


1. Introduction

Reééntly, a considerable amount of works has beén devoted - to
studying anomalous scaling laws'{ 1 — 3 ] of the energy spectrum
(ES) of the Schrédinger equation (4-7], the one-dimensional quasi-
pefiodic‘tight-binding models [8-11] and magnetic aperiodic chains
[12-16]. o o

On the other hand, the scaling pfoperties of the vibrational
spectrum of the system describing laftiée dynamics of one - dimen-
sional quasicrystals (1DQ) [ 17-24 ] are léss inVéséigated so far.

:The. aim of this paper is to perform the multifractal analysis
(MA) of the ES of the harmonic Hamiltonian [ -19,21,23 ] modelling
collective motions of atoms .in the 1DQ [25,26]. ‘ ’

In particular, we shall examine numerically the scaling beha-
viour of the normalized integrated density of states G 1n terms
of scaling index a and fractal dimension f. The « - f spectré and
Renyi dimensions D of the vibrational spectra (VS) will be calcula-
téd in a wide range of model paraméters'[ 21,23°] using the algo- '
rithm developed in the theory of dynamic systéms by Halsey et alf

~[1 - 2). The next-nearest-neighbour interactions of atoms will be
taken into account. ) '

The . paper is organized'as follows. The considered model is
specified in the next Section. The formalism of MA 1is described
briefly in Sec.3..Numer1ca1'resu1ts are presented in Sec. 5. The

last Section contains main conclusions.

2. Specification of the Harmonic Model

We consider the chain of ‘N atoms with masses M the equili-
"brium positions lnﬁof which ( in dimensionless form ) are given by
[ 21,23,25,26 1: ]

1l =n+[n/c¢cl/c_ - (1)
n g

where n’arg integer numbers, oé= o=(1+/"5 )/2 and [yl denotes‘ the
integer part of y .

The lattice dynamics of 1DQ is defined by the harmonic Hamil-
tonian [ 21,23 1 ’
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1 1 . . ;2 .
H= — = }:: [k (u -u )7 +8g. Slu-u_ ) ]9 (2)
M 2 n,n-1 n-1 n,n-2 n n-2

n=1 n=1

where the standard symbols have been used [ 18;19,21,23 ].

We assume that the force constants of nearest—neighhour (NN)
kn;n-l and next—nearest—neighboury(NNN) 8n.n-2
on the distance between atoms and are given by quasiperiodic bina-
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interactions depend

ry sequences [ 21,23 1:

k

n,n-1 0 (1+Q (1~ dn,n—1

gy (1 +0Q (2-d

)) (3)

g )) (4)

n, n-2 n, n-2

[n/e¢l1-[(n-1) /¢l ) (5)

d .
n,n-i

i'= 1,2 v

0 is the parameten of quasiperiodicity (POQ); ko

and g denote spring constants of NN and NNN - interactions, respe-

‘where Q= z/0‘g =

ctively. . ]

In order to study the global sca11ng properties of the. energy
spectrum we shall examine the spectra of the model def1ned by Eqgs.

(2-5) for o = n = Fl / Fl-l [ 7,97].where 1=2,3,4 ... and F de-

'pnotes the 1th Fibonaccli number with ‘FO = F1 =1 and F1 = Fl—l +
F i .

1-2°

For given rational approximants'o*=_1)1 to the golden mean ogv

the Fibonacci chain (1) is periodic. The length of the unit cell.

containing Fl atoms is equal to L1 =a ( Fl + F1—2) where a deno-
tes the length of the shorter distance between atoms in the quasi-
lattice (1). Therefore, the ES corresponding tora = nlrconsists of
Fl energy sub-bands and Fl_l»gaps [ 7, 17 1.

Introducing now the mass dependent variables Wl(t)>[ 27 1:

uy (t) =v M W (t)= VM W? exp (Lwt) . ~(6)
1=1,2,...,N
and using the Bloch condition
- ; -
u1+L1 exp ( 1k Ly ) up . ‘
2 ’

RN e

the eigenvalue problem-for the dynamic matrix ( DM ) ‘A takes the
form [ 21,23 1: '

2 2 > -
Q" v =AV, (8)
2 T 2 2 .
where W. ( Wl, WZ,. ,WN) , Q" =M /ko and
) 3
a, b2 Cq O e 0 cl(k) bl(k)
b2 a, b3 ¢,y [+ J A 0 c2(k)
c3 b3 a3 b4 Cg [0 0
A = c4 b4 a4 b5 c6 0 A 0 ' (9)
»
cy(k) 0 0 ey 1 Pyt 2n-1 PN
»
by (k) cp(kK) 0 oottt 0 ¢y N 2N
where
e bn =1+Q~-Q [ [n /nll - [(n-1 )/nll ] ) - (10)
-cy=n(1vze-aUn/mlciCn -2 7n ) (11)
a =- ( bn+1 + bn * € t S ) (12)

. . .
and cl(k)- exp(—ikLl)cl, cl(k)= exp(1kL1)c1, bl(k)— exp(—ikLl)bl,

b:(k) = exp(ikL )b v Sy (k) = exp(- ikL , c.(k) = exp(ikL )c ;

‘h = gO/k denotes the strength of NNN interactlons with respect to

0

NN interactions.

3. Characterization of VS as Multifractal Objects

. We_describe briefly the formalism developed in Refs. [1,_2]
and used in this paper.

Our aim is the quantitative estimation how bunched the eigen-

'values 92 of DM ( cf. Egs. (8)-(12) ) on ES might be if o = ny '

=F /F1 -1 and 1 increases.
We characterize this bunching in terms of the scaling . proper-

ties of the 1ntegrated (normalized to 1) density of states G(x)s
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where’x=Qz/QiAX denotes the reduced square of the eigenenergy of

the matrix A. Notice that 0 = G(x) =1 if 0 =x=1, i.e., it is
non-negative and non-decreasing function of x on ES. Therefore, G

can be treated as the measure [1-3].

We shall study the multifractal properties of the energy spec-
trum of DM'on the basis of G(x). Let - x and x + &x .both belong to
ES. We say that G shows the local scg}ing at x with a scaling in-
dex « [ 7,8,17 1 if

G(x + 8x) - 6(x) = (ax)% = (13)
as 8x > 0 .
We expect that a«'s will take a range of values between i and
& ox The density of singularities of - type a‘ on the interval o
( « «

min’ “max
fractal dimension of the subset of ES upon which the function G

) is determined by another index f defining also the

A

shows a local scaling law (13) [ 2,3 1.
In order to calculate .the o - f‘spectrum we introduce the auxi-

liary quantity I'(q, =, P(nl)) [2] called the partition function

v

' F

1 (Gi)q
r (q, T, P(nl)) = E:: —_— o (14)
T
i=1 () .

where P(nl) denotes the partition of ES obtained by the solution
of (8) at k = 0 and k =n/L. [ 7 ]; w, is the width of the ith
; ; max 1. i ) .
energy sub-band the measure of which gives Gi= 1/F1;

Solving now the equation ) !

lim I (q, T,_P(nl)) (15)

1l = o

We can obtain the a - f spectrum via a Legendre transformation

a = dz(q)/dg (16)

f

1(q) - q a ; : (17)
and calculate in addition the Renyi dimensions D = D(q) [1-3,28]

= D(q)= t(q)/(g-1) (18)

describing a measure of inhomogenelty in the bunching of eigenve-#,
lues Qz of DM (9) on 'ES:

Notice that VS of the model under con51derat10n are continuous. 1if
POQ is equal to zero. In this case, the a-f spectrum consists

of two points: (1, f(1) 1) and (o. 5 £(0.5)=0 ) corresponding to
the center and the edges of spectrum, respectively.

If z > 0, then ES looks like Cantor set [ 17- 19, 23 ] and we expect
that T is a nonlinear functlon of q. In this case we are dealing

with the anomaloue scaling characterized by tne infinite number_of

Renyi dimensions D = D(q) [1-3,28].. Iherefore, we4say that the ES
is multifractal object with respect to function G the scaling\ be-
hav1our of which describes an 1nf1n1te number of scaling 1nd1ces 3
dlstrlbuted on the finite interval ( @ in t %nax ).
4. Numerical Results

We shall uee }ne‘formalism_presenfediin tne previous Section
to the calculation of a - f curves and the Renyi dimensions D=D(q)
of G(x). '
In order to improve fhe'convergence of~our "simulations, we have

investigated numerically (instead of (15)) the equatlion [ 2 1:

I (q, @, Pn.F)))

[}
-
-

- - (19)
T (a, T, P(n_,F))

.

where P(nl,F ) and P(n F ) are the partitions of ES corresponding

to the F1 and F F1bonacc1 number, respectively.

On the basis of (19), the-derivative dz(q)/dq is.gliven by

d(q) Syl@) tnr STy oy
= - - ’ o (20)
dq (1% s4(a) - S, (@)
Fi o Fl

where S, (q) = 2::, Cu )T s @ = E::_ Ln(w,)/ (™D,

F i=1 : ) RN
“n : : : T



' _ q) _ el : .
S3(q)— }E:Ln(wj)/(wj) , r-Fl/Fn and t(q) 1ska solution of (19).

j:l .
Let us point out that LA ( "j ) occurring in Sl' Sz,( S3 ) denotes
< 2 2 2 2 2
the quantlty ( Qi+1 Qi )/ Qmax where Q 1 Qi are the maximal

and minimal eigenenergy in thé ith sub-band; Qﬁéx is the maximal

eigenvalue of DM (8). Thus, the argument of 6 is restricted to the

interval <0, 1> . d
k We have solved nuﬁerically Eq. (8) at k=0 , k=kmax and chosen
‘values of o=n, using a Dean algorithm [27,29,30].

Dependencies of T, dt/dq and D on q have been obtained by the
" numerical solution of (19). The « - f spectra have been calculated.

uéing (20) and eliminating q from Eqs. (16), (17).
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Fig.1. Vi ) ; =0. = = =
ig. 1. Vibrational spectra at Q =0 7/9‘g 0.7 F36/F37’ h =0, o nl

=F /F1 -1 Nl/NZ and.l=2.3,4,5. The bold and thin lines

correspond to sub-bands and gaps, respectively. Rectangular

symbols represent éigenvalues Q? of (8) calculated at k=0

and k=kma ; the numbers over some symbols give the number

of different 9?. On the abscissa the energetic scale in

units of E2=Mw2/ko is displayed.
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Fig.2a. Vibrational spectra at o=n4=5/3, h=0, and increasing Q=
'Z/Gé where z=0.1, 0.25, 0.5, 0.7, 0.85, 1.0, 1.3 and 2.5.
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Fig.2b. The same as in Fig.2a at z = 5.0, 10.0 and 16.0.

=&

In Fig.1, the vibrational'speétra of ﬁhe model (2-5), (8-12) at

] g 37 36
bonacci numbers Fi are plotted.

 h=0, Q=0.7/0é , 0 =F_ /F  , o= n = Fl/Fl_1 and increasing Fi-

‘ Notice that the transformat1on of ES at T = nl > o= n1+1

(cf.Fig.1) exh1b1ts‘the properties of the totally disconnected it-

‘ratedrfqnctlon systems,(IFS) [31] defined on the <0,1> interval.
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Fig. 5. Plots of the Renyi dxmensxons ‘D=D(q) as a function of q at

h=0, N =F N, =F and Q—z/o-g where z=0.1, 1.0.

Fié.S. The f - a spectra at h=0, N1=F14, N,=F and depicted val-
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ues of Q = z/oé.
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‘ . :f ‘ ’ ) It is.a difficult problem to find the explicit form of: contraction’
“Fig.4. The f —.a spectra at h=0, Nl =F14. NZ =F11 and 1nd1cated ‘ ) ‘V:Jmapplngs definxng this IFS since VS are 1nhomogeneous fractal ob-
‘ Q = z/¢’. Inset shows the top of f(a) curves. ‘ . - jects ( see below ). i e -
P & g ' ‘ ’ o v V1brat10na1 spectra at ¢ = m, h = 0 and increasing values. of

Q are displayed in Fig.2 .
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Vibrational spectra at Q= 0. 7/cg, o = "5 —FS/F4 and incre-

asing h: (¢%) h=-0.2, (¥ ) h=-0.1, (O ) h=0.0, ( .4 )

h=0.1, 0 ) h=0.2, ( A ) h=0.3. The bold lines represent
the energetic sub-bands; numbers over some symbols give

the numbers of different eigenvalugs of DM (8).
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Fig.9. The f - « sp?ctra at Q=0.7/qé, N1 = FlO' N2 = F13 and h,=

. -0.125. Inset shows‘the>top of f(a) curves at h = -0.02,
-0.06, -0.125. '
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Fig.10. The a.— f spectra at indicated 5’2 0, Q=0.7/¢é, N, =F

’and N2 = FIB'
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Fig.11. Plots of D = D(q) as a function of q at Q=0. 7/0g, N, =F

, 1 10
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The a-f curves and D as a function of g et h=0, N1¥ F14 = 610,

N2 = F11= 144 and rising magnitude of Q = z/'aé are presented in-

Figs.3,4 and 5, respectively. . A
.We‘heve calculated also at Q =1 / oé and h=0 the index 3 des-
cribing the dependence of the total energy bandwidth

e

12 ..

B, = E W on the number of sub-bands Fl. We expect. that

n=1

. 3 le _ P
B, = const F," and' 8 =1-1/D = -Ln( Bl/Bl~1) /ln (Fy_, 7 F)
[ 7 - 9 l,where D is the fractal dimension of ES which is equal to -
D(gq=0)-= fmax' In Fig.6 Ln ( Fl / Fl_1 ) as a function of
Ln( B, / B -1 } is plotted; notice that the difference Bl / Bl—l -
( displayed on the abscissa ) decreases with 1increas-
ing 1.
. The partitions of VS at o = N> Q= 0.7 / 0g and grow1ng h are
presented in Fig.7. ‘
The « - f spectra and Renyi dimensions D as a functlon of q at
h # 0, N1 = F13 = 377 ‘and N2. F10 89 are displayed in Figs. 8 -
10 and Fig.11, respectively. ) :
The dependence of the fractal dimension D = D(q 0) of ES on

h at Q = 0.7/0‘g , N, =F and N, = F is plotted in Fig. 12.

1 13 2} 10
| t).59:3 | .""""V;""';';"""';ﬂ""""!”"""u
E rrr——
0915 7=0.7 E
£0.89 ¢ o
: k: 89 1
087 ¢ , =377
085i ------- T

202 —0.1. odhoi”oz 0.3

Fig. 12 The dependence of the fractal dimenslon D= D( q 0 ) of

ES on h at deplcted Q—z/wg' N -F 10 and NZ-F 3
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5. Conclusions and Final Remarks

The following conclusions result -from .the performed numeri-
cally MA: '

1. Vibrational spectra of the'harmonic model ( 2;5),.( 8—12) are’
inhomogeneous fractals [ 2,3 ] (cf. Figs. 3-5, 8- i1 ); i. e.,
they are multifractal objects with respect to the observable
G(x) [ 3 1. . .

f

2. The dependencies of the Renyl dfmensions D on q and a-f curves
are smooth (cf. Figs. 5,11 ‘and 4,9). The a-f spectrum of sin-
gularities of the integrated normalized density of states G is

) min * “max )y
where %in = D (g> +0 ), & D(g=»-w)=1and flee , ) =

a well pehaved function on the finite interval ( «

f - min
- ) =0. ‘ - _
The f(a) curves are convex and reach their maximum f on
max
(amin max) which is equal to the,fractal dimension D = D(g=0)

of the vibrational spectrum [ 9 ].

3. The form of the a-f spectra depends on the model parameters.

In particular, we have observed the following tendencies

3.1. The width of the interval (o .'— D (g» ), « =D (gs +»))
depends on the magnitude of model parameters and
I Dmin D (g = ~» ) decreases if Q —z/o ‘(cf. Figs. 3,

5 ) or h (cf. Figs. 8,10,11) is increasing,
- amax=Dmax=D(q 5 +x) = 1 independently of the magnitude of
model parameters Q and h but 8D(q)/8Q < 0 (cf. Figs. 3,5 )

and dD(q)/8h > 0 (cf. Fig.8, inset in Fig.9 and Fig. 11).

3.2. The fractal dimension D = D (g = 0) =fmax of ES is a decre~-
asing function of Q ( cf. Fig.3 and inset in Fig. 4) and en-
larges with h (cf. Figs. 8,11a, inset in Fig.9). These find-

ings agree with the results of previous studies [23,32].

4. The fractal dimension D is connected with the index & descri-

bing the scaling of the total widthband of ES Bl with the num-

ber of sub-bands" [9] Bl ~ Fl and 3 = 1—1/D. Our numerical re-
sqlts obtained from maximum value fmax of the f-a curve (cf.

Fig.3) and independently of the study of scaling of the totai

14

widthband By (cf. Fig.6) at Q=0.7/oé. N=F, , confirm this rela-

tion.
We point.out that the multlfractal analysis of VS ‘can be ‘per-

formed using another measure, i.e., the normalized 1ntegrated ‘den-
51ty of states F(y) where y —Ql/Qmax. We have verified numerically
that the a - f spectra of F(y) and G(x) are qualitatlvely equiva-
lent. The most remarkable differences betwen them have been’ né—,

ticed in these region of the a ~ f spectra where f takes its max1-
mum. It.follows from the obtained results that f . (G) —(f (F))

[23] where fmax(G) and f (F) denote the maximum value of f cor-
responding to the a - f spgctra of G and F, respectively.

In addition, we have observed thét if instead of G the measure F
is used then, the convergence of our simulations becomes_less ef-
fective at |q| » 1.

Finally, let us comment on some aspects of our numerical stu-
dies:’ »

During our simulations we have observed the double cusps in
the plots of f(a) [33] at sufficiently large |q| in two limiting
cases: (I) at Q < 0.1 / cé; (I1) at Q = 2.0 / cé. ‘

The former one is connected with the tendency of the a-f spec-
tra to attain the limit two-poinf spectrum (- 1,1), ( 0.5,0) corre-
sponding to Q=0 [17]. ’

In the latter case the breakdown of the scaling'approach [17 3]
is the computer artifact since at sufficiently large Q the magni-
tude of sub-band widths W, became very small (cf. Fig.2).

Notice that the convergence of.the applied MA-1s less effective

at g » -w than at g3 +o . This feature is visible 1in Figs.‘4, 9

.where the logarithmic scale has been applied to f.

It would be an interesting problem to study the multifractal

‘properties of VS corresponding to another type of one-dimensional

ape;iddic crystals [ 34,35 ]. This will be the subject of separate

. investigations.

References

1.. M.H.Jensen, L;P.Kadanoff, A.Libchaber, I.Procacia, J.Stavans,
Phys. Rev. Lett. .55, 2798 (1985) . ’

2. T.C.Halsey, M.H.Jensen, L.P.Kadanoff, I.Procacia, B. I.Shrai-
-man, Phys. Rev. A33, 1141 (1986) o ' »
3.- G.Paladini, A.Vulpiani, Phys. Rep. 156, 147 (1987)

15



0 N 00 b

11.
12!

13.

.

14.
15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.

27..
28.

29.

30.

31.

32.

33.
34.

35.

M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983)

.Ostlund, R.Pandit; Phys. Rev. B29, 1394 (1984)

.Kohmoto, Y.Oono, Phys. Lett. 102A, 145 (1984)

Tang, M.Kohmoto, Phys. Rev. B34, 2041 (1986) )
.Kohmoto, B.Sutherland, C.Tang,,Phys. Rev. B35, 1020 (1987)
.N.Evangelou, J. Phys. CZO, L295 (1987)

.Holzer, Phys. Rev. B38, 1709 (1988)

.Holzer, Phys: Rev. B38, 5756 (1988)

.M. Luck, Th.M.Nieuwenhuizen, Eurdphys. Lett. 2,.257 (1986)
.N.Evangelou, J. Phys. C20, L511 (1987)

.Doria, I.Sqtija, Phys. Rev. Lett. 60, 444 (1988)

Satija, M.Doria, Phys. Rev. B38, 5174 (1988)

.Gyorgyi, I.Satija, Phys. Rev. Lett. 62, 446 (1989)
-M.Luck, D.Petritis, J. Stat. Phys. 42, 289 (1986)

.P.Lu, T.édagaki, J.L.Birman, Phys. Rev. B33, 4809 (1986)
.Nori, J.P.Rodriques, Phys. Rev. B34, 2207 (1986)
.E.Burkov, J. Stat. Phys. 47, 409 (1987)

fSalejda, Commun. Joint Inst. Nucl. Res. E17-88-880, Dubnaz
a?gglejda, Int. J. Mod. Phys.B3, 1109 .(1989)

W.Sale jda, Preprint Joint Inst. Nucl. Res. E17-89-281, Dubna
1989 (to be published in Acta Physica Polonica in 1990)

W.Salejda, Preprint Joint Inst. Nucl. Res. E17-89-538, Dubna

1989
D.Levine, P.J.Steinhardt, Phys. Rev. B34, 596 (1986)

J.E.S.Socolar, P.J.Steinhardt, Phys.. Rev. B34, 617 (1986)
P.Dean, -Rev. Mod. Phys. 44, 127 (1972)

A. Renyi, Probability Theory ,North Holland Publ. Comp.,
Amsterdam 1970; Chapﬂll:

Z.Bo, J.Phys. A20, .6197 (1987)

W.Salejda, Commun. Joint Inst. Nucl. Res. E17-90-24%, Dubna
1990 :

M. Barnsley, Fractals everywhere, Acad. Press, New York 1988;
Chap. 3

M. Valsakumer, G. Ananthahrishna J.Phys. C20, 9 (1987)

M.Wolf, J.Phys. A22, L1075 (1989} )
J.M.Luck, Phys. Rev. B39, 5834 (1989)

J.E.S.Socolar, Phys. Rev. B39, 10519 (1989)

“EEX VOO0

T N ML Lo~ x 0

Received by Pubiishing-Department
on March 30, 1990.

16



