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1. Goals of the work and initial dynamic model 

The only reliable way of finding out the dynamic model ap­

plicability is probably its qualitative study. Indeed, the dyna­

mic models usually have one or several parameters that are vari­

ed together with the initial conditions in the given variation 

region. The numeric simulation, i.e. the numeric solution of the 

Cauchy problem, yields the results for the countable set of pa­

rameter and initial condition values,so qualitatively different 

solutions are known to be able to have the initial conditions, 

for example, in the zero measure set among the set of possible 

initial conditions.In these circumstances the qualitatively dif­

ferrent solution may remain unnoticed by the researcher busy 

with the discrete sorting of the initial conditions. 

The pendulum equilibrium points are a simple example of 

this. The lower point of pendulum suspension is the only stable 

point of equilibrium, while the upper point of pendulum suspen­

sion is only unstable point of equilibrium. 

On the other hand, it is desirable that the qualitative 

study was a rigorous one. Being approximate in any sense, the 

qualitative study of the dynamic model (either the study of the 

equations "approximating" the initial ones, or the study of so­

lutions obtained by the pertubation theory) may yield qualitati­

ve results different from those of the rigorous and correct con­

sideration. An example is Ref.[l], where it was rigorously shown 

that all solutions of a dynamic model [2], physically correspon-
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ding to superradiance, are asymptotically stable,though the stu­

dy of the equations considered to be an approximaton to the ini­

tial ones showed that there were unstable solutions of physical 

sense [2-4]. In this case the rigorous study showed that there 

was no "superradi.ant threshold" [ 3, 4]. In this paper a dynamic 

model of the single-mode laser with two-level emitters and non­

coherent pumping is to be considered. The model, widely known in 

quanttim optics, is naturally obtained by averaging the operator 

equations in the interaction representation for a single-mode 

field,which interacts with two-level atoms, with relaxations 

taken into account in the simplest way[5]. The qualitative study 

of the stationary solutions of the model was carried out by 

Haken approximately[6]; it was widely sited in the publications 

dealing with self-organization processes. 

The more interesting is the fact that the asymptotic stabi­

lity of the stationary solutions above the generation threshold, 

obtained in Ref.[6], does not occur at almost all physical valu­

es of the parameters appearing in the investigated system of 

ordinary differential equations (see the comments). 1\s shown 

below, these solutions can be either simply stable and, conse­

quently, unstable with allowance for an external random force, 

or, what is even more unexpected, they can be exponentially un­

stable in a region of parameter values above the deneration 

threshold. 

Let us also clarify the terminology. 1\ specific feature of 

the dynamic model considered is that some of its stationary so­

lutions do not allow study of stability by the linear approxima­

tion. The latter is due to the fact that the matrix of linear 

part of the given system is degenerate, i.e. i~s determinant is 

equal to zero. So there are zero roots of the characteristic 

equation of this matrix. In the stability theory this is called 

a critical case if among the non-zero roots there are no roots 

with the positive real part [7-9]. The physical discussion of 

the rigorous results obtained is to be found at the end of the 

paper. 

1\ system of ordinary differential equations describing a 

single-mode laser ·~ith non-coherent pumping can be written down 

as [5-6] 
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b - K b - iga , 

a 

s 

- 7 a + igb s, 

N d - S 
c 

T + 2 i g 

* 

(1) 

* * (a b - b a ) . 

In these equations b and b are the mean from the photon 
creation and annihilation operators, * a and a are the mean from 
.the operators of the transition from the lower level to the up­
per one and back. The operators are taken in the interaction 
representation. The variable S is a difference in the number of 
excited and non-excited emitters. N is a total number of emit­
ters, K > o is the rate of the field relaxation due to radia-
tion, 7 0 is the rate of the transverse relaxation of the 
emitters, T 

emitters, g 

0 is the time of longitudinal relaxation of the 
0 is the atom-field interaction constant, d

0 
is 

the pumping intensity ,which is the bifurcational parameter. 
on the right-hand side of eq. (1) there can be a randomly 

time-dependent force. Its effect on the stability of the statio­
nary solutions above the generation threshold will be discussed 
in the comments (section 4 ) . 

Equation (1) were considered by Haken (section 8.4 in 
Ref. [6]) in the following way. If one takes into account only 
the formulae, one can see that first the stationary solutions 
were selected. Actually, eq. (8.13) in Ref.[6) means that bS and, 
consequently, a are taken as time-independent quantities; 
eq. (8.17) means that the quantity S does not dependent on time, 
and this is also true forb in virtue of eq.{8.13). To consider 
the time evolution near the stationary solutions, the right-hand 
side of the rigorous relation between the stationary values of S 

* and b ~· which is the sum of the geometric progression, was rep-
laced by the sum o{ its first two terms. An equation of the 
known form was obtained [6]: 

b = ( - K 

g' 
N d 

c 
b - 4 * b bb, 

which has two sets of stationary solutions for real 
on the signs of the coefficients. Namely, if d < K c 

(2) 

b, depending 

r jg2
N, there 

is only a zero stationary solution, which is asymptotically sta-
ble. But the stationary solution above generation threshold, 
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when d >d =Kl'jq2N, is of main interest. As seen from (2), in 
0 c 

this case there are two non-zero stationary solutions, which are 

asymptotically stable, and a zero solution, which is exponen­

tially unstable. The Lyapunov function, well known for eq. (2) 

{eq. (8.23) in Ref.[6]), was given. 

As shown below, despite the fact that the stationary solu­

tions of (1) and (2) coincide, the qualitative properties of 

these solutions are significantly different. So equation (2) can 

in no way serve as an approximation of initial dynamic system 

(1) consequently, the results obtained for (2) cannot be used 

in a general case for the physical discussion of dynamic system 

I 1 l. 
The following should also be mentioned. System (1) should 

not be identified with the dynamic system describing the laser 

and consisting of three equations, allowed with respect to the 

first derivatives and considered in Refs.[6,10,11]. It is seen 

that the system of five ordinary differential equations conside­

red cannot be reduced by any exact transformation to the system 

of three differential equations [6,10,11] taken for the spatial­

ly· uniform solutions ( the Lorenz model [13,6]). So in a general 

case the results obtained for the latter system cannot be app­

lied to system (1). 

To study the stability of the stationary solutions, one 

must write down a system of equations in variations near these 

stationary solutions. Thus we obtain the stationary solutions in 

the explicit form. These solutions were first considered in 

Ref.(l2J. 

Both for convinience of calculations and for physical dis­

cussion the real variable are more preferable. A set of these 

variables {b
1
,b

2
,a

1
,o;

2
,S} is introduced by the following evident 

transformation: 

• 
b2 i ( b - b ) ' 

• 
I J l 

a + a 

• 
a;; i ( a - a ) , 

system of equations (1) becomes of the form 
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b 
' 

b 

' 
a, 

a 
' 

0 
a,, 
near 

X 

' 
X 

' 
X 

' 
X 

' 
X 

' 
X 

-

-

-

-

K b + g 
' 

K b - g 
' 

' a - g 
' 

' a + g 
' 

N d - S 
0 

T 

" ' 

" ' 
b

2
S, 

(4) 

b ,s, 

Let the stationary solutions of (4) be denoted by { b~,b~, 
a 0 So). we ,. introduce the variations X {xt,x2,xJ,x4,xs} 

of the variables: 
these stationary solutions by replacement 
b bo 

' 
,. 

b bo 

' 
,. 

a a 0 

' ,. (5) 
0 a a 

' 
,. 

s so. 

The equations in the variations are of the form 
LX + F(x) 

(6) 
where L is the matrix of the linear part of equations (6) 

- K 0 0 g 0 
0 - K - g 0 0 

L 0 -qso - ' 0 -gb~ (7) 

gso 0 0 - ' gb~ 
0 0 

gb~ -gb~ -1/T -ga:2 ga, 

and F(x) is the column with nonlinear terms: 
F(x) = { 0, o, -g x

2
x

5 , g x 1x
5 , g (x

2
x 3- x 1x

4 )}. (8) 
In the general case the matrix elements L

11 
depend on the 

stationary solution { b~, b~,a~, a~, S0
)which is determined from the 

equations: 
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g 

b' 

' 
' a'[_>:_ 

' K 

' 0 [ g a --
' K 

T 

0 
a,' 

g 

" K 

s' -

0 

'' 

·l 
s' - ·l 

' g 

0, 

0, 

(9) 

The main aim of this paper is to study stationary solutions 

above the generation threshold 
xr 

d 
' Ng' 

but for the sake of completeness we shall also briefly consider 

the case when d
0

< de. Relow the generation threshold there is 

only one stationary solution of the form (O,O,O,O,Nd
0

}, corres­

ponding to spontaneous radiation. Substitute it in matrix (7} 

and denote it by L5p. It can be easily seen that because of d0 
de the following inequality is valid: 

(q - N dog2)2 
det L < 0' ., T 

(10) 

i.e. L is 
"' 

not degenerate. Since 

II F{x) 
lim 

II X II 
0, 

X II ~ 0 

( 11) 

the theorem 

be applied. 

the form 

of stability in the linear approximation 

A characteristic equation for the matrix 

[7-9] can 

L is of 

" 

(A++ )p/ + (K + 'J)i\ + K1- N d
0
g2

)
2 

= 0. 

It is seen that at -(X-7) 2/4g;>N < d 
0 

has three different negative roots, two of 
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degenerate. If d
0 

= - (x-;r) 2
j4g2N, there are two different ne­

one of them being fourfold degenerate. If d0 there are a negative root and two double degene-

gative roots, 
-(x-;r) 2

j4g
2N, 

rate cdmplex conjugate roots with negative real parts. 
Thus, according to the theorem of stability in the linear 

approximation, the spontaneous radiation described by the sta­
tionary solution { 0, 0, 0, 0, Nd

0
} is asymptotically stable at all 

values of d < d . c c 
It is seen from equations (8) that if 

x> 

besides 
Ng' 
the then, spontaneous radiation regime considered in 

subsection 2.2, a stationary solution with non-zero values of b~ 
and a~ is possible. For the latter quantities natural parametri-
zation can be introduced~ 

a cosrp 

a~ a sinrp 

a = j (a o) 2 + ( ao) 2 

' ' 
0 .:s rp < 2rr . 

(13) 

Since for the stationary solution with the non-zero a~ and 
b~ the relation 
' s' 

<> 

' g (14) 
is always valid, we obtain from (9) 

K 

(15) 

Thus the stationary solution above the generation thre­
shold, corresponding to the laser regime, is of the form 

g g q I - a sinrp - - a CO Sip a COSq:> a sin1p (16) K K 

' g where a is determined acco:td in_g to ( 15) ' and the phase • is a 
free parameter determined only t'rom the initial conditions. 

Note also that above the generation threshold, i.e. under 
the condition d

0 
> de, the stationary solution {O,o,O,O,Nd

0
}, 

which is also possible and corresponds to the spontaneous radia­
tion, becomes exponentially unstable.As seen from (12), in this 
case one of its double degenerate roots is positive. 
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2. Investigation of stability above the generation threshold. 

Substitute solutions {16) in matrix {7), denote the obtai­

ned matrix by L 1 ~~ and, using (6)-(B), write down the equations 

in the variations x = {x1, x
2

, x 3, x 4, x 5) 

X ==-KX + 
' ' 

gx4 , 

X
2 
=-KX

2
- gx

3 
, 

• K} g2 

x
3
=-orx

3
- g x

2 
+ K a cosrp x

5 
- gx

2
x 5 , (17) 

K1 g
2 

x
4 

=-orx
4
+ g x

1 
+ K a sin~p x 5 + gx

1
x 5 

T 

g' 

K 

The task is to study the stability of zero solution of sys­

tern (17), or, which is the 

b' 0 0 S'J 
g 

a ,. a 
'' 

, {- o:Sin 
'' K 

initial system (4) or (1). 

sCJ.me, of the 
g 

•• --a cos •• K 

stationary solution 
K1 

a: Cos •• a sin •• ' g 

lb' ,. 
) of 

Let us calculate the determinant of the matrix L of the ... 
linear part of system (17). After simple, though long, calcula-

tions we find that at all values of K, or, g, 1/T and N 

del L = 0 
I~~ 

(18) 

Equation (18) indicates the most important feature of sta­

tionary solution (16) of considered dynamic system (4) or {1). 

It means that among the characteristic numbers of the matrix 

L there is at least one zero characteristic number. Then, if ,., 
among the non-zero characteristic numbers of the matrix L 

"' 
there is al least one with the positive real part, the zero so­

lution of system (17) or, which is the same, stationary solution 

(16) of initial system (4) or (1) allows the study of the stabi­

lity in the linear approximation (7-9] and is exponentially un­

stable. 

If among the non-zero characteristic numbers of the matrix 

L 1 ~ 5 there are no those with the positive real part, then the 

zero solution of system (17), or solution (16) of initial system 
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(4) or (1), cannot be investigated for the stability in the li­
near approximation, i.e. the critical case is realised. 

,In this paper we shall thoroughly consider the critical 
case for system ( 17) , when there are a zero root and non-zero 
roots with the negative real part. 

Let us find a characteristic equation for the matrix by 
calculating the following determinant: 

-(i\.+K) 0 0 g 0 

0 -(A+K) -q 0 0 

, 
Ai)= KT q det(L - 0 -(A+r) 0 -a cosrp (19) ... q K 

, 
"--1: q 

0 0 - (A+r) -a sinrp q 
K 

, , 
q acosrp g asinrp 

1 -gasinrp gacosrp 
K K 

-(A+T) 

Putting determinant (19) equal to zero, after long calcula­
tions we obtain the equation 

(20) 
which, as expected in virtue of (18), has one zero root. The 
coefficients entering into (20) are 

c 
' 

c, 

c 
' 

1 2K + 27 + T 

(21) 

All C
1 

are positive, so the zero root is the only one, and 
the necessary condition of the real parts of non-zero roots of 
eq. (20) being negative is satisfied. Then we demand that the 
Hurwitz criterion is satisfied: 

1>0, T
1

=C
1 

cT -c2c o, J 2 1 4 
If conditions 

of the equation 

T=CT>O. ' . ' (22} are satisfied, 

11.
4 

+ C i\
3 

+ C A
2 

+ C i\ + C 0 1 2 J 4 

9 

(22) 

i.e. the Hurwitz minors 

(23) 



are positive, the matrix L has one zero eigenvalue and four 
h~ 

non-zero eigenvalues with the negative real part. In this case 

the considered zero solution of system (17), or the stationary 

solution of initial system (4) cannot be investigated for the 

stability in the linear approximation, and special methods are 

required [7-9], 

Fultillment of conditions (22) considerably depends on the 

signs of the 

tions of many 

minors T and 
' variables: 

T 

' T 

' 

T
2 

(d
0

, JC, J, T, g, N /) 

T 
3 

{ d
0

, K, J, T, g, N ) 

which are bulky rational func-

(24) 

A separate paper deals with the investigation of the func-

tions T
2 

and T
3

, since the situations that occur at their diffe­

rent values are so various and physically interesting that can­

not be covered by the subject of this paper. Only one possible 

case is announced in this work because it is important. Mean­

while, the following should be mentioned. 

Conditions (22) are fulfilled at the parameter values ty­

pical of the majority of practical lasers (see book [14] and 

table 1 on page 48 in ReL (15]). Omitting cumbersome calcula­

tions and general expressions for T
2 

and T
3

, which are hard to 

analyse, we give experimentally natural specific cases. Namely, 

let 
1 

where K 

T, 

T 

' 

' 
0 is a number. Then 

5 -))d~ + 
K 

( 25) 

( 26) 

(27) 

A.t d d 

' dently positive 

and when K < J, T and T are evi-

' ' for the majority of practical lasers. Indeed, if 

' < 1 ,then K 1. In this case T as • linear function of d 

' ' 
is positive in the region d d 0. The quantity T as a 

0 . ' 
function of d is 

' 
a second-order polynomial whose coefficients 

are positive at K . 1. So T has two negative roots and is 

' limited from below, consequently, in the region d d 0 

' ' 
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the funct~on T
3 

= T
3

(d0) is positive. 
Thus, conditions (22) of the critical case considered are 

fulfilled for the majority of practical lasers [14,15]. 
The non-critical case, when the real part of at least one 

root of characteristic equation (20) is positive, is of special 
interest. In the non-critical case, which is not considered in 
detail in this paper, solution (16) is exponentially unstable. 
The search for these laser radiation regimes is now a very po­
pular experimental and theoretical preble~ (e.g. see subsection 
2. 3 in Ref. [ 16] and additional references thereof) . However, 
this problem was not raised for dynamic system (1), which is 
probably due to theoretical results (section 8. 4 in Ref. [ 6]). 
Now we show that the exponentially unstable radiation regime 
occurs above the generation threshold for a laser described by 
dynamic system (1). It is enough to give an example, i.e. to 
show a set of values of d

0 
>de, K, 1, T, g, N, which have phy­

sical sense, when at least one of the functions T
2 

or T
3 

is 
negative. Then, in virtue of the Hurwitz theorem, among the 
roots of eq. (23) there are roots with the positive real part, 
and solution (16) of system (4) is exponentially instable [7-9]. 
The simplest way is to consider the d

0 
linear function 

r(K,r,T,g,N)d
0 + q(K,r,T) 

where the coefficients are 

g 2
N 1 

r(K,o,T,g,N) 
<T lr + T 

q(K 1 , T) 2 I< + r I' 

If the condition 

l 
1 + T 

-

+ 

<) 

4< ' + 9q 

T 

+ ,, ' 2< + r 
+ 

T' 

( 29) 

( 30) 

I 31) 

is fulfilled, then r(K,r,T,g,N) < o, and the function T
2

(d
0

) 
b8~omes negative at 

q(K, r, T) 
d 
e~p r{K,O',T,g,N) (32) 
Consequently, if condition (31) is fulfilled, solution (16) 

will be exponentially unstable at least in region (32). The only 
thing remained is to make sure that our consideration has sense, 
i.e.. d is in the region where solution ( 16) exists. To be "" o.o, the following inequality must be valid: 
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d ~ d 
exp C g'N 

(33) 

We just give an example in order to show that (33) is 

valid. Let relations (25) hold good again. Then 

r 2 6K + 17K~ + lOK 3 + 2K~ 

g 2N K ~ 2 
(34) 

i\t K > 2 condition (33) is seen to be satisfied. For 

example, if K = 3, then 

proved the existence of 

d = 603l 2 /g2 N = 603d~ . Thus we have 
exp ~ 

the threshold of the exponential insta~ 

bility, which was earlier unknown for this model, and have ob­

tained approximate estimations (31) and (32) for its existence 

region and for its value. Evidently, (31)-(32) can be replaced 

by other estimations after the investigation of the function 

T
3
(d

0
). 

We have already shown that the fact that besides the zero 

root characteristic equation (20) has four non-zero roots with 

negative real parts is physically quite possible for practical 

lasers. since in this case laser solution (16) cannot be inves­

tigated for the stability in the linear approximation, one 

should apply the theory of steady-state motions [7-9]. In our 

case system (17) must first be reduced to the form when the de­

rivative of one of the variables has no linear part {7-9]. Omit­

ting the calculation method {9], we introduce a new variable 

g 0 g 0 

y = b~x1 - b~x 2 + J b 1x 3 + J b 2x, (35) 

The derivative of this variable is a nonlinear function of 

X' 
' , 

g ' 
y = 7xs (b2xt - b~x2) 

Let us also assume that 

(36) 

b~~o (37) 

and replace the variable x
1 

by y in equations {17). If we had b~ 

= 0, we would replace x
2 

by y and continued as follows (above 

the threshold a > 0, so, as seen from parametrization (13), b~ 

and b0 cannot be equal to zero at the same time). System (17) 

' gets the following form in the variables 

y 
g 

b
0
x 

r ' ' 

12 



b' 

K j X
3 + gb~ X

5 + ( 38) 

' 
+gxs( _!_ y + 

b' g b' g 

l ' ' ' X 

' 
X 

' 
X 

' b' bo r b' r 
' ' ' 

X a 0 
b 0

a 0 
0 gb~ a~ ' ' q(a~ ' ' + x~ -

'i' - g y + - X g(b +---)X + ' b' b' ' 2 
1 b~ J ' ' 

0 
b' gb~ g ga, 
' b

0
) x + -gx ( ___!__ + g(-,- - gx2x3 y +- X x- x4) ' ' ' ' b' bo ' rb~ ' r 

' ' where the coefficients involve components of stationary solution 
(15)- (16). 

The apply the theorem of the critical case with a zero cha­
racteristic root [7-9}, it is necessary to transform equations 
(38) once more in order to eliminate y linear terms on their 
right-hand sides. Omitting the way of finding this non-linear 
transformation [7-9}, we write down the final result. The trans­
formation has the form 
x

1 
= ~~ + u

1 
(y) 

(39) 
l =o 21 31 41 5 t 

where the functions u
1
(y), 1 = 2,3,4,5, are reduced to zero at 

y=O and reduce the right-hand parts of equations (38) to zero at 
<,~ <,~ 

relations 

E =o 
' 

-" U
2

(Y), g 

<r 

gb~ ('<-+'¥) 
y + 

These 

2 A 
' 

Kb
0 

functions 

' u2(y)' 
gb~ 

are specified by the 

(40) 

The parameters A
1

, A
2

, B, D
1 

and D
2 

depend on the parame­
ters of initial system (4) or (1) and stationary solution (15)-

13 



(16) in the following way: 

2ga? 

A, -------:o • 

•, 

B 

' ••' 

g{~~::+1) (ct)
2 

2K1tt
0 

n, ' (41) 

D 

' g2(K+})2(a:~)2 

After transformations (35) and (39)-(41) system (17) takes 
the form 

€, 
T + g(a~-

+g 
ga' 

(--' 
1 

(42) 

Kb
0 

£:2- b~ EJ+ gb~ Es + :=:,(Y,€2,~J'~4'€s)' 

' 
)€2 + g(b~+-

Omitting the form of the functions Y and I = 3 1 4,5 
which are easy to calculate, we point out their main feature: at 
( 2= 1';

3
= ~4 = 1:;

5
= 0 these functions become equal to zero: 

Y (y, 0, 0, 0, 0)=::':
3

(y, 0, 0) =::':
4 
(y, 0, 0, o, 0)=::':

5 
(y, 0, 0, 0, 0)=0. (43) 

In this case system (42) allows a particular solution: 
y = Canst, 1:;

2
= €

3
= !';~= €

5 
= 0. (44) 

According to relations (43) and the terminology adopted in 
the theory of stability [7-9], system (17) belongs to a "special 
case" of the critical case with a zero root of the characteris­
tic equation. Then, according to the relevant Lyapunov theorem 
[7-9], the trivial solution of system (17) or, which is the 
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same, stationary solution (15)-(16) of initial system (4} or (1} 
is stable, but not asymptotically stable. According to the co­
rollary of the theorem, any non-trivial solution of system (17) 
sufficiently close to the trivial one or, which is the same, any 
solution of initial system (4) or (1) sufficiently close to the 
stationary one tends to a solution determined from relations 
(44). 

3. Investigation of stability at the generation threshold, 

But what does happen at d
0
=d/=K1/g2 N ? It is seen from (16) 

that under this condition matrix Lsr has double zero eigenvalue 
and negative other eigenvalues. Consequently, stability problem 
is not solved by linear part of equations - the critical case 
with double zero root is realised. 

To solve this problem let us construct explicitly correspon­
ding Lyapunov function. In this case system of equations in va­
riations (13)-(15) is written down as 

K r 
x~ -K X + g X . ' X~ -K X- g X 

'' 
X -r X - --x- g XX' ' ' ' ' ' ' g ' ' , ' 

K r X , (45) 
X ~ -r X + xl+g X X , ' X + 9(x

2x
3 
-x

1
x

4
). • • g ' ' T 

Using non-degenerate linear transformation 

r 
z ~ 
' 

X +X ; Z = - X +X ; Z =x + 914 2 923 JJg 

we can lead system (45) to the form 

' g 

z 
' 

z = -, 
z , 
T { 

(z -z ) (K z +r ' . ' 

K 
z =x- -x 

4 4 9 1 
( 46) 

g 
- (1C+r)z4+ K~zs(zt-z,); 

(47) 

z,) + (z,-z,)(K z,+r z,>}· 

Defining the Lyapunov fuction as 

v 
(48) 
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and differentiating it over the time, we obtain that in virtue 

of (47) 

d v 
(49) 

d t 

since the stability problem for the z 1 variables coincides 

with the stability problem for the original x, variables we can 

conclude [7-9] that stationary soluiton X
9
P describing sponta­

neous emission is only stable but not asymptotically stable at 

d 0 d.,. 

4. Comments 

We have not considered the other critical case possible for 

system (4) or (1). It is the case when characteristic equation 

(20)-(21) has one zero and two pure imaginary roots. This case 

is realised if T
3
(d

0
, 1<, -,, T, g, N) = 0. Let us note that 

fourth order equation (23) can only have the imaginary roots if 

they are double degenerate. According to the analytical computer 

calculations, the discriminant [17] differs from zero at non­

zero parameters 1<, 1, T, g, N, consequently, the critical case 

with one zero and four imaginary roots takes no place for the 

system considered. Above mentioned possible critical cases re­

quire special methods of investigation [7-9] that differ from 

the applied one, that is why they were not included in this 

paper. 

In the case considered allowance for a random external 

force leads to instability of the solution, since only asympto­

tical stability is a sufficient condition of stability of the 

solution of equations with permanently acting perturbation (see 

the main theorem in section 74 of Ref. [9]), and the solution 

investigated is not asymptotically stable. 

One can look for an asymptotically stable laser solution 

only in the critical case with one zero and two imaginary roots 

of the characteristic equation. Even if this solution is found 

(the author thinks it is unlikely), it follows from the condi­

tion T
3
= 0 that this solution is realised at the only value of 

d
0 

> d~ for the fixed parameters of the problem (e.g. see (27)). 

The known approximate result (Haken [6]) was that the la­

ser radiation described by system (1) is asymptotically stable 
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• 

1 
at K « "/, T· Consequently, one can ignore fluctuations of, for 

.1 
T• which would make 

example, temperature, at least for K 
the model suitable for description of lasers with a sufficiently 
stable phase and amplitude of radiation. 

Here the rigorous investigation was done for all physical 
values of the parameters. It was found out that there is no 
place for the asyrnptotical stability: the system can be either 
simply stable or exponentially unstable. 

The former means that the random force, i.e. fluctuations, 
cannot be ignored. Allowance for fluctuations leads to instabi­
lity. It will be the instability of the radiation phase if!, 
since in virtue of (13) it is this phase that parameterizes 
family of solutions (44), to one of which tends any slightly 
perturbed solution in virtue of the corollary of the theorem of 
stability in the critical case. So in this case the model de­
scribes a laser with the unstable phase and stable amplitude of 
radiation. 

The latter means that at least under condition (31) a high­
er pumping intensity leads to the exponentially unstable regime 
of such a laser. The existence of the exponential instability 
threshold was not earlier known for the given model. The analy­
sis of the parameters of practical lasers [14,15] shows that the 
most suitable object for the experimental check of the model 
predictions under condition (31) is a C0

2 
laser. The experiment 

is probably possible for other gas lasers if their resonators 
can be changed in length as necessary. Note that condition (31) 
coincides with the similar one for the Lorenz model (see rela­
tions (12.10) in Ref. [6]), which indicates a qualitative simila­
rity of the models in the given region of parameters. 

Finally, remember the analogy between the generation thre­
shold in the laser and the 2nd order phase transition [18,15]. 
This analogy is based on the Lyapunov function for the laser 
system being similar to the Landau expansion for the thermodyna­
mic potential near the critical point, It follows from the sta­
bility 9f the laser solution that for this case there is a 
Lyapunov function [19], but it is not quite clear if its expan­
sion at small field amplitudes will have the form similar to the 
above-mentioned Landau expansion. so this question remains open 
for the system considered. 
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