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1. Introduction 

Recently, a considerable amount of works has been devoted to 

studying anomalous scaling laws·[ 1- 3 1 of the energy spectrum 

(ES) of the Schrodinger equation [4-71, the one-dimensional quasi­

periodic tight-binding models [8-111 and magnetic aperiodic chains 

[12-16).' 

On the other hand, the scaling properties of the vibrational 

spectrum of the system describing lattice dynamics of one - dimen­

sional quasicrystals (1DQ) [ 17-24 1 are less investigated so far. 

.The. aim of this paper is to perform the multifractal analysis 

(MA) of the ES of the harmonic Hamiltonian [ 19,21,23 1 modelling 

collective motions of atoms in the 1DQ [25,261. 

In particular, we shall examine numerically the scaling beha­

viour of the normalized integrated density of states G in terms 

of scaling index a and fractal dimension f. The a - f spectra and 

Renyi dimensions D of the vibrational spectra (VS) will be calcula­

ted in a wide range of model parameters [ 21,23 1 using the algo­

rithm developed in the theory of dynamic systems by Halsey et al. 

[1 - 21. The next-nearest-neighbour interactions of atoms will be 

taken into account. 

The paper is organized as follows-. The considered model is 

specified in the next Section. The formalism of MA is described 

briefly in Sec.3. Numerical.results are presented in Sec. 5. The 

last Section contains main conclusions. 

2. Specification of the Harmonic Model 

We consider the chain of N atoms with masses M the equili­

brium positions 1 of which ( in dimensionless form ) are given by 
n 

[ 21,23,25,26 1: 

1 = n + [ n I ~ 1 I ~ (1) n . g 

where n are integer numbers, ~·= ~=(1+1'5 )12 and [y1 denotes the 
g 

integer part of y . 

The lattice dynamics of 1DQ is defined by the harmonic Hamil­

tonian [ '21,23 1 
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where the standard symbols have been used [ 18;19,21,23 ]. 

We assume that the force constants of nearest-neighbour (NN) 

k 
1 

and next-nearest-neighbour (NNN) g 2 interactions depend 
n,n- n,n- · -

on the distance between atoms and are given by quasiperiodic bina­
~ 

ry sequences l 21,23 ]: 

k 
1 

= k
0 

( 1 + Q ( 1 ~ d 1 ll (3) 
n,n- n,n-

g 2 =go ( 1 + Q ( 2- d 2 ll (4) 
n,n- n,n-

d· .=[n/IJ']-[(n-i)/IJ'l (5) 
n,n-1 

i = 1, 2 • 

where Q = z/IJ'g ~ 0 is the parameter of quasiperiodicity (POQ); k0 
and g

0 
denote spring constants of NN and NNN interactions, respe­

ctively. 

In order to study the global scaling properties of the energy 

spectrum we shall examine the spectra of the model defined by Eqs. 

(2-5) for IJ' = ~l = F
1 

/ F 1 _~ [ 7,9 ],where 1=2,3,4 ... and F1 de-

notes the lth Fibonacci number with F0 = F1 = 1 and F1 

Fl-2' 

Fl-1 + 

For given rational approximants IJ' =.~ 1 to the golden mean IJ'g 

the Fibonacci chain (1) is periodic. The length of the unit cell 

containing F
1 

atoms is equal to L1 = a ( F1 + F1_2 J where a deno­

tes the length of the shorter distance between atoms in the quasi­

lattice (1). Therefore, the ES corresponding to IJ' = ~l consists of 

F
1 

energy sub-bands and F
1

_
1 

gaps [ 7, 17 ]. · 

Introducing now the mass dependent variables w1 (t)' [ 27 ]: 

u
1 

( t) .= Y"'M w 
1 

( t ) = Y"'M w~ exp ( i w t ) 

and using the Bloch condition 

ul+L = exp ( i k L1 ) u1 
1 

2 

1=1, 2, ... , N 

(6) 

(7) -

I 

the eigenvalue problem·for the dynamic matrix ( DM 

form [ 21,23 ]: 

2 7 7 
Q w=fAW, 

7 T 2 2 where w = ( w
1

, w
2

, ... ,WN) , n = M w /k0 and 

a
1 

b
2 

c
3 

0 ...................... 0 c 1 (k) b1 (k) 

'b
2 

a
2 

b
3 

c
4 

0 ....................... 0 c2 (k) 

c
3 

b
3 

a
3 

b
4 

c
5 

0 . . . . . . . . . . . . . . . . . . . . . . . . 0 

fA= I c4 b4 a4 b5 c6 0 ·················'····· 0 

• 
c1(k) 0 ·· ·· · · ····· · · · · ·· 0 cN-1 bN-1 aN-1 bN 
• • 

b
1 

(!<) c
2

(k) 0 ................ 0 eN bN aN 

where 

- bn = 1 + Q - Q ( [n /11 11 - [ ( n - 1 l/1111 ) 

-en= h ( 1 + 2 Q- Q ([n /1111 ~ [( n- 2 )/~ 1 1>) 
an = - ( bn+l + bn + cn+2 + en ) 

• 

fA takes the 

(8) 

(9) 

(10) 

(11) 

(12) 

and c
1

(k)= exp(-ikL
1

Jc
1

, c
1

(k)= exp(ikL1 Jc 1, b1 (k)= exp(-ikL1lb1, 

• • b
1

(k) = exp(ikL
1

)b
1

, c
2

(k) = exp(-ikL1 Jc2 , c2 (k) = exp(ikL1Jc1 ; 

h = g
0
/k

0 
denotes the strength of NNN interactions with respect to 

NN interactions. 

3. Characterization of VS as Multifractal Objects 

We.describe briefly the formalism developed in Refs. [1, 2] 

and used in this paper. 

Our aim is the quantitative estimation how bunched the eigen­

val~es n2 of DM ( cf. Eqs. (8)-(12) ) on ES might .be if IJ' = ~l 
= F

1
/F

1
_

1 
and 1 increases. 

We characterize t?is bunching in terms of the scaling proper­

ties of the integrated (normalized to 1) density of states G(x)l 

3 



2 2 where x=Q /rlHAX denotes the reduced square of the eigenenergy of 

the'matrix &. Notice that 0 ~ IG(x) ~ 1 if 0 ~ x ~ 1, i.e., it is 

non-negative and non-decreasing function of x on ES. Therefore, IG 

can be treated as the measure [1-3]. 

We shall study the multifractal properties of the energy spec­

trum of DM·on the basis of IG(x). Let x and x + ox.both belong to 

ES. We say that IG shows the local sc!fing at x with a scaling in­

dex a [ 7,8,17 1 if 

IG(x + ox) - IG(x) (oxla: (13) 

as ox 9 0 . 

We expect that a's will take a range of values between a:min and 

a:max . The density of singularities of type a on the· interval 

( a:min' a:max l is determined by another index f defining also the 

fractal dimension of the subset of ES upon which the functlon IG 

shows a local scaling law (13) [ 2,3 1. 

In order to calculate .the a - f spectrum we introduce the auxi­

liary quantity f(q, T, P(~ 1 )) [2] called the partition function 

f (q, T, P(~ 1 JJ 

Fl (Gi)q 

[ (W )T I 

i 

(14) 

i=1 

where P(~ 1 J denotes the partition of ES obtained by the solution 

of (8) at k = 0 and kmax = n/L
1 

[ 7 ]; wi is the width of the ith 

energy sub-band the measure of which gives Gi= 1/F1 . 

.Solving now the equation 

lim r (q, -r, P(~ 1 ll 
1 9 00 . 

1 (15) 

we can obtain the a - f spectrum via a Legendre transformation 

a; d-r(q)/dq 

f -r(q) - q a; 

and calculate in addition the Renyi dimensions ID 

ID = D(q)= T(q)/(q-1) 

4 

(16) 

(17) 

D(q) [1-3,281 

(18) 

.j 

J 

'· 

l 
\ 

i 

r 

describing a measure of inhomogeneity in the bunching of eigenva­

lues o.2 of DM (9) on ES; 

Notice that VS of the model under consideration are continuous if 

PDQ is equal to zero. In this case, the a-f spectrum consists 

of two points: (1, .f(ll=1 ) and ( 0.5, £(0.5)=0 ) corresponding to 

the center and the edges.of spectrum, respectively. 

If z > 0, then ES looks like Cantor set [ 17-19,23 1 and we expect 

that T is a nonlinear function of q. In this case we are dealing 

with the anomalous scaling characterized by the infinite number of 

Renyi dimensions ID = D(q) [1-3, 28L Therefore, we say that the ES 

is multifractal object with respect to function IG the scaling be­

haviour of which describes an infinite number of scaling indices a 

distributed on the finite interval ( a:min , a:max l. 

4. Numerical Results 

We shall use .the formalism presented in the previous Section 

to the calculation of a - f curves and the Renyi dimensions ID=D(q) 

of IG(x). 

In order to improve the convergence of our ·simulations, we have 

investigated numerically (instead of (15)) the equation [ 2 1: 

r (q, •• PC~ 1 .F1 JJ 

1 ' (19) 
r (q, T, P(~n.Fn)) 

where P(~ 1 .F1 ) and P(~n.Fnl are the partitions of ES corresponding 

to the F
1 

and Fn Fibonacci number, respectively. 

On the basis of (19), the·derivative d-r(q)/dq is given by 

where s
1

(q) 

F 
n 

d-r(q) 

dq 

Fl 

"[ 
i=1 

s
1 

(q) Ln r 

(r)q s
3

(q) - S
2

(q) 

w. ) --r(q). 52 (q) 
1 

5 

(20) 

Fl 

\ Lit(w. )/ (w ) T(q) L 1 i • 

i=l 



- \. ( T(q) 5
3

(q)- L__Ln wj)/(wj) , r=F
1
/Fn and T(q) is a solution of (19). 

j=l 

Let us point out that 

the quantity ( Q~ 1 1+ 

w. ( w. ) occurring 
1 J 
2 2 2 

Qi )/ Qmax where Qi+l 

in 5
1

, 5
2

, ( 5
3 

) 

2 
, Qi are the 

denotes 

maximal 

• 2-
and minimal eigenenergy in the ith sub-band; Qmax is the maximal 

eigenvalue of DM (8). Thus, the argument ·or G is restricted to the 

interval <0, 1> :.,.s 

We have solved numerically Eq. (8) at k=O , k=kmax and chosen 

values of ~=~1 using a Dean algorithm [27,29,~0]. 

Dependencies of T, dT/dq and [) on q have been obtained by the 

numerical solution of (19). The oc - f spectr'a have been calculated_ 

using (20) and eliminating q from Eqs. (16), (17). 
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Fig:1. Vibrational spectra at Q =0.7/~~=0.7 F361F37, h =0, ~ = ~l 

=F1/F1_
1 

= N
1
1N

2 
and 1=2,3,4,5. The bold and thin lines 

correspond to sub-bands and gaps, respectively. Rectangular 
2 symbols represent eigenvalues Qi of (8) calculated at k=O 

and k=kmax; the numbers over some symbols give the number 

of differe~t ni. On the abscissa the energetic scale in 

units of E2=Mw2/k is displayed. 
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Fig.2a. Vibrational spectra at ~=~4=5/3, h=O, and increasing Q= 

z/~~ where z=O.l, P.25, 0.5, 0.7, 0.85, 1.0, 1.3 and 2.5. 
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Fig.2b. The-same as in Fig.2a ·at z = 5.0, 10.0 and 16.0. . ~ 

In Fig.1, ·the vibrational ·spectra of the model (2.-5), (8-12) at 

· h=O, Q=0.7/~~, ~~ = F37JF36, ~ = ~l = F
1
/F

1
_

1 
and increasing Fi­

bonacci numbers F
1 

are plotted. 

Notice that the transformatio~ of ES at ~ = ~l ~- ~ = ~1+ 1 
(cf.Fig.1) exhi~its·the properties of the totally disconnected it­

rated function systems (IF5} [31] defined on the <0,1> interval. 
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Fig.S. Plots of ·the Renyi dimensions'D=D(q) as a function of qat 

h=O, N
1 

=F
14

, N
2 

=F
11 
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Fig.6~ The dependence of Ln(N11N2 ) on Ln(B21B1) at Q = ~~ , N1 = 

F
1

_
1

, N
2

=F
1

, B
2

=1B
1

, B
1

=1B
1

_1 .and 1 = 9,10, ..• ,,17; IBl is the 

total width of ES corresponding to·~=ql = F11F1_1 = N21N1. 

It is a difficult problem to find the explicit form o~ contraction 

. mappings defining. this IFS since VS are inhomogeneou.~ fractal ob­

jects ( see below ). 
Vibrational spectra at~= 11

4
, h =a· and increasing values of 

Q are displayed in Fig.2 . 
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Fig.7. Vibrational spectra at Q= 0.7/~~. ~ = ~5 =F
5
/F

4 
and incre­

asing h: <'i[l h=-0.2, ( '¢ ) h=-0.1, ( 0 ) h=O.O, ( ;ft ) 

h=O. 1, ( ¢ ) li=O. 2, ( 4 ) h=O. 3. The bold lines represent 

the energetic sub-bands; numbers over some symbols give 
the numbers of different eigenvalues of DM (8). 
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Fig.8. Plots of the f-a. spectra at the depicted negative hand Q= 
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'and N
2 

= F
13

: (a) h < 0; (b) h ~ 0. 

The a-f curves and ~ as a function of q at h=O, N1= F14 = 610, 

N2 = F
11

= 144 and rising magnitude of Q = z/ ~~ are presented in 

Figs.3,4 and 5, respectively. _ 

.We have calculated also at Q = 1 / ~· and h=O the index o des­
g 

cribing the dependence of the total energy bandwidth 

12 

Fl 

~l = ~ wn on the number of sub-bands F1. We expect that 

n=l 
0 . ~l =.·canst F

1
. and o = 1 - 1 / D"' -Ln( ~/~1_ 1 l / Ln (F1_1 / F1 l 

[ 7 - 9 ),where D is the fractal dimension of ES which is equal to 

~ ( q = 0) = f . In Fig.6 Ln ( F1 /.F1 1 las a function of 
max -

Ln( ~l / ~l-l ) is plotted; notice that the difference ~l / ~l-l -

~l~l / ~l-Z ( displayed on the abscissa l decreases with increas­

ing 1. 

The partitions of VS at~= ~S' Q= 0.7 /~~and growing h are 

presented in Fig.7. 

The a : f spectra and Renyi dimensions ~ as a function of q at 

h * 0, N
1 

= F
13 

= 377 and N
2 

= F
10 

= 89 are displayed in Fiqs. 8-

10 and Fig.ll, respectively. 

The dependence of the fractal dimension D = ~(q = 0) of ES on 

hat Q = 0.7/~~, N
1 

= F
13 

and N2 = F10 is plotted in Fig.lZ. 
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F:ig.12. The dependence of the fractal dimension D = ~( q = 0) of 

ESon hat depicted Q=z/~~: N1=F10 and N2=F1y 
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5. Conclusions and Final Remarks 

Tl1e following conclusions result from the performed numeri­

cally MA: 

1. Vibrational spectra of the harmonic model ( 2-5), ( 8-12) are 

inhomogeneous fractals [ 2,3] (cf. Figs. 3-5, 8- 11 ), i. e., 

they are multifractal objects with respect to the observable 

IG(x) [ 3 ]. 

2. The dependencies of the Renyi dimensions [) on q and a-f curves 

are smooth (cf. Figs. 5,11 and 4,9). The a-f spectrum of 

gularities of the integrated normalized density of states 

sin-

IG is 

a well behaved function on the finite interval 
a min ' a max ) ' 

[)( q q -m ) ~ 1 and f(amin) where amin = [)(qq+m), a max 
f(a ) = 0. 

max 
The f(a) curves are convex and reach their maximum f on max 
(amin'amax) which is equal to the, fractal dimension D = [)(q=O) 

of the vibrational spectrum [ 9 ]. 

3. The form of the a-f spectra depends on the model parameters. 

In particular, we have observed the following tendencies: 

3.1. The width of the interval (amin= [) (qq -m), amax= [) (qq +m)) 

depends on the magnitude of model parameters and: 

- a i = [) i = [) (q q -m ) decreases if Q =z/CT' · (cf. Figs. 3, m n m n g 
5) or h (cf. Figs. 8,10,11) is increasing; 

- amax=[)max=[)(q q +m) q 1 independently of the magnitude of 

model parameters Q and h but 8[)(q)/8Q < 0 (cf. Figs. 3, 5 ) 

and 8[)(q)/8h > 0 (cf. Fig.8, inset in Fig.9 and Fig. 11). 

3.2. The fractal dimension D = [) (q = 0) =fmax of ES is a decre­

asing function of Q ( cf. Fig.3 and inset in Fig. 4) and en­

larges with h (cf. Figs. 8, lla, inset in Fig. 9). These find­

ings agree with the results of previous studies [23,32]. 

4. The fractal dimension D is connected with the index o descri­

bing the scaling of the total widthband of ES e
1 

wit? the num­

o ber of sub-bands-(9]: e1 - F
1 

and o = 1-1/D. Our numerical re-

sults obtained from maximum value f of the f-a curve (cf. max _ 
Fig.3) and independently of the study of scaling of the total 

14 

widthband IBl (cf. Fig.6) at Q=0.7/cr~, N=F14 confirm this rela-

tion. . 
~e point out that tne multifractal analysis of VS can be per-

formed using another measure, i.e., the normalized integrated den­

sity of states f(y) where y =Qi/Qmax· ~e have verified numerically 

that the a - f spectra of f(y) and IG(x) are qualitatively equiva­

lent. The most remarkable-differences betwen them have been no­

ticed in these region of the a- f spectra where f takes its maxi­
mum. It.follows from the obtained results that f (IG) ~(f (f)) 2 

max max 
[23] where f (IG) and f (f) denote the maximum value of f cor~ 

max max 
responding to the a - f spectra of IG and f, respectively. 

In addition, we have observed that if instead of IG the measure f 

is used then, the convergence of our simulations becomes less ef­

fective at lql » 1. 

Finally, let us comment on some aspects of our numerical stu­

dies: 

During our simulations we have observed the double cusps in 

the_plots of f(a) [33] at sufficiently large lql in two limiting 

cases: (I) atQ<0.1 /cr'; (II) atQ2:2.0/cr'. 
g g 

The former one is connected with the tendency of·the a-f spec-

tra to attain the limit two-point spectrum ( 1,1), ( 0.5,0) corre­

sponding to Q=O [17]. 

In the latter case the breakdown of the scaling approach [1- 3] 

is the computer artifact since at sufficiently large Q the magni­

tude of sub-band widths wi became very small (cf. Fig.2). 

Notice that the convergence of. the applied MA is less effective 

at q q -m than at q q +m . This feature is visible in Figs. 4, 9 

.where the logarithmic scale has been applied to f. 

It would be an interesting problem to study the multifractal 

properties of VS corresponding to another type of one-dimensional 

aper:iodic crystals [ 34,35 ]. This will be the ;>Ubject of separate 

investigations. 
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CaneHAa B. 
Y~cneHHoe ~ccneAosaHHe.Kone6aTenbHoro cneKTP~ 
~enoYKH ~~6oHaY~. MynbTH(jlpaKTanbH~H- aHanH3. 

4HcneHHb1M o6pa30M ~c::cneAyeTCII rapMOHHYeCKHH fa 
HaM~Ky peweTKH OAHOMepHoro KBa3~KpHCTanna nma ~~ 
(jlpaKTanbHbiH aHanH3 KOne6aTenbHoro cneKTpa. noKa3a 
KanbHOro 3aKoHa CKeMn~Hra, KOTopoMy nOAYHHAeTCA ¢ 
HapH~X Kone6aHHH G(x), rAe X-KBaApaT C06CTBeHHOrO 
MaTpH~, npHH~MaeT 3HaYeH~A Ha KOHeYHOM HHTepeane 
TP~ a-t H pa3MepHOCTH PeHH.D(q) B~YHcneH~ a w~p 
napaMeTpos MOAenH. 8 YaCTHOCTH 06Hapy~eHO, ~TO: ( 
Henpep~BHbiM~; (2) EcnH napaMeTp KBa3HnepHOA~YHOCT 
H (jlpaKTanbHaA pa3MepHOCTb Kone6aTenbHoro cneKTpa 
IOTCA; .(3) amln yMeHbWaeTCA, HO. 00 pacTeT np~ · ysen 
AY cneAy~~MH coceAAM~. 

Pa6oTa·s~nonHeHa a fla6opaTopHH TeopeTHYeCKOH (jl 

npenpHHT 06oe,!UIHI!HHOrO HHCTHTyTa J1A8pHhiX HCCJII 

Salejda W. 
Numerical Studies on the Vibrational Spectrum 
of Fibonacci Chain. A Multifractal ·Analysis 

A harmonic Hamiltonian modelling the lattice' dJ 
sional Fibonacci-type quasicrystal is studied num• 
analysis of vibrational spectrum is performed. It 
rated normalized density of states G(x), where x < 
eigenenergy of the:dynamic·matrix,exhibits a finit 
a (i.e. · amln$ a$ a~a.S) describing the local seal 1 
spectra and the Reny1 dimensions D(q) are calcula1 
del parameters taking into account the next - near 
teractions of atoms. In particular, we have obser\ 
spectra a,re smooth in ·the i nterva 1 <a mtn = D( q .. -t 

(2) If the so-called parameter of quasi-periodicit 
and the fractal dimension of vibrational spectra 0 
(3} If the strength of NNN interactions h grows u~ 
D increases. · · 

·The investigation has been performed at the Lat 
Physics, JINR. 
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