


1. Introduction
An electron in an ionic crystal generates in its neighborhood
a domain of a local deformation of a medium, thus creating a
quasiparticle, a polaron. Among the whole number of ‘polaron -
models a simple but rather nontrivial model described by the
Fréhlich Hamiltonian is well known. May be, it is the unique
model of a particle interacting with a quantized field which
allows both the expansion in a standard series of perturbation
theory and the strong coupling expansion in inverse powers of
the coupling constant. It is why the Frshlich polaron model
has been used readily by theorists exercising in the develop-
ment of various schemes of approximate calculations. On the
other hand, the interest in this model is stimulated by the
physical reasons. Up to now the théory of the Frshlich polaron
can be considered as a well developed'field, of solid state
physics. The investigations:héve been done extensively for
various quantities chardéterizing a one-polahon-system: self-
-energy and effective mass, mobility,ﬁoptical absorption coef-
ficient and so on. The list of papers on the subject is huge
and we refer the reader to recent review articles 172, ,

However, much less attention has been paid to studying
many-polaron systems which are rather importént. In particular
the problem of a two-polaron bound state (bipolaronl} attracted
attention recently, which was caused by attempts of explaining
the high-temperature - Superconductivity. According to the.
proposed bipelaronic mechanism - of superconductivity, the
bipolarons of a high encugh density undergo the Bose-Einstein
condensation, which results in a ‘superconductivity state 3);

To study the polaron properties, and especially its bound
states, one needs a good scheme of  approximate calculations
which would allow one to compute the polaron characteristics
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with a high accuracy. While investigating.the:Frshlich polaron
the path integral method has been widely used. ~In terms of

path integrals a representation' can be obtained for the

partition function Z,., , which contains all the effects of

electron-phonon interaction. For an optical Frshlich polaron

at rest in an N-dimensional space, Z;nt can be wrltten in the

form

‘ ds ds
Zint Joonst zjdsx ) + 2?Efflx<s = o1 ° G, -
X 0) =X¢ 3
ch(B/E—lsi—s-l)
- ]

Here o is the coupling constant of -electron-phonon
interaction, B=wk8 , 8 is the temperature of the system, and
w is the LO-phonon frequency. The normalization constant in
the path integral (1.1) is determined by the condition
Zint(“=0) =1 . In the limit of zero temperatures (8 3 @} we
have Z nt X expl-pECa) ], where E(ad is the energy of the
polaron ground-state. For calculatlnq it, a number of methods
have been developed among which a very popular is the Feynman
variational method 4) that gives an upper bound EF(a) on E(a)
valid throughout the whole range of variation of the coupling
constant o20 . The method is based on the Jensen inequality
~and the known quadratic approximate action

B B

Sp = - %gdSXZCS)—%jgds1dsze—w|s:-szl [x(s )-x(s)1E, (1.2

where C and W are variational parameters. An essential dege—
lopment of the Feynman method has been proposed by Saitoh *)

he has changed the function C exp(—W|sl—szl) in:the approxi- -

‘mating action (1:2) to an arbitrary function p(|s;—sé|)' over
which variation is carried out. Thus, * the Saitoh method gives
the best upper bound that can be obtained with the gquadratic
action. To  illustrate this, one may compare the Saitoh
- results with:those obtained in the - scope of the straight-

mamni

-forward generalization of the Feynman method when

p(ls -s, ) = 516 exp(: W Is -s, [P

The calculations have been performed at n=2 in ref. 6 and at -

‘n=3 in ref. 7.

Both the Feynman and Saitoh (all the more so) methods

failed to provide an analytic approx1mate expression for the

polaron energy. However, it 1is p0351ble ‘to construct: the
weak- and the strong coupling expansions of the form:

E(a):nglEna , : | ‘ ~’ | (1.3a)
Ew = T 4y T, Ay 0. (L3R
The numerical values of the first few expansion coefficients
in (1. 3) for the Feynman and Saitoh approximations will be
reported later. Now we stress that estimates obtained by
Feynman and Saltoh methods are rather close to each other and
work well enough in the whole range of the values of . the
coupling constant « . For example, the value of  the leading.
term of strong coupllnq expansion (1.3b) (which is the same
for both the approx1matlons) differs from the exact. value
only by 2.2% ... The weak coupling _expansions - exactly
reproduces the flrst coefficient El' but the next coefficient
EE noticeably dlffers from the exact one (more than by - 20%).
As is well known, phy51cally 51gn1f1cant values of a  (say
from 3 to 10D correspond to the intermediate coupllng regime.
To reproduce the polaron characteristics in thatpreglme ‘with
more adequacy, one should.consprucﬁ a. scheme of 'SUbsequenL
approximations which will work in the whole range of the
coupling constant values and- will allow one to calculate
corrections to the: leadlnq term. ‘ :

In our paper '8) we have considered ~weak ~coupling
expansions for a multidimensional polaron'and have’ suggested
a connection betweeh Lhe'Saitoh estimates and expansions in
inverse powers of the number N of the space dimensions. We
adduced arguments in favor of that the Saitoh result coincides-



with the leading term of the 1,N-expansicn. . At present our
coniecture is confirmed. In 1987 we reported the first results
on the 1/N-expansions for the Frashlich polarong ). Here we
" construct a regular self-consistent scheme which allows us to
obtain the 1/N-expansion from the path integrals and to
calculate corrections to the. leading term. Besides we answer
the question why the Feynman and Saitch varlatlonal methods
work rather well, the latter turnsiout to be asymptotlcally
exact in the limit of large N. A

The paper is organized as follows. In Sec.a we derive
the general formulae for the 1-N-expansion. Then we
investigate the leading term in Sec.3 and the first
correction to it in Sec.4. In Sec.5 the results obtained are
used for the approximate calculation of the coefficients of
weak- and strong coupling expansxons Appendices contain
detalls of calculations. ‘ '

2. General approach to the 1/N-expansion
Proceeding . from eq. (1.1)" for "Ztnt with the -redefined
coupling constant
‘ = 2v2 N *%a, , 2.1
we ‘obtain the follow1ng expan51on for the polaron energy:

EN() =Neg (@ + e (@ + 0N, @2
where 1ndex N denotes the number of the space dimensions. This
redefinition is not an. 1nnovat10n we used a similar
transformation in ref. 10 while constructing the 1/N-expansion
for an anharmonic o301llator which allowed us to reproduce
both the perturbation theory and the strong coupling 11m1t

Next, we make use of the Feynman representatlon - for
‘a contlnual 6-function: ' "
g :
¥ [lx(s )-x(s, )|2] fDGf(EE) F Lol exp {Lj]ds ds, p(s s )

lots, 5,0~ [x(s, )=x(s )| 1_} : @3

,where f is ‘a. functlonal and unlike the standard ‘formulae,
‘the path 1ntegratlon here is performed over functions of two

P
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variables p(s ,s, ) and ols ,s_ ). If we apply relations 2.3
to (1.1), the 1ntegral over the vector function x(s) will

‘turn into an N-th power of a similar integral over. one of

its. components x(s). As a result, we get the representation

o B B
- 2 o
Zing = fl"’f(zﬁ)_ eS' _5 = Lfde,dsa po + aN*?*[fds ds_ G, /75 +
B .
Nln{ fconst [ 1fdsx2(s) - LJ]HS ds_p(s ,s )Ix(s ) x(s )] ]}
xor=xFp - 0 , 0

(2 4)
where G _ is defined by eq. (1.1). Changing the variables ‘of
path integration

Ao, p) 3y, 22,

=NZ+ LMWy, p=-1LP-1z(/ND, .5
where functions 2(5,'523 and P(s ,s ) are defined by the
equations for a stationary point 6S'/60 = 6S'/6p = 0, we
arrive at the system of equations: ' o
P(s ,6.) = —=2——— G, s, s, ) = <ix(s)=X(s 18

1 2 223/2(5 ,S) 12 1 2
"yt : ;
(2.6

Here use was made of the notatlon for the averaqlng of a
functlonal over a one dimensional Gaus51an actlon
: B B ‘ '
<FP=f=== Dx. f[x]exp{ 5 fdsxz(s)—j]ds ds P(s 'S, )[x(s )-x(s )]2}
X(o>—X(B) .

: Q2.7
with such a normalization that averaging of a constant does
not change its value (for instance, <1> = 1). Inserting (2.5
into (2.4) and u51nq notation (a. 7) we - arrive at. the
representatlon ‘

z s eXp(NSO) fi)v f(a" exp 5. @

int
The factorized term that gives a contribution leading in 1/N,
does not depend on the integration yariables y(sl,sz) and

z(s 'S, ):



B B

SO = ffdsl dSz P+ a ff dS1 dSz 612/1’2 ‘:+‘ th i (2.9
0 o SRS

; B B 4 v
2o {- bjas o - Sds s, Pt 2 203,07, )
X0y =X 0 L

The normal1zat1on constant for [ 1is determined from the
. condition I‘on 1. Recall that functions P(s, ,s,) and
'1X(s,,s,) are solutions to eq. (2.8). e

All the corrections to the leading term of the
1/N-expansion enter into the action 5 :

L B B o
§ =1 ffds ds, zy - § [Jds ds, YAyl 6, T+
0 0 R

+ N ln < exp {:— o [fds ds, z B, [x1/% } >, (210
, 0 .
where ,

Ayl = _e+ ¥ = (1 + 1 7%_)1/2 ,

‘ Y (14102

B_Ix) = [xts)-x(s 1% = < Ix(s)=x(s1%> .0 (@11
Subscripts in the functional B _[x] denote the dependence on
arguments s, and S,- Slnce A[y] = 374 + 0(1,/N) and <B >=0
by definition (2.11), then the flrst nonvanishing term of the
"“1/N-expansion of 3 will be of an order of O(N°). Neglecting
higher-order terms, from eq. (2.10) we-obtain the representa-
tion in which the Gaussian quadrature over the function
: y(si,sz) can be calculated. As a result, we have

- ; , B

Zypy = expONSQ) [LDzYRexp Sy L Sy = - Jfes,ds,2%s, .50 +

0
+ 38 [[ffds ds ds_ds [2] (2] (T, +% -Z -8 )7 (2.12)
0 ' ’
_where . R
L - CLas,s ) BRYEMNE (@
i} ‘u(S s]) (2], ;.= 2(5;,5)) &5 G SR 13

DS v T

B

Formula (2.12) is derived straightforwardly; noté only
that there use has been made of the relationship: :

<B, B, > = <Ix(s:)-x(s,)12 [x(s )-x(s21% - (2.14)

_ - 2 i} 2, 1 SR
<Ix(s )-x(5,317> <I[x(s ) x(s4)) > —‘2(Z£3+ X DD

which follows from the definition (2.7). The obtained formulae
(2.9) and (2.12) allow.us to compute the first two . terms  of:
the 1/N- expan51on (2.2) for the ground—state energy of the
Frshlich polaron. :

3. The leading term of 1/N-expansion

From eq.(2.6) it follows that the functions P(s, ,s,) and
Z(sx,sz) depend’on the difference of their arguments: '
= P(ls, s 3, ZKls -s 1.

The Gaussian Bath ‘integral in eq.(2. 9) is computed by the
following method ) The integration variable x(s) and
function P are expanded in Fourier series in the interval
£0,B1:

PC|s s, 1) = E Pn expl i2mn(s, -5, /B, Ph = P Py

X=X @k

x(s) = )Y .x, ex (iénnS/ ) I .
gn p ﬁ n - "N

and then the path. integration reduces to -the. cdnventibnal
multiple integration over 1ndependent variables. Re Xn (n20)
and Im x, (n>0). Introducing the notation

g = ch pn)/(nn)a E (3.2

we then obtain from (2 2]

) , -
1 = —_, S, Ln(1+— )+.3 2 /(1+- YL 33
T THE w07 n§5 o :

X Equatlons (2.63. acquxre the form

E(E) - B z: 1 cos(Ennf/ﬁ)'
n o n® (1 + E,




_ 1-cos(2anf/B) ch(pB/2-£) Lo SR '
z = ;tﬁz j et —ﬁngs—s > @

ZEquatlons (3.3,4) are similar to the equations derived by

‘Saitoh ) and may be used for estimating the free energy - of
-.a polaron at finite temperatures. In the limit of zero

temperatures they may be simplified if we change summation -

over n-to integration over x = Zzp/ﬁ , for instance,

¢] e
.. - k : . fadie
In I = -F InC1+E) = =% In [1+ = [de PCE) c1—cos—’/§§) 15
" ngb n ngb nzn?I ¢ R ' o

N dx In (1 + 4 da P(a) C 1.- cos xa )]
Rememberlng that S —ﬁa (@) when ﬁ $ @, we “obtain instead
+of (2.9) and (3.3) the fol;ow1ng expre551on ‘

4]

L w
ggla) = - [de PCE) sE) -2a [ el
0 0 T

o A : : .

+ o Jdx Inl1 + ~5 [do P(@) (1-cos x)] . (3.9)
0 0

Then from the equation‘for' the stationary point: 6e /6P =

_ 650/62 = 0 we get, instead of (2.6), the following relations

CPEY = aE ) e
"1 - cos xt

m .
Jax % — . (3.6
0 xX* +4 éda P(a) (1-cos xa)

PXEP]

E=1{aV)

- Using them, from (3.5) we get the equations.

o B .
g = -a [—L£_o¥(3-2r), de (@da=-a ——f—— :

3.7

e =

E=1[aV]

o } . LT e (s
Jax 1 - cos X — L 3D
0 X + 4a 6da e 9sx '3’2(0) (1-cos xo)

whose solutlon prov1des the leading -term- g.(a) of the

-1/N-expansion.: It is-clear that eq. (3.7) may be solved:. only

numerically, and therefore we will consider the Llimits -of
weak and ‘strong .coupling. Calculations are described in
Appendix A, and we here present only the results. In the case
of weak coupling we have:

= vt ¥
g, (@ ngz E‘n

Ey=-n+83, E‘3=fﬁc—§§ S s, @ae

In the strong coupllng regime we obtain the expansion:
g Ca) = —4a - C(ln2 + 1/4) + ol1/a®) . (3.9 .

4, The flrst correctlon
Now let us turn to the expre551on

jt£2/vh) exp Sy , . (4. 1)

wherelsl is:defiﬁed‘by'ed (e. 12)' The first correctlon to
the leading term. may be found as follows:

V"a(a)'=umc—ﬁlnzl . W
. B . .

The scheme of calculatlons ris. obv1ous in., the weak
coupllng regime. While expandlng the 1ntegrated expression in

~eq. (4.1) in powers of the second term of the action (2. 123,
.the path integral is «<alculated ea51ly Then one -should .use

the expansion of Z(Z) in powers of a-(see Appendix A). The
result in the first two ofders'iS‘as-follows:~» S,
g,(@) = ~(3mRa - (88/5-2ln/M)a® + (™) . (4.3)
‘The calculations are  more comp;iceted' in the strong.
coupling regime, and here we limit‘.oqrselves to the first
correction to the leading term of the order of a?. It follows



from the formula (A.6,8) of Appendlx A that at large a the
function Z has the form:

ZKsi,sz) =[1 - exp(-16a '5:- szl)]/lﬁaz, (4.4).
Substltutlng (4.4) into (2.12) and performing the

scallng $;% S; s166*, z » 16a®z , we get the action Sy in a
51mp11f1ed form : : '

b J
8= -[fds ds, z*(s ,5,) +
0 b

+ TgE j]]]asidszdsads4z(sl,sz)z(sz,s4)(e23fei+—ei3—e24)2,

- exp(-ls s (PN 16a B. ; (4.5

tJ
‘The calculatlons descrlbed in Appendlx B, give the
result: .
. g, (a) = - a (19 4¥TU) + o(a ) A 4.6

5. The 1/N-expan51on as a source of approx1mat10ns
Expansion (2.2) gives the origin Lo varlous approxlmatlons
Since the series in powers of 1/N is truncated, the polaron
energy ECa) cannot be determined exactly So certain approxi-

‘mations can be made, dlfferlng from each other 1n terms of

‘hlgher order in 17N. Ve w1ll proceed as follows The expre551on

E(m) Cad = m. E(N) [ FCN/Z)F(M 1@)] : (5.1

m/ 7e-17
becomes an identity if we put m=N (the index denotes the
number- of space dimensions).”We shall first expand.the r.h.s.
of eq.(5.1) in a series in powers of ‘1/N, and then we shall
set m=N, thus obtaining an approximate expression for the
" energy of an N-dimensional - polaron. The argument of the
functionkE‘N’ in (5.1) is chosen so that already 1in the

leading approximation in 1N, the first coefficient of the -

_ weak coupling expansion will be . reproduced exactly. This
coefficient has the form o

_ _ YE Ine-12) o

10

D i e

Using (2.2) we get from (5.1): ‘
E™(0 =me (@ +Fe@+otM®. (53

Here we should Lake into account also the modification of

eq. (2. 1) owing to the scallng of the argument of the function
E‘N’(a) o , e

_ o N_TINR _ Ine-12) .
o Na/z m /c= Itn2) )
=a (1~ 3/4N - 7/3¢¥ + .., (5.4,
where R ' S SRR C
@ =a—elm . (55

°o m mw \
Inserting’(5.4i‘into (5}3) we finally get
EN (0 =Nea)d + g (a) —Ias (a)] + 0L, (5.86)
where we take m -YN oy ' k

Using the formulae (3.8,9) and (4:3,6) we may write the

first coeff1c1ents of -the weak coupllng expan51on
£ = - v F(N/z -1./2) ;‘ e ‘ A ' (5.7

e i
- [WF(N/B 1/3’] [NCn-8/3) + (108/5 - 27n/4) + oc1/NJJ

Nl""l
n

7 (5n/3 - 544/15 + 1’8@ +<(D(NO)] .

(a2}
w
n

_ [rc&/a 1/3)]3 (N Ve

The coeff1c1ent E1 is determined exactly as we: should llke it
to be. In ‘the strong coupling limit ;fgr'lﬂthe © first
coeff1c1ents of the expan51on (1.3b) we get:

) (N2-12) 4Ty L
4g = [{W—m—a—] (AN + (13-4/T0) + (LMD -
Ay = - N (ln2 + 1) + o) G

It ‘follows from eqs (5.7,8) that 1n the leadlng approx1—
mation the.polaron energy depends on N so that the scaling law
(5.1) is valid at arbitrary m and N. In the Feynman approxima-
tion that fact has been noticed at first by Devreese et

11



Table 1

First coefficients of the weak- and strong
coupllng expansions for the polaron ground-state energy

Fe 1/N-eXpansion:

method . leading term +_correction Exact result
N = 3 (bulk polaron)
- ] : )
E 1 1 1 1
S ' 5, 17 _ S - S - o
-% V 'é'f = Ié‘gg WIS_ - ln(1+T) -2 =
. 1.2346 1072 1.2508 1 1.608373 10¢  1.50196 1072
£y 8(7/7-18)/3%= Egs-rgsﬁ+§§ A .
634366 1073 6465103 . .7 . 806070048 10
1 i 25-4v10 _ o
-4y 7= .06103 < Sz = 100206 108513
-4y 32+ = 32 SRR tE
2.829 P 7?7 2.8
N = 2 (surface polaron) :
<-E1 n/2 = 1.5708 ne n/_a R n2e
o, 2 by - n 122 1on, v
£ 215 = gz = 5 =
. 045693 - 046626 .065978 . . 063973966
3 . N . B
- (7v7-18) _ 2, 5 _ 88, 973, .
3 Twmme-c Emtr ) o
555486 1072 63784 102 o . 0074

e e e e e e e e e e v e e e e e e am e e e e e eu e e el A e = m e = e ee

_AO §= .3927 § Eg_al_.éz.@l = 4099 “‘1‘.‘4047
'Aa 2ln2 + .5 = 2in2 + .5

12

al.13), It is clear now that this is not - accidental - but is
connected with the exact expression for the COefficient,E1 1
Numerical results obtained with the help of egs. (5. 7.8)
are presented -in Table 1. A few comments are needed. - In  the
first column there ‘are 'presented results -obtained by the
Feynman method. Note that coefficients of the weak- and strong
coupllng expansions for the Feynman polaron were found in our
paper %) up to the E 12 and AlO The coefficient Eé for - the
bulk polaron c01nc1des in the leading order (2-nd column) with
the Saitoh result which reproduces, in its turn, the ‘value
obtained many years ago.by Haga *°) who has used completely
different approach. In the same approximation the coefficient
AO for the bulk polaron coincides with the well-known result
by Feynman (and Saitoh). . :
‘ In the last column there:are presented few known exact
results. For the bulk polaron -the exact analytical expression
for Eé has been obtained by" Raseler16 , and the value of E3
has been computed . in our paper 17) (see also ref. 14). Coef-
ficients AO and AZ -were calculated by Miyake 18). For. the
surface polaron coefficients Ej and Ag - were calculated in
refs. 19, 20 and E3 - in ref. 21. :
Comparlng the approximate results with the exact ones we

notice that the  correction of order O(NO) substantially
- improves the approximations. Indeed, for the bulk polaron the

values of the coefficients Eé and AO , given in the 3-rd-

column, differ from the exact ones only by 1% and 0.6% |,

respect1vely Naturally, the more is the value. of N, the
better are our approximations. Note also that the first
correction leads to lower estimates, whereas the leading term
of the 1/N—expan51on provides an upper bound.

6. Conclusion : '
A couple of - conclu51on remarks are’ to the p01nt ‘We
established the connection of the -1/N-expansion with the"
variational methods for the particular model of the optical
Frohlich polaron. It can also. be shown  that an analogous -
connection between these methods exists in quantum mechanics

13



when the ground-state energy is computed forlafpérticle'in a
potential field ““). Besides, it is natural to- expect that

there is a certain relation between the "1/N-expansion and the

'diagrammatic technique which allows us to construct standard
perturbation -theory. That technique for a “polaron . was
developed in our paper 17). It caﬁ be shown that the leading
term - of the : 1/N-expansion is associated with a planar
approximation when electron propagators are expanded in
powers of products of momenta odeiffefent phonons.

- Note also that the 1/N-expansion ‘is applicable for
“estimating the energy of a bound- stgte of two or more
polarons. Earlier 23) we evaluated the ground state energy of
- a bipolaron and its effective mass within the Feynman method.
 In the same manner we estimated the energy of a bound state
of ‘n:polarons in a recent paper - a4). Appliéation of the

1/N-expansion can essentially improve those estimates. This -

"makes ‘possible a more detailed investigatiqn of the polaron
. contribution to a mechanism of HTSC. ’
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Appendix A

At small values of a the fdnction.EKE) is of .the form:
e = Zb(t) +a Zl(t) + az»Zé(t) + ..., o (A. 1D

and the integral equation (3.7b) is rewritten as follows:

i(f)= ('a)k? s e 5 -32s )1 fry1 (6.5, i0,5). (A.2)
Ko’ Sl oM R R . S

We ‘int,roducé the notation:

N . 2k-1 ® :
fRES, o8 ) = 2 — f -ifﬁ— n (l-cos xsp) , (A.3)
; 0 = m=1

14

from which it follows that
fl(s) =5,

3. .3 1 3 1 e 13
-7 Sz * _2(51+,52) * EISI'SZI ]_’

. 2,85.5,5_1 5 _ 1. o
f3(51 ,52,532 - 15 [Si‘ F Sz * 53 ” E(Sx Tsz). - Elsg—‘sz‘?,—

1 5

- 1 8
5(s ts_)

- Bls,=s, 1% s, 15,05 Gls, -5, 1%+ 35 45,4505
+ %|sl+sz—sg|b+ %|51-52+53|5} %l—s‘+sa+s;'51, etc. ‘ (A.%)
Substituting (A.1) into (A.2), we find Ek(f) and the weak

coupling expansion of the coefficient so(a) which is defined
by eq. (3.7a): '

)y =Yy n e
;O(a n%la Ln ;-
o .
E| = -2 Jds e 1"7%(s) = -27 ,
0
00" ; .
. , Y e - A ;
E, = - é fJ nldsge m f177%(s 31 f(s ,5,) = -m +8/3,
0 m=1
[04)
v 3 -5 .. }
£y = Jff nlldsme* Mof13 s )] [é fyts, .s,.5,) -
m= h ‘ B,
0 . : A
3

500500 = % (- 30 4 34 ygvzy

Let us consider:now the strong coupling regime. lThe solution
of the integral equation (3.7bJ is Suggested to be of the
tform: : o :

CNE)= LM M) explrat ) 1 saE, (A.B)

2T = gl ledy(F1ra®+0tlat) ), WE) = Yylirola®)l,

Substituting-(A.6) into ¢q.(3.7a) for £,(a), we get the

15



coefficients of the strong coupling expansion:

£ (@) =A@ + Ay + Blsa) Ay = 175 (A7
o o
Ty = 7Eggar eTz-2ne ) - 3gaf L(1+e 7T gyap 2= 11

Substitution of eq. (A.B) into eq. (3.7b) gives us:
. A S R
8y = ¥ T = -y = 116,

, 2.(E) = (¥ + 4 1n2 - 1)/16 . ’ (A.8)
Then it follows from egs. (A.7,8) that
Ao = -4 . Aa = - an "‘?./4 . . (A.g)
Appendix B

To compute the path integral (4.1) with the action (4.5, we
use the method of Sec. 3. Shifting the arguments in (4.3) s5;»
: si+b/2 , we represent functions ey and 2(s;,s;) as Fourier

J
series in the interval [-b/2, b2l :

2(s.,5.) = Y z(n,m exp[ian(nst+ms-)/b], (B.12
i’y i .J
eij = % o exp[iZnn(si—sj)/b],' |
o, = (ber) In* + (bew*™t . (B2

‘The expression for ¢, is given here in the limit & # o With
eq. (B.2) taken into account, the combination of functions etj
in eq. (4.5) can be written in the form:

o , 2. . B
;»(e23+e14—e13—e24) = m%kl Qnnkl exp[langms‘+ns{+@sa+Ls4),

where a lot of components of &, .., oOccurs to be equal to
zero. Here we present only the obtained expression tor the

‘action gl :

S, =T z(nmz(-n,-w + (3b/16) 1. o, 0 nl200,mZC-m,0) +
. mn mn
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+ 2z(0,m}z(0, -m) + z(mQO)z(»m,U) +Vz(m,0)z£O,fm)] +

+ (30/8) 3 op0, Lz(n.mzi-m, - v znomizl-n, -m}] -
mn ’ -

- (3br4) ), % [z{n,m)zt-m-n, 0l +fz(n,nUz(O,—n?nUJ. (B.3) -
mn : - D

The path integral (4.1) is replaced by a multifold integral.
over independent quanpities' z(n,m) = x(n,m)tiyin,ml. A
functions z(sL,s})lare real,. the follcwing relations take
place: '

x(n,m) = x(-n,-m), y(n,m} = - y(-n,-m})." = {(B.4)

It follows from (B.4) that independent are the guantities
x(0,0), x(0,m)} and y(0,m} at m>0, x(n,0 and v(n,0) at 0,
x(n,m) and y(n,m)} at 0, n # QL'It is easy to rewrite the
quadratic form .(B.3) only as a function of  1ndependent
variables,'uponiwhich integrations can be performed: '

. i .
my a m o
n’ o

Zy = expl-); lnC1- So0 o) - ¥ lnt1-24) - é%éﬁn(lu Joe2y -

1 3,02 Y,2 o a,q_ 3 . -
5 Inl1 5 bm?haa T b m?bo;{(l I b c;)J), (8.9
where o

_3 3 ,m-l 3, m
Ap = § bnzzahqm+n + Tﬁbnzbgngm,n(1+Zbgnah,n)’(1 00,0

_ (B.62
Note now that in the limit of zero témperatures b % w

summation is replaced by integration, with regard to eg.
(B.2): : o

’ 0 :
L Flo) % (b2m) [ dm Fl2/6(n®+1)1.
m.>lo; i 0 S L '

It is'easy to get, tor instancé,

17



0] .,
y, InC1- Iba o) = = (bren)? [fdmdn Infl- 3/b(m®+1)(n*+1)] 3
3% 0 '

. [s9]
s - (36472 ([ dn/(m®+1)1° = - 3b/16 . : (B.7
0

Similar calculations give us
. 0 ]
yin(l-24,) » (bian)jdmln[1—3/2(m?+4)]=b(¥TU/4 - 1. (B.8)
o O .
Other two terms in eg. (B.5) for 11 are of an-order of O(b°
at large b and do not contribute to the polaron energy. It
follows from egs. (B.7,8) that

Z, % exp [-b(47T0 - 19)/161.° ' (B.9)

‘Taking into account the notation . (4.3) and the
definition (4.2), we arrive at-the final result (4.6).
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