


1. INTRODUCTION ) o

The 'problem of. the ground state of the quantum spin Heisenberg
antiferromagnet (AFM) .is one of the fundamental questions in the
many-body theory. Despite of the cohtihuous interest in-this - prob-
lem over  about &40 years only a few exect regults are -available.
There is the famous exact Bethe—Hulthen solution [1,2] for the one—
dimenaional problem yielqing a power-law decay for the spin corre-~

‘lation .in' .the ground state and an energy per 5piﬁ E/N=~1n2+1/4.
According to Harshall'sltheoreﬁ £3,43 the ground state . is a singlet
(total spin‘§;=0)‘for N spins on. a bipartite latfice,with_neare§t4
neighbour -(nn) - antiferromagnetic interactions. However, as indi-
cated ' by wvarious small-cluster calculations'(see e.g. [53~71) tﬁis

‘could be true even in systems with frustration as the triangular
lattice. Though we are far from an exact knowledge of the -ground
state in three dimensions,our pictire on the antiferromagnetic
long-range order (LRD) is well established by several approaches as
perturbation theory [B]; ‘spin-wave theory [9] or variational - me-
thods [fOJ. In two dimensions the problem seems to be most ° com—.
plicafed. ‘bn ‘the one hand there are serious hints on LRO in the
gFound sgate [11 ~16] but accoerding to Mermin and Nagner [17) no
5pontaneeu5"magnetxzatnon is po;s:ble for finite temperatures.

. However, ‘Mermin’s and Wagner's theorem doesn’t exclude an.infinite
zero~fie1d susceptibility at finite temperatures 5uggest1ng that
the two-dimensional (2d) Heisenberg magnet could be not far from
LRO even for T#0. T '

It is justkthis 2d quantum AFM which attracted a lot of interest
in the last three years ip connection with the high—Tc superconduc—
ting materials. . The Cu spin in the Cu-0 planes being responsible
for  the superconductxon is 1/2, the in-plane exchange is strong

- (about 103F in LasCul, '[181) and exceeds the exchange perpendicul ar
to. the plane by much. The anisctropy in the spin space is small.
For eﬁamplee the~wideiy explbited LayCul, shows antiferromagnetic
LRO  in the undoped case withva Neel.temperature ﬁp to ' about SOCK
£191. For the 'stability of 4LRD for TH#0 the {weak) off-plane
exchange coupling is responsible whxch is evxdent by neutron scat-
tering .showing a three—dxmens:oal magnetic ordering [20]. Doping
the material by Ra or Ca by ‘about 12—24 removes magnetxc LRO [213
indicating a great sensxbxlxty of LRD to defects whxch should  be
typical for quasi-2d systems. A similar magnetic behaviour  is

Bbz.czz-csmis;n RHCTHTYT.
AR2PHIK ULCASA0BALEY




. observed 5150 YBaCuD [223, BiSrCaYCuD £23]1 and T1BaCaYCuO [241.: The

magnetié state in the wéakly doped (not yet superconducting) regimg
is characterized by a well—prbnounted 2d antiferrnmagnetic short~
rangev'ordef {SRO) but no LRO and was called by Anderson [25,26]
resbnating—Valenée—bondv (RVE) state.  This notation was taken from
chemical bbnding ’andkwas first introduced in magnetism. for the
triangular—léttice AFM [27-291. At present there is a broad dis-—
cuésion‘bf,RVB atates in connection with 2d guantum antiferromagne-—
" tism in_ materials with high—Tc supe}conductinn L30-40].
In the present paper we discuss the possibility of realization of
short-range correlated RVE states in spin clusters up to 16 espins
"oh sguare lattice. We compare results obtained by exact numéricél
diagonalization with results for RVB trial wave functions. It is
knowﬁ that the short-range correlated RVR state deviates 'signifi-

cahtly from the exact ground state in the pure square-lattice AFM.
Taking -the extrapolated values from [11]1 for E  and from ([35]

exact ~ 0:90...0.92.

Therefore we have to look for mechanisms introduced by doping which

exac
and [38]1 for Egyp one finds for N'-» oo Egyp/E

could support a short-range RVB state. In particular, we discuss

different types of disorder,  anisotropy,  frustration as well as

holes which can modify 1ocally the exchange coupling.

2. EXACT DIAGONALISATION PROCEDURE AND BENERAL FEATURES OF RVB

STATES

" 2.1 Enact diagonalization

We consider the isotropic Heisenberg Hamiltonian

W= > 15588 . , ()

i)

with. spin 1/2. For the ordinary AFM we assume Iij=1 for i,i being
nearest neighbours and Iij=0’ else. In order to construct the
ground state wave function !’f°> we can expand it to -any  complete

Eet,!fa> in the spin space

o = :z:cn tof - ' L@

n -

Ussually for the ‘fn} the direct product of local ejgénstatéé ’ofr

=T is used

Hf > = e : L

-

ey

The number of the 1f » i=s 2N and they represent the set of all
Ising eigehstates. To find the coefficients cn'one has tc diagona—-

lize the matrix H - = <f iHIf > Because the size of the matrix

“increases exponentially the problem quickly exceeds the tapacity‘nf

cnmputérs. By use of conservation laws ahd symmetries [11,41] the
size of H,, can be reduced drastically. In particular, one can take
advantage of the commutatiens ([H,S,])_=0 "and [H,@?J_ﬁo; ‘where
5;2354 represents the total spin. Using all other symmetries
Poilblanc [41] could calculate recently all eigenvalues of 10 spihs
on square lattice with periodical boundary conditions analytically.
However, if  there are defects or disorder in the system (e.g in
high-T_ materials by doping) no aymmetries can be exploited and the
problem needs much more computational effort. '

To calculate the ground state it is not necessary to diagonalize
the whole matrix and the problem further simplifies. Very efficient
Lanczos. algorithms are mainly used for this task. In the present
paper we used & mudified version pfoposed‘by Gagliano et al. [40]. -
We start <with an initial vector lb&,> which must have a npon-. -
vanishing overlap to the exact ground state. In the next step a new
state l¢1$ is constructed by applying the Hamiltonian H on- thé
initial state 1o >
1by> = b (H tb >~ a 16> ) , - R T
where a = <o iHid > and b = (<651 H216,> — a2y " 1/2 are chosen to
normalize ;m1} and to orthogonalize I¢a> and )¢1>. By diagonalizing
the two-by—-two matrix of H in the basis 300} . iéi}~an Kimbroved
eigenstate
18> = cg 16>+ ©y 1oy e o &)
with lower energy as the initial state 1o > is obtained. Repeating
the procedure with !$;>'a5 the new initial state the ground . .state
is approached after a few steps.  This method is quite general -and
can’ be used;for’different’magnetic-models as well as‘nthér quantum
mechanical 5ystem5 {e.g.. Hubbard model [431,  t-J model [44j), but

is restricted.tn small systema.

2.2 The RVB scheme
An alternative -way to construct. the ground state wave function is

the concept of RVB trial wave functions based in some 'sense . on.



physxcal intui tion. In their initial papers Anderson'and Fazekas
£27-291 tr1ed to construct the magnetic ground state for the trian—
gular lattice. They claimed that this ground state in analogy to
the one—dimensionel syste@ is characterized by a well-pronounced
SRD but no LRO (= epin liquid). For a system of M spins (N even) a
’ set o©of pair-bond states (PES) %f;? is constructed where :f*> ig

any direct product of singlet states of paired spins i,j

=‘faL> = ;i151>=i2j2>"'HN/25N/2> ¢ (&)
.
with
113> = L (1ie213=> = 1i=31j+3) = — 1ji> , (7)
2
being & singlet state of the spin ﬁair {i,3), i.e. (5i+§j 7,13'—0.
Every :{;} represents a certain dimer covering of the system. 1In

order to construct a trial wave function the PES are superposed to
a RVB state

’TRVB’ = ZC > co : (8)
A

The PBS have the following general features-
i. The PBS are singlet e1genfunct10ns of the total spin S=£ S;
i.e. S‘l{ > = 0., Therefore 'AfRVB> is a =inglet state, too.

ii. The PRS are nonorthogonal
. L-M
< H > = 2 (9
AR ’

with‘ L being the number of 1loops in the 1lcocop covering
generated by the superpnsiiinn of the two dimer coverings
coresponding to l{;) and pr> £32,331.
iii. The total number of PBS is Ippg=(N-1)1t!,
1ndependent singlet states is Zg.q=(N!)Y/{(N/2) 1IN/2+1) ) [451,

The total number of

i.e. ZPBSIZSEO/\'(N/ZE)N for large M. The PBS are linearly:

dependent.
iv.  The PBS obey the relations [29]

P13¥Ik1> + 1ik>151> + 1il21ik> = O (10a)

: demdnstrating the linear dependence of the PRS5. The - above

reiation can be expressed grafically by

."jv 4.

g

ER W

i =—3 i 3 i 3 . -
+ I l + >< =0. - (10b)
kb ——1 k 1 k 1 :
V. Spin operators act on a PBS as follows [273:
{"(A‘Ei'ﬁ} = 0 . (11a‘)
(1/4 - 581> = 1igr (11b)
(1/4 - S Sk PLi»ikl> = (1/2)15k>11i> . {11c)

In anykPBS the =pin correlation of two paired =pins takes its
maximum value of (~3/4).

vi. The selection of the independent PBS can be done by Rumer dia-
grams (461 as follows: All spins are numbered and the numbers
are written in a fixed sequence on a circumference of a
circle (cf. fig.1). The pairing‘of two spins is represented by
a line between the corresponding numbers. "Any Rumer diagram
with erossing lines can be expressed step by step via relation
(10) by non-crossing diagrams, vyielding finally a set of only
non-crossing diagrams representing the set of independent PES.

vii. Labelling in a system of two sublattices A and B all A-sites
with even numbers and all B-sites with. odd numbers it becomes
evident from fig.1ib, that no‘intrasublettice pairing has to be
taken into account.” .

viii.The number of linearly independeﬁt PRS is equal to‘the:‘number
of‘independeht singlet states [47], i.e. -the linearely inde—

pendent PBS are complete in the S=0 subspace.

.
b4
.

The number of nn PES of the square lattice is znnPﬁS ~
(1.792)N  [481  and for the square ladder Z_ ppg ~
0.724%(1.272)M. The energy E =<f,IHi{, > per bond of a nn PBS
for the Heisenberg AFM on the square lattice is (1/4)(-3/4)1
and on‘the‘square ladder is (1/3 )(—3/4)1 and increases if
nun—nearest—nefghbouf pairing is allowed. "This 'is slightly
larger than the energy of the Neel state for the square' lat-
tice and equal to the Neel energy fnr the square ladder.
Because the set of the PBS is complete 1n the S=0 subspace the RVB
scheme allows (as other basis sets lxke e.g. the Isingjeigenstates

(3 ,too), in principle, to construct any S=0 eigenstate exactly.



This can be done really for small systems by computer. However, the
use vbf PES. as basis states has an advantage, which can be very
useful for approximative eigenstates for iarger sys{ems: Every
basis state correspond§ to a dimeE covering of the system, i.e. to
a graph with,é,certain'physical meaning. For the construc@ion of
any trial- wave function a subset of physically relevant PES can be
selected and/or a certain ansatz for the coefficients ¢ . can be
Chnsén [32,33,35,46] . The choice of the relevant PES as well as
the ansatz for the coefficients depgﬁd.on the physical ingredients
of the system and are an cbject of physical intuition as well as
 pptimization of ERVB((EL})' Since in any PBS the spin correlation
of paired spins is strong, for a short-range correlated state the
‘ restriction te pairing of neighboured =pins is teasnnabie. Taking
- into accnunt_successively the pairing of spins over longer distan—

ces the magnetic correlation length increases {35].

3. RESULTS FOR FINITE SOQUARE-LATTICE SYSTEMS

We investigte in this sectinﬁ short-range correlated nn RVB states

- ’ nny
N qup” ’;“* £ > (12)

with '} {:“rr being & PRS with nn pairing, only. As standard ansatz
for . the coefficients often ¢, =1 is used [32,33). This ansatz is
good in periodic systems, though even there an inequivalence of the
nn PRS exists [30]. Additionally we consider optimized coefficients

€, obtained by minimizing

E, = MNoun B nun>7<teuRi®oup> = (£ c e H,_)1/(¥ c c S, )
RVE rve'HiTRyp rvB''RVB (r. 3 =
! Ly RPAPT S wpAp

H = q’:”m:{g"} ;

= nn n =y
1S Sxp o x(';}. (13

As discussed in the introduction the short-range correlated RVRB
.state differs in its energy significantly from the long-range
cofrelated ground state of the pure square lé;tice. However, as it
.is evident for example from the phase diagram of LaCuD due +to
doping & short-range correlated magnetic state is established being
_according to Anderson [25,26] a RVB state. Therefore we have to
~look for poséiblé mechanisms to favour a short-range correl ated RVB

State.hPossible deviations from the ideal isotropic square lattice

-

Heisenberg AFM in doped high-T_ materials cduld be: anisotropy,
disorder, frustration and,  particularly,. the direct influence of -
holes. We discuss the role of all of them by comparing the exact
energy Eexact with the energy ERVB of the trial RVQ state for spin
clusters of 3x4 spins Qith'open boundary conditions (figures 2-4,

6-9) as well as 4x4 spins (fig.5) with periodic bouﬁdary conditions

Fig.l: Illustration of two sections of different Rumer diagrams

with (b) and without (a) creossing bonds (cf.text).

on the square lattice. The open boundary conditions for the 3xz4
cluster are chosen to avoid artificial frustration. 7

In [20]) for LaCull a weak fsing anisotropy along the orthorombic
c~axis is suggested. In principle, .any anisotropy should more or
less rule out a singlet RVEB state, because the -commutation rule
[H,§2]_=0 doesn‘t hold for an anisotropié Hamiltonian and the
ground state cannot be a pure singlet.k Results are presented in
fig.2. Obviously, in +the limit nysfrong ‘easy-axis anisotropy
({Ising) the singlet RVE state is far from beiné a good trial state.
In the case of easy—plane anisotropy (xy) thé effect is similar but
less drastic. However, it becomes evident that sball anisotropies
of about ZOZ .-do not rule out the RVB ansatz  as trfal, wave
function. Next we discuss disorder of three different kinds: random
anisotropy, random field and random exchange. 1In *~a disordered
system the standard ansatz with equal-weight Eoefficients,is expec—~

ted to be bad and the version with optimized coefficients ¢  has to .
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Fig.2: Er=ERVB/EexaCt in dependence on anisotropy for a Ixd

cluster. The anisotropy parameters A and/A are introduced in  the
Hamiltonian by H=ZF; T ;0 A8, 6, + M(S;,8; +8; 8;)1.  A=l, M=l
correspond to the isotropic Heisenberg model, A=1, /4=0 to the

Ising model and ?=0,/1=1 to the xy model.
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Fig,3: E =Ep,p/E in dependence on .random field (a) and random

eyact
anisotropy (b) for a 3x8 cluster. Random field is introduced by

H= z;JIXJSISJ F;hi8;z  with  <h;>=0 and random

H=F; § 15508525524 M }B(S S +S:ySJy)] with €f1>=!. The strength of
disorder /) is determined by £x=¢h; 2172 and. =<l pg-1 22,

respectively.

" anisotropy by
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Fig.4:
different realizations of randomness on a 3x4 cluster. The strength
of disorder is ;5=q(1ij—<1ij>)2>1’2 with <Ij;>=1 and i,j being

nearest neighbours. The solid.lines correpond to the RVB state with

Er=ERVB/Eexact in deﬁendence on random exchange - for two

optimized coefficients and the dashed lines to the RVB state with
equal coefficients.

be preferred: Any disorder should decrease long-range correlations
and, in principle, a stabilization of the RVB state by "disorder
could be possible. However, random field or random anisotropy
violate [H,§23_=0 and forbid pure singlet states. Results are
chown in fig.3. Evidently, weak random fields or anisotropies do
not rule out the RVB ansatz, but don’'t support it. More relevanf
with respect to a stabilization of the RVB state is exchange disor-—
der, which conifrves the full rotational symmetry of the Heisenberg
Hamiltonian but acts against LRO. Fig.4 shows results for two
different realizations of random  exchange parameteré. Exchange
disorder, indeed, can favour the RVB state. Most drastic is the
influence of frustration shown in fig.S. Frustfation in form of
next-nearest neighbour (nnn) antiferromagnetic bonds was estimated
in [493 to be of the order I, /I . ‘
should be increased by doping {50-523. Homogeneous frustration of
about Innn/16n=0'4 brings the nn RVB state with ' eqgual-weight
coefficients very. close to the exact exgenstate. (We - note that
Lonn/ Ion ~ 0.4 is Just the value for whxch the magnetxc LRO in the
ground state is expected to vanish [53]). For the considered perio—

~%5...8% in undoped LasCu0, and

dic 4x4 -cluster the RVRE energy differs only by 0.3% and the overlap

<A*RVB‘A+exact> is 99.6%. Combination of both. frustration - and

exchange disorder can additionally favour the RVB ansatz [401.
Fxnally we consider the influence of holes .directly. “As discussed

by Emery [54] and supported by photoemission experiments: [55] ‘the.

v
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Fiq.%5: E_=Epyp/E ¢ and overlap MNrypNexact” in dependence on

exac
frustration introduced by next nearest neighbour antiferromagnetic

exchange for a periodic 4x4 cluster.
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Fin.6: E ~Egyp/Eppact versus the energy of the =pin system Eexact

.for all 41 different two-hole configurations on a 324 cluster with

Tho1e™0-5-

holes doped  in the Cu-0 planes mainly occupy the . oxygen sites.
“Because the exchange coupling between the Cu spins is dominated by
a 5upbkexchange mechanism the holes modify locally the bonds. Even
" a local change from an antiferromagnetic to-a strong ferromagnetic
"bondJ-duelto a“hole is suggested [Sé6]. Here we discuss one and two

_holes on a 3x4 cluster. The antiferromagnetic bonds not modified by

‘ 10 : ' :

-42.5]
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Rz %1 4
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10 0.5 [} -0.8 -4.0 -45 -2.0

Iy —

Fig.7: Enerqgy Eg, ..y ©f the one-hole ;anfigurétion (A) and of 'the
three two-~hole configurations (R,C,D) with the lowest energies in

dependence on Ihnle'

l, ~
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Fig.B: Er=ERVB/EexaCt in dependebcé on Ihole for the same hole
configurations as in fig.7. :

a hole are as usual assumed to 15 ;=1 and the bonds modified by a
hole are Iij’;hole where Ihole can vary from antiferromagnetic to
ferromagnetic exchange. In the one-hole case we put the hole in the
center of the cluster (cf. fig.7). In the case of two holes'there
are all together 41 different arrangements of holes. In fig.6 ' for

these 41 two-hole configurations the ratic Er = ERVB/Eeﬁact"is'

11
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Fiq.%: Spin-spin correlation <4!§1§j14} for the ordinary AFM on =a
3Ix4 cluster and for the two-hole configuration C (cf. fig.7) with
Ihole=—0.2. Spin with number 1 sits at the corner of the cluster.

a: AFM, exact; b: AFM, RVB; c: two hules, exact; d: two holes, RVE.

drawn versus the energy of the configuration Eg, .-y for Ihole=—0.5.
Obviously, there is a certain "correlation® between E_ and Eg,act
i.e. tHe hole configurations with low energies favour the RVB
state. Since the low-energy configurations are just realized in the
system we study the three ones with lowest energy (cf. fig.8) in
more détail. The énergy of the configuration versus Ip..o is shovn
in fig.7 and Eqyp/Egyact VErsus Iﬁole in fig.8. The realization of
a RVB state is particularly supported by holes if the hole modifies
the bond to & weak ferromagnetic one. For stronger ferromagnetic

bonds the singlet pairing is not sufficient and triplet pairing has

to be taken into account. In the last figure we show * the spin.

correlation function calculated with the exact eigenstate as well
as the RVB state for the pure AFM.and the doped AFM. The slow decay
of the exact spin correlation in comparison with the fast decay of

the RVB result for the pure AFM is evident. Due tod holes the decay
becomes  steeper énd the RVB result is close to the exact one. In
both .caszes the strong antiferromagnetic SRO is well described by

_the RVE state.

12

4. SUMMARY ) )
The resonating-valence bond scheme is a suitable method to -
construct the ground state of the qﬂantum spin Heisenberg . AFM .in
low dimensions. The RVB stafe is & superposition of basis states
which correspond to dimer coverings of the system. Hence the choice
of relevant basis states. to construct a trial wave functions can be -

based on the physical ingredients of the considered spin - system.
For =short range-correlated states as observed in slightly doped

high;Te superconducting materials  the restriction to nn dimer
coverings is reasonable. Such .a nn RVB state, however, significant-
ly deviates from the real ground state for the.pure square lattiée
AFM. Therefore we investigated the influence of various deviations
from the pure Heisenberg AFM which could be present in the slightly
doped materials. We found that exchange disorder and, particqlarly,

frustration can stabilize a short-range carrelatedr RVB state.

.Furthermore we considered the influence of holes directly, assuming

that holes locally modi#y the exchangé bonds. Also in this case we

6btained,a possible stabilization of the RVB state due to doping.
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