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1 • INTRODUCTION 

The problem of the ground state of the quantum spin Heisenberg 

antiferromagnet_ <AFM> is one of the fundamental questions in the 

many-body theory. Despite of the continuous interest in this prob

lem over about 60 years only a few exact results are available. 

There is the famous exact Bethe-Hulthen solution [1,2J for the one

dimensional problem yielt!_ing a power-law decay for the spin corre

lation in· the ground state and an energy per spin E/N:-ln2+1/4. 

According to Marshall's theorem t3,4J the ground state is a singl-et 
~ ' 

<total spin ~~:0) for N spins on a bipartite lattice with nearest-

neighbour <nn> antiferromagnetic interactions. However, as indi

cated by various small-cluster calculations ·<see e.g. t5-7J) this 

could be true even in systems with frustration as the triangular 

lattice. Though we are far from an exact ~mowledge of the ground 

state in 'three dimensions,our picture on the antiferromagnetic 

long-range'order <LRO> is well established by several approaches as 

perturbation theory [8J. 'spin-wave, theory [9J or variational me

thods t10J. In tlo'IO dimensions the problem seems to be most com

plicated. On the one hand there are serious hints on LRO in the 

ground state t11-16J but according to Mermin and Wagner t17J no 

spontaneous magnetization is possible for finite temperatures. 

However, Mermin's and Wagner's theorem doesn't exclude an infi'nite 

zero-field susceptibility at finite temperatures suggesting that . . 

the two-dimensional (2d> Heisenberg magnet could be not far from 
LRO even for T~O. 

It is just this 2d quantum AFM which attracted a lot of interest 

in the last three years in connection with the high-Tc superconduc

ting materials. The Cu spin in the Cu-0 planes being responsible 

for the superconduction is 1/2, the in-plane exchange is strong 

(about 10~ in La2cuo4 '[18J> and exceeds the excha_nge perpendicular 

to the plane by much. The anisotropy in the spin space is small. 

For example the·widely e>:ploited La2Cu04 shows antiferromagnetic 

LRO in the undoped case with a Neel.temperature up to about 300K 

[ 19J. For the stability of LRO for TojoO the .<weak) off-plane 

exchange coupling is responsible which is evident by neutron scat

tering .showing. a three-dimensi oal magnetic ordering [20J. Doping 

the material by Ba ~r Ca by about 1Y.-2Y. removes magnetic LRO [21J 

i ndi catfng a great sensi bi 1i ty of LRO to defects which should be 

typical for quasi-2d systems.- A similar magnetic behaviour is 



observed also YBaCuO [22J, BiSrCaYCuO [23J and TlBaCaYCuO [24J. The 

magnetic state in the weakly doped <not yet supercon~ucting> regime 

is characterized by a well-pronounced 2d antiferromagnetic short

range order <SRO> but no LRO and 1-1as called by Anderson [25,26) 

resonating-val enC:e-bond <RVB> state. This notation .-1as taken from 

chemical bonding and was first introduced in magnetism for the 

triangular-lattice AFM [27-29J. At present there is a broad dis

cussion of RVB states in connection 1-1ith 2d quant"um antiferromagne

tism in materials with high-Tc SURerconduction [30-403. 

In ·the present paper we discuss the possibility of realization of 

!i>hort-range correlated RVB states in spin clusters up to 16 spins 

on s!:Juare lattice. We compare results obtained by e>:act numerical 

diagonalization with results for RVB.trial wave functions. It is 

known that the short-range correlated RVB state deviates ·signifi

cantly from the exact ground state in the pure square-lattice AFM. 
Taking the extrapolated values from [11J fo~ Eexact and from [35J 

and [3BJ for ERVB one finds for N -~ oo ERVB/Eexact~ 0.90 ••• 0.92. 

Therefore we have to look for mechanisms introduced by doping which 

could support a short-range RVB state. In particular, we discuss 

different types of disorder, anisotropy, frustration as well as 

holes which can modify locally the exchange coupling. 

2. EXACT DIAGONALISATION PROCEDURE AND GENERAL FEATURES OF RVB 

STATES 

2.1 Exact diagonalization 

We consider the isotropic Heisenberg Hamiltonian 

H = "\::--I· .s.sj L 1 J--1-

Hj 

(1) 

with spin 1/2. For the ordinary AFM we assume Iij=1 for i,j being 

nearest neighbours and Iij=O, else. In order to construct the 

ground state wave function I J'f' 
0

> we can expand it to any complete 

set If~> in the spin space 

I 't 0 > = Len I-f n>. <2> 
. n 

Ussually for the 1fn> the direct product of local eigenstates of 

Siz is used 

If n> = 1+>1->1-> •••• I+>. (3) 
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The number of the tfn> i~ 2N and they represent the set of all 

Ising eigenstates. To find the. coefficients en one has to diagona

lize the matri>: Hnm = <fniHifm>. Because the size of the matrix 

increases exponentially the problem quickly exceeds the capacity of 

computers. By use of conservation laws and symmetries [1l,4iJ the 

size of Hnm can be reduced drastically. In particular, one can tal:·e 
? . • 

advantage of the commutations [H,SzJ-=0 and [H,~-J-=0~ where 

?=Zi~i represents the total spin. Using all other symmetries 

Poilblanc [41J could calculate recently all eigenvalues of 10 spins 

on square lattice with periodical boundary conditions. analytically. 

However, if there are defects ·or disorder in the system <e.g in 
high-Tc materials by doping> no symmetries can be exploited and the 

problem needs much more computational effort. 

To calculate the ground state it is not necessary to diagonalize 

the ~•hole matri>: and the problem further simplifies. Very efficient 

Lanczos algorithms are mainly used for this task. In the present 

paper we used a modified version proposed·by Gagliano et al. [40J. 

We start 1-1i th an initial vector I cb
0
> which must have a non

vanishing overlap to the exact ground state. In the next step a ne~o-1 

state lebt> is constructed by applying the Hamiltonian H on the 

initial state lm
0

> 

lm1> = b (H leb0 > - a lm0 > > , 

where a = <eb
0

lHieb
0
> and b = · <<eb

0
1 

normalize lm 1> and to orthogonalize 

the two-by-two matrix of H in the 

eigenstate 

~~'~) 

1di'0 > = c 0 lm0 > + c 1 lm 1> 

(4) 

H21eb > - a 2 >-112 are chosen to 
0 

leb
0

> and leb 1>. By diagonalizing 

basis lm0 > , lm!> an improved 

(5) 

with lower energy as the initial state leb0 > is obtained. ·Repeating 
,..- . 

the procedure wi.th I lll
0

> as the new i ni ti al state the ground state 

is approached after a few steps. This method is quite general and 

can· be used for different magnetic models as well as other quantum 

mechanical systems (e.g. Hubbard model [43], t-J model [44J), but 

is restricted to small systems. 

2.2 The RVB scheme 

An alternative-way to construct the ground state wave function is 

the concept of RVB trial wave functions based in some sense on 
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physical intuition. In their initial pape:s Anderson and Fazekas 

[27-29l tried to construct the magnetic ground state for the trian

gular lattice. They claimed that this ground state in analogy to 

the one-dimensional system is characterized by a well-pronounced 

SRO but no LRO (spin liquid). For a system of N spins <N even) a 

set of pair-bond states <PBS> 1{.2" is constructed where tfD(> is 

any direct product of singlet states of paired spins i,j 

: 1' > 
(I(. 

with 

li1j1>li2j2> ••• liN/2jN/2~' 

lij) ""f<li+)lj-) li-)lj+)) - - lji) 

(6) 

(7) 

being a singlet state of the spin pair (i,jl, i.e. (g_i +§.j )2 I i j)=O. 

Every tf.._> represents a certain dimer covering of the system. 

'order to construct a t.ri al wave function the PBS are. superposed 

In 

to 

a RVB state 

I 't RVB> = L cg{ I f.,{_> . 
.z 

(8) 

The PBS have the following general features: 

i. The PBS are singlet eigenfunctions of the total spin g_=L'i§.i, 

i.e. Q2 t-f.<.> = 0. Therefore :"'f'Rvs> is a singlet state, too. 

ii. The PBS are nonorthogonal 

iii. 

i v. 

•:-(' I .( -,. = 2L-N 

.<. "" 

(9) 

with L being the number of loops in the loop covering 

generated by the superposition of the two dimer coverings 

coresponding to 1~.<.> and lfp> [32,33]. 

The total number of PBS is ZpBs=<N-1>! !. The total number of 

independent singlet states is Zs=o-=<N!)/{(N/2)!(N/2+ll!} [45J, 

i.e. ZpasiZs-o_._:_. <N/2elN for large·N. The PBS are linearly 

dependent. 

The PBS obey the relations [29] 

lij)lkl> + lik>ljl) + lil>ljk~- 0 (lOa> 

demonstrating the linear dependence of the PBS. The above 

relation can be expressed grafically by 
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--j xj 
k 1 

<lOb) 

k --1 
+ ::1 ( + 0 . 

Spin operators act on a PBS as follows [27J: 

< -{'oll §.i I {z_ > ., 0 <lla> 

(1/4- ~~~j)lij) = lij) (11b) 

(1/4- l;ijQkllij)lkl> = (1/2)1jk)lli). ( llc) 

In any PBS the spin correlation of two paired ·spins tal:es its 

maximum value of <-3/4). 

vi. The selection of the independent PBS can be done by Rumer dia

grams [46l as follows: All spins are numbered and the numbers 

are written in a fi>:ed sequence on a circumference of a 

circle (cf. fig.ll. The pairing of two spins is represen.ted by 

a 1 i ne between the corresponding numbers. Any Rumer diagram 

with crossing lines can be expressed step by step via relation 

<10) by non-crossing diagrams, yielding finally a set of only 

non-crossing diagrams representing the set of independent PBS. 

vii. Labelling in a system of two sublattices A and Ball A-sites 

with even numbers and all B-sites with odd numbers it becomes 

evident from fig.lb, that no intrasublattice pairing has to be 

taken into account. 

viii. The number of '1 i nearly independent PBS is equal to the number 

of independent singlet states [47l, i.e. the linearely inde

pendent PBS are complete in the S=O subspace. 

ix. The number of nn PBS of the square lattice is ZnnPBS ~ 

(1.792>N [48l and for the square ladder ZnnPBS ~ 
o.724*(1.272)N. The energy E4 =<-fol1Hifol> per bond of ann PBS 

for the Heisenberg AFM on the square lattice is (1/4) (-3/4)1 

and on the square ladder is (1/3) <-3/4)1 and increases if 

non-nearest-neighbour pairing is allowed. This is slightly 

larger than the energy of the Neel state for the square· lat

tice and equal to the Neel energy for the square ladder. 

Because the set of the PBS is complete in the S~O subspace the RVB 

scheme allows (as other basis sets like e.g. the Ising eigenstates 

(3l,too), in principle, to construct any S=O eigenstate exactly. 
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This can be done really for small systems by computer. However, the 

use of PBS as basis states has an advantage, which can be very 

useful for approximative eigenstates for larger systems: Every 

basis state corresponds to a dimer covering of the system, i.e. to 

a graph with a .certain physical meaning. For the construction of 

any tri.al· wave function a subset of physically relevant PBS can be 
selected and/or a cer.tain ansatz for the coefficients coe can be 

chosen [32,33,35,40) • The choice of the relevant PBS as well as 

the ansatz for the coefficients dep_~nd on the physical ingredients 

of the system and are an object of physical intuition as well as 

optimization of ERVB({~}). Since in any PBS the spin correlation 

of paired spins .is strong, for a short-range correlated state the 

restriction to pairing of neighboured spins is reasonable. Taking 

into account successively the pairing of spins over longer distan-

} 

Heisenberg AFM in doped high-Tc materials could be: anisotropy, 

disorder, frustration and, particularly, the direct influence of 

holes. We discuss the role of all of them by comparing the exact 

energy Ee>: act with the energy ERVB of the trial RVB state for spin 

clusters of 3x4 spins with,open boundary conditions (figures 2-4, 

6-9> as well as 4x4 spins (fig.5> with periodic boundary conditions 

2. .;f 

.·· .. · 

ces the magnetic carrel at ion 1 ength increases [ 35J. •1 \\ _ _ _ \ \If. 

3. RESULTS FOR FINITE SQUARE-LATTICE SYSTEMS 

We investigte in this section short-range correlated nn RVB states 

I 't Rve> = L co{. 1-f;:"> 
rL 

<12) 

with ·1 f~nn> being a PBS with nn pairing, only. As standard ansatz 

for the coefficients often c~=1 is used t32,33J. This ansatz is 

good in periodic systems, though even there an inequivalence of the 

nn PBS exists [30J. Additionally we consider optimized coefficients 

c"'- obtained by minimizing 

ERVB = •:'tRveiHI"f'RvB>I<ifRVB 1"fRVB> = <.L c.,(.cf}H«.~>I<L_ ~ctl8,cp.> 
. oe.,p ot,p 

fi = ,.__,nn 1 H 1...,nn "> • 
c(~ cl<(. lp • 0 

S .. .-Jnn 1 ,nn-,. "r -,"' 'll .. 
( 13>" 

As discussed in the introduction the short-range correlated. RVB 

state differs in its energy significantly from the long-range 

correlated ground state of the pure square l~ttice. However, as it 

is evident for example from the phase diagram of LaCuO due to 

doping a short-range correlated magnetic state is established being 

according to Anderson [25,26J a RVB state. Therefore we have to 

loci: for possible mechanisms to favour a short-range correlated RVB 

state. Possible deviations from the ideal isotropic square lattice 
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f!9.d .. 1. Illustration of two sections of different Rumer diagrams 

with (b) and without (a) crossing bonds (cf.te~t). 

on the square lattice. The open boundary conditions for the 3x4 

cluster are chosen to avoid artificial frustration. 

In [20J for LaCuO a weak Ising anisotropy along the orthorombic 

c-axis is suggested. In principle, .. any anisotropy should more or 

less rule out a singlet RVB state, because the commutation rule 

CH,g2 J_=O doesn't hold for an anisotropic Hamiltonian and the 

ground state cannot be a pure singlet. Results are presented in 

fig.2. Obviously, in the limit of strong easy-a>:is anisotropy 

<Ising> the singlet RVB state is far from being a good trial state. 

In the case of easy-plane anisotropy <xy> the effect is similar but 

less drastic. 

of about 301. 

However, it becomes evident that small anisotropies 

do not rule out the RVB ansatz as trial wave 

function. Next we discuss disorder of three different kinds: random 

anisotropy, random field and random exchange. In a disordered 

system the standard ansatz with equal-weight coefficients is expec

ted to be bad and the version with optimized coefficients c has to 
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fJ.g_,_g_;_ Er=ERVB/Eexact in dependence on anisotropy for a 3x4 

cl11ster. The anisotropy parameters~ and}-< are introduced in the 

Hamiltonian by H=zijlijr ?.sizSj 2 +,P-<S1xsjx+Siysjy>J. /,=1, f!=1 

correspond to the isotropic Heisenberg model , f. =1, )' =0 to the 

Ising model and '1-=0, t=1 to the xy model. 

!~J~ 
0.0 o.u· o . .-

"'-

o.o o.:ts . ., 
l>-

fig.3: Er=ERVB/Eexact in dependence on random field (a) and random 

anisotropy (b) for a 3x4 cluster. Random field is introduced by 

H=2ijlij9.i9.F.rihi?._iz with <hi>=O and random anisotropy by 

H=zijlijrsizsjz+ Jih<Sb;Sjx+Siysjy>J with <)i>"'l. The strength of 

disorder f.':,_ is determined by L~=<hi2>112 and L':,.=< ( fi-1> 2 >112 , 

respectively.· 
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fig.4:_ Er=ERvB/Eexact in dependence on random exchange for two 

different realizations of randomness on a 3x4 cluster. The strength 

of disorder· is f.~=<<Iij-<Iij>> 2> 112 with <Iij>=1 and i,j being 

nearest neighbours. The solid.lines correpond to the RVB state with 

optimized coefficients and the dashed lines to the RVB state with 

equal coefficients. 

be preferred. Any disorder should decrease long-range correlations 

and, in principle, a stabilization of the RVB state by disorder 

could be possible. 

violate tH,?._2 J_=O 

However, random field or random anisotropy 

and forbid pure singlet states. Results are 

shown in fig.3. Evidently, weak random fields or anisotropies do 

not rule out the RVB ansatz, but don't support it. More relevant 

with respect to a stabilization of the RVB state is exchange disor

der, ~1hich conserves the full rotational symmetry of .the Heisenberg 
~ 

Hamiltonian but acts against LRO. Fig.4 shows results for two 

different realizations of random exchange parameter_s. Exchange 

disorder, indeed, can favour the RVB state. Most drastic is the 

influence of frustration shown in fig.5. Frustration in form of 

next-nearest neighbour (nnn) antiferromagnetic bonds was estimated 
1i n [ 49J to be of the order I nnn/I nn "--5 ••• 8% in undoped La2Cu04 and 

should be increased by doping [50-52J. Homogeneous frustrati-on of 

about Innn/Inn=0.4 brings the nn RVB state with equal-weight 

coefficients very close to the exact eigenstate. <We note that 

Innn/Inn"' 0.4 is just the value for which the magnetic LRO in the 

ground state is expected to vanish [53J). For the considered perio

dic 4x4·cluster the RVB energy differs only by 0.3% and the overlap 

<AtRva•Atexact> is 99.6%. Combination of both frustration and 

exchange disorder can additionally favour the RVB ansatz [40]. 

Finally we consider the influence of holes.directly. As discussed 

by Emery t54J and supported by photoemission experiments [55J the 
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fi.g_.6:_ Er=ERVB/Eexac:t versus the energy of the spin system 

for all 41 different two-hole configurati~ns on a 3>:4 i:luster 

1hole=-0.5. 

Ee>:act 
with 

holes doped in the Cu-0 planes mainly occupy the . oxygen sites. 

Because the exchange coupling between the Cu spins is dominated by 

a superexchange mechanism the holes modify locally the bonds. Even 

a local change from an antiferromagnetic to a strong ferromagnetic 

bond ·. due' to a··hol e ·is suggested [56J. Here we discuss one and two 

/holes on a 3x4 cluster. The antiferromagnetic bonds not modified by 
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f~g.B: Er=ERVB/Eexact in dependence on !hole for the same 

configurations as in fig.7. 

hole 

a hole are as usual assumed to Iij=l and the bonds modified by· a 

hole are Iij"'_Ihole where !hole can vary from antiferromagnetic to 

ferromagnetic exchange. In the one-hole case we put the hole in the 

center of the cluster (cf. fig.7)~ In the case of two holes there 

are all together 41 different arrangements of holes. In fig.6•for 

these 41 two-hole configurations the ratio Er = ~v81Eexact is 
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fig,_2I Spin-spin correlation <"f-1§.1§.-jlAf> for the ordinary AFM em a 

3x4 cluster and for. the two-hole configuration C (cf. fig.7) \"lith 

Ihole=-0.2. Spin with number 1 sits at the corner of the cluster. 

a: AFM, exact; b: AFM, RVB; c: two holes, exact; d: two holes, RVB. 

drawn versus the energy of the .configuration Eexact for Ihole=-0.5. 

Obviously, there is a certain "correlation" between Er and Eexact• 

i.e. the hole configurations 1o-1ith low energies favour the RVB 

state. Since the lo\"1-energy configurations are just. realized in the 

system \"le study the three ones with lowest energy (cf. fig.8) in 

more detail. The energy of the configuration versus !hole is shown 

in fig.7 and ERVB/Eexact versus Ihole in fig.8. The realization of 

a RVB state is particularly supported by holes if the hole modifies 

the bond to a weak ferromagnetic one. For stronger ferromagnetic 

bonds the singlet pairing is not sufficient and triplet pairing has 

to be taken into account. In the last figure we show the spin

correlation function calculated with the exact eigenstate as well 

as the RVB state for the pure AFM and the doped AFM. The slow decay 

of the e>:act spin correlation in comparison 1o-1ith the fast decay of 

the RVB result for the pure AFM is evident. Due to holes the decay 

becomes steeper and the RVB"result is close to. the exact one. In 

both cases the strong antiferromagnetic SRO is well described by 

/the RVB state. 
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4·. SU~lMARY 

The resonating-valence bond 
/ 

scheme is a suitable method to 

construct the ground state of the quantum spin Heisenberg AFM .in 

1 o\"1 dimensions. The RVB state is a superposition of basis states 

which correspond to dimer coverings of the system. Hence the choice 

of relevant basis states. to construct a trial wave functions can be 

based on the physical ingredients of the considered spin system. 

For short range-correlated states as observed in slightly doped 

high-Tc superconducting materials the restriction to nn dimer 

coverings is reasonable. Such a nn RVB state, however, significant

ly deviates from the real ground state for the pure square lattice 

AFM. Therefore we investigated the influence of various deviations 

from the pure Heisenberg AFM which could be present in the slightly 

doped materials. I>Je found that exchange disorder and, particularly, 

frustration can stabilize a short-range correl~ted RVB state • 

Furthermore we considered' the influence of holes directly, assuming 

that holes locally modify the exchange bonds. Also in this case we 

obtained. a possible stabilization of the RVB state due to doping • 
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