L/2 

(5.18) 

p = canst, 0 < p < p0 . The energy of bosons' interaction is, by eq.(5.8), 
E'"' = L{p3

- (A+ 2p0 ),02 + Ap~ + pg}. On the other hand, the number 
of particles (5.4) is N = (p- p0 )L so that eliminating p we have 

(5.19) 

The force acting on the bubble's wall consists of two parts. The first 
part, f 0 = -dE0 

/ dL corresponds to the kinetic energy of bosons. For a 
bubble of any form this part is obviously positive, since it tries to disperse 
the bubble. The second part originates from the interaction of bosons 
inside the bubble: 

N 2 L-2(2NL- 1
- A+ Po) 

(p- Po)2 (2p- Po- A). 
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For p > (Po + A)l2, i.e., when the density of the gas inside the bubble 
is high, the three-body repulsion dominates a.nd we have J'nl > 0. At 
the densities lower than (Po + A)l2 the gas inside is, conversely, self
gravitating so that the pressure is negative: J'nt < 0. In order to ensure 
f" + fint = 0, the internal density must therefore be lower than at least 
(p0 + A)l2. Hence, only high-ra.refaction bubbles ca.n exist. 

Now let us proceed to stability properties. The necessary condition 
for stability is d2 E I dL2 > 0. For the interaction pa.rt of the energy we 
have 

(5.21) 

We observe that d' Eint I dL2 > 0 holds only for sufficiently high densities, 
p > ~Po + Al3. This means that the repulsive interaction tries to stabilize 
the configuration, whereas the attraction of bosons produces instability. 
So our toy model helps to realize qualitatively why the static bubbles are 
always unstable. Namely, in order to exist the bubble must be sufficiently 
ra.refied so that the attraction of bosons ca.n compensate the dispersive 
"dissolution". On the other hand, it is just the bubbles of the rarefied, 
self-gravitating gas that appear to be unstable. 

5. Finally, it remains to explain in qualitative terms the critical ve
locity occurrence. As is seen from Fig.3, it is quite sufficient to take into 
account only the a mode. 

When v is increased, the width of the soliton increases as well, while 
the amplitude [i.e., the maximum of r(:ii)] decreases. The latter means 
that the density of the boson gas inside the bubble grows, the three-body 
repulsive interactions become dominating and as a result, E:;:: grows from 
negative to positive values. On the other hand, both two items that form 
the dispersion part of E •• [eq.(5.12)] always stay positive. Therefore, the 
very fact of the stabilization can be explained just by the density growth; 
however if we want to find a qualitative estimate of the critical velocity, 
the change of the dispersion part should be also taken into account .. 

The velocity increasing, the first item in ( 5.12) diminishes while the 
second one growH. This latter item, 2 J 9!(3p0 - r)dz is related to the 
"twisting" of the soliton, i.e., it has a topological origin. The total in
crease in the topological item over the ra.nge (0, v.) is about half of the 
corresponding change of E~:•. Consequently, we may conclude that the 
stabilization ocet1rs mainly due to the density growth inside the bubble. 
The topological effects also contribute but to a less extent. 

As ca.n be seen from Fig.3 when A --> 0 the above choice of perturba
tions does not provide a faithful description of the instability. The nature 
of the instability is presumably the same in this case, but a different type 
of distortions is required to demonstrate this. 
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6. CONCLUDING REMARKS AND OPEN PROBLEMS 

1. So we have shown that the one-dimensional bubble-like solitons sta
bilize when moving sufficiently fast. It would be interesting to find out 
whether analogous critical velocities exist for two- and three-dimensional 
"bubbles" which are also known to be unstable at rest. In this connection 
it is worthwhile to recall [11] that propagation of transonic "bubbles" is 
governed approximately by the Korteweg - de Vries equation at D = 1, 
and by the two- and three-dimensional Kadomtsev-Petviashvili equations 
at D = 2 and 3. On the other hand, the KdV soliton as well as the two
dimensional KP lump is known to be stable while the three-dimensional 
lump unstable. This suggests that the critical velocity Vc such that the 
..j;3 - .,;;• NLS "bubble" is unstable for v < Vc and stable at v ~ vc, exists 
only for D = 1 and 2. The three-dimensional "bubble", conversely, is 
expected to be unstable at any velocity. 

2. For A close to zero we have not succeeded in describing the in
stability of the bubble as instability w.r.t. simple scaling distortions. 
From the interpretational viewpoint it would be desirable therefore to 
find an analitically expressed perturbation such that it could describe 
the instability threshold for all A universally. 

3. Finally, let us remark that when one analyses NLS equations, the 
dependence of the soliton's stability on its velocity is inherent only for 
solitons with non-vanishing boundary conditions. Really, consider the 
case of the vanishing conditions t/>(z, t)l•l-~ --+ 0 and suppose we have a 
lump t/>,(z, t) moving with velocity v. The Galilean transformation 

</>(z,t)--+ ~(z, t) = e-H•+~vt)</>(z + vt, t) (6.1) 

takes then the soliton¢, to the rest frame. Furthermore, this transforma
tion can be applied to any nearby solution, so that the stability problem 
will be reduced to the one for v = 0. On the other hand, in the case 
of the boundary conditions (1.7) the transformation (6.1) does not take 
the travelling soliton to the static one; the dependence on the velocity is 
more complicated here, see e.g. eq.(1.4). 
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