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One of the most interesting and actively developing trends 
in physics concerns an investigation of Bose-field collective 
states (squeezed, sub-Poissonian, etc.), their statistical and 
fluctuation properties. Interest in the stated problems is 
caused, in the first place, by increasing accuracy of quantum 
measurements including detecting of a signal below the shot noise 
level [1,2), and creation of optical low-noise communication sys­
tems as well as elaboration of optical computers [3]. At the same 
time, a common treatment of a problem is of great interest in 
other fields of physics, in particular, in statistical mechanics, 
condensed-matter physics, nuclear physics, and quantum chromody­
namics. 

In theoretical consideration of quantum optics problems col­
lective states are generated by diverse types of nonlinear inter­
actions. In the simplest case, the system Hamiltonian has a bi­
linear form with respect to Bose operators. This fact allows one 
to get the exact solutions with the help of the Bogolubov canoni­
cal transformation ( 4 J. For instance, in ref. [5 J the quadratic 
single-mode Hamiltonian of the form 

H 
(1) 

has been considered, where f 
1 

are numerical parameters which 
might depend on time. For the Hamiltonian (1) the existence of a 
squeezed state has been shown. In ref. (6} the two-mode problem 
with the interaction Hamiltonian of the form 

H 
(2) 

has been considered. With the help of this Hamiltonian the para­
metric generation process has been described. In that paper, the 



pair coherent states have been introduced and statistical fluctu-

ation properties have been examined. The possibility for 

squeezing of quantum fluctuations and violation of the Cauchy-

Schwarz inequality was also demonstrated (see also [7)). 

In the present paper, we investigate the time dependence of 

the quadrature operator variances characterizing the quantum 

fluctuations in the more general two-mode model problem with the 

Hamiltonian having the form 

H ( 3) 

With the purpose of diagonalizing the Hamiltonian we introduce 

new operators 

a, 
ro= I 

+ B' . ( 4) 

where the coefficients A: and s: are determined from the equa­

tions of motion 

[ a, , H J ~ hO, a, 

and from the fulfilment of the commutation relations 

[ a 

[ a. 

a: l 
a . 

• .. 
a: ] = 0. 

(5) 

(6) 

The straightforward diagonalization of the Hamiltonian (3) leads 

to the result 

(7) 

where 
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w 
, 

+ w 
, 

n' ' , 
+ g~-

, 
+ (-1) k+ 1 • k 1,2 ' 2 9, 2 

(8) 

'" . : [(w: -w~) 2+4(w~ + w~) (9~ - g~) + Bw 1 w 2 (g~ + g:)] 

It is worth noticing that a special case of the Hamiltonian (3) 
is the model Hamiltonian for the single-particle motion i.n the 
:field of the rotating anisotropic oscillator, which has firstly 
been analysed in ref.[B]. The solution of equations (5,6) allows 
us to determine the transformation coefficients A: and B: by the 
following relations: 

n' , 
(g~ - g~) -"' -v' n, ' , 

y' ' wz(gt + 92)2 + wt (o: - w~) ' (9) 

v' i "• 
wt (gt + 9z) + wz(9 t- 9 z) 

v' , 
wz(gt g)' + w (n' - w'J ' 2 1 lc 2 

(10) 

n' , 
(g~- g~) w -y' n ' ' v' , 

' wt (gt + 9z)z + w
2 (n:- w~) 

, (11) 

IY'i' (-1) lr.+l 1 '"\en: - w:) + wz (91 + 92)2 
' 0: o' n 2 

' 
( 12) 

where 

y' A' + B' v' A' •• . • • • • • (13) 

Time evolution of the operators a.(t) represented by the relation 

(14) 
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gives a possibility of finding the time dependence for the operators 

c . In accordance with the definition (4) we have 

' 
c. (t) I: [ A: ak (t) - s' <<t) J 

k" I 
(15) 

' L [ a (t)cn (O) + f3 (t)c .. (O) J "" "" " 
k" t 

where 

' -I 0 l •0 ' 
a (t) I: [ A' A' e • s: s: e • 

"" " 
(16) 

k" 1 

' 
f3 rn n (t) I:[ (17) 

k = 1 

The amplitudes o: (t) , f3 • n (t) obey the relation 

, 
L [ la."(t)i'- IS""(t)i' J 1 (18) 
n= I 

We introduce the time-dependent quadrature operators for the 

fields c.(t) in the usual way 

C:<t) 
i 

2 (19) 

Then, for the variances of these quadrature operators we obtain 

i [ 1 + 2 <(•C:Ct)c.(t))> + 2 Re <(Ac.(t))'> ). (20) 
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(21) ' L [ IS •• <tll' +( l• •• <tll' + IS •• (tll' J <(•C:<oJc.(oJ)> + n«t 

(22) 
' L [ • .. <tJs •• (t) + 2 • •• <tlS •• (t) <(•c:(o)c.(Ol)> + no:l 

+a' (t) <(&c (OJ)'>+ S' (t) <(•c•(o))'>] . mn m mn m 

It follows from equations (20-22) that the quadrature opera-
tor variances for the fields c

1 
and c

2 
depend on the choice of their initial states over which an averaging is performed. On the other hand, the dependence of the quadrature operator variances 

on the values a:•n' f3,.n leads to their nontrivial dependence on the coupling constants g
1 

and g
2 

of the fields c
1 

and c
2

• Thus, 
there arises a possibility of studying the time dependence of the quadrature operator variances both on the choice of initial states and on the character of interaction of the fields in the two-mode system. In the present paper, we consider only the fol-lowing three cases in choosing the initial states (t::O) of the fields c

1 
and c

2
: 

a) both the fields c
1 

and c
2 

are assumed to be in the coherent 
states 

I o::,. > D(•.l I 0 > 
(23) 

where 
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and for which the following relations are valid: 

<c,.(O)) •• 
<C:(O)c,.(O)) 

so that 

• 

•' . (24) 

( 25) 

b) the squeezed vacuum states are chosen as initial states for 

each of the fields in consideration 

I •. >- •I<J I o > 

where 

s(cj 

'· 

exp 

••• s • . 
then we have 

1 r c.''(o) 2 ..... 

<c,.(O)) = <C:(o)) = o 

<<(0}) = - cosh s 

and, hence, 

·•. sinh s. e 

•• sinh s. e • 

(26) 

(27) 

(28) 

c) one of the fields is taken in the coherent state while the 

other is in the squeezed vacuum state. 

The results of calculations for the time dependence of the 

quadrature operator variance. <(Ao
1

) 2) of the field c, 
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Fig.l. Time evolution of 
the quidrature operator 

variance <(~Q 2 ) 2 > for the 
system parameters w1 

~ w2 = w = 2 and for di­

verse values of the 

strength constants g 1 and 

92: a) 9 1 = 1, g? = 0; 

b) g" 0, g,. 0.5; 

0.5. The 
initial states of each 
of the fields c 1 and c 2 

are taken in the coherent 
states with a 1 ~ a 2 = 1. 

are given in Figs. 1-3. For g, of 0 and g 2= 0 the values of 

the variances do not change with time for each of the fields, 

i.e., the fields c
1 

and c
2 

remain in the coherent state (Fig.la). 

At g
1
= 0 and g 2 ~ 0 the behaviour of the variances is noticeably 

changed; however, the minimal values of the variances (1/4) are 

related to the coherent states of the fields c 1 and c
2 

(Fig. lb) . 

And only in the case when both types of interactions between the 

fields c
1 and c 2 are available (g

1
$ O, g

2
$ O),one can easily see 

a qualitative alteration in evolution of the system states: there 

exist certain time intervals w:hen the coherent states of the 

fields c
1 and c

2 
are "drawn" into the squeezed vacuum states (in 

Fig.lc it is just those time intervals where the variance values 

are less than 1/4) . Note that the presence of both types of 
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Fig.2. The same as in Fig.l. The squeezed 
vacuum states are chosen as the initial 
states for each of the fields with S 1 = = S 2 = Arsh 1, ~~ = ~ 2 = o. 

interactions in the Hamiltonian (3) do not essentially affect the 
character of evolution of the system of the fields c 

1 
and c,. 

being initially in the squeezed vacuum state, in comparison with 
the case when one of the coupling constants turns out to be equal 
to zero (see Fig.2). Nevertheless, in this case, one can see 
considerable reconstructions of the states of these fields. How-
ever, the situation is crucially changed when from the beginning 
one of the fields (say, c

1
) has been prepared in the squeezed 

vacuum state and the other (c
2

) ~ in the coherent state (see 
Fig.3). In this case the interaction of the type with g 1 ~ 0 ~nd 
g

2
= 0 causes the "drawing" of the field c

2
, being pr~pared in the 

coherent state, into the squeezed vacuum. state (Fig.3a). This 
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Fig.3. The same as in Fig.l. The field c
1 

is taken in the squeezed vacuum state 
(s 1 = Arsh 1, ~~ = 0) and the field c 2 
is in the coherent state {a 2 = 1) as the 
initial states of the system. 

effect doesn't happen with an interaction of the type g ~ 
' 

o, 
g 2 ~ 0 (Fig.3b). The behaviour of the system evolution in the case 
of both types of interaction doesn't drastically differ from the 
case with an interaction of the type g

1
$ o, g

2
= o (see Fig.3c). 

Thus, the considerat.ion of the influence of two types of 
interactions in the Hamiltonian {3) on evolution of the two-mode 
system reveals the effects of "drawing" of the initially prepared 
coherent states into the squeezed vacuum states. In a forthcoming 
paper we intend to study time evolution of the correlation 
functions determining the statistical properties of the system 
considered. 
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