

объединенный институт ядерных исследований
 дубнд

A 95
E17-89-877
L. V.Avdeev

THE LOWEST EXCITATIONS
IN THE SPIN-S XXX MAGNET
AND CONFORMAL INVARIANCE

Submitted to "Journal of Physics A:
Math. Gen."

The study of low-lying excitations in finite-size onedimenaional quantum aystoms without a mass gap is of interest because of their rolation to conformal invariance. The behaviour of finite-size energy corrections in the scaling region allows ono to dotormine tho paramotors of the underlying conformal fiold thoory relevant to critical phenomena [1]. The Bethe ansatz [2, 3] reduces tho solution of an integrable model to a system of coupled equations. This permits reaching a larger size and perlorming a moro dofinito chock of conformal-invariance predictlons.
l'ho Intugrablo upin-s gonoralisation [4-6] of the Holsonborg ring of N epins leade to the following Bethe-anatz equations

$$
\begin{equation*}
\binom{\lambda_{j}+1 s}{\lambda_{j}-1 s}^{N}-\prod_{k=1}^{N} \frac{\lambda_{1}-\lambda_{k}+1}{\lambda_{j}-\lambda_{k}-1} \quad j=1 \ldots . \ldots, \tag{1}
\end{equation*}
$$

where oshssN. A solution got of complox numbore $(\lambda,)^{\prime}$ determinos tho onorgy E, momontum P, and apin S of a btato

$$
\begin{equation*}
E=-\sum_{j=1}^{N} \frac{s}{\lambda_{j}^{2}+s^{2}} \quad P-1^{-1} \sum_{j=1}^{N} \ln \frac{\lambda_{j}+1 s}{\lambda_{j}-1 s} \quad S=s N-H . \tag{2}
\end{equation*}
$$

Conformal invarianco prodicta [1] that with poriodic boundary conditions as N so the ground-state and excitation energles should behave like

$$
\begin{align*}
& E_{v}=e_{\infty} N-\frac{1}{\delta} \pi v N^{-1}\left[c+O\left(\ln n^{-3} N\right)\right] \tag{3}\\
& E_{\alpha}-E_{v}=2 \pi v N^{-1}\left[x_{\alpha}+d_{\alpha} / \ln N+o\left(\ln n^{-1} N\right)\right] \tag{4}
\end{align*}
$$

where a central charge c, scaling dimensions x_{α}, and slopes d_{α} are parameters of a universality class, while e_{∞} and v are specific of a particular model. Equation (4) refers to the lowest state of a 'tower' of states with

$$
\begin{equation*}
E_{\alpha}^{(m, n)} \propto E_{\alpha}+2 \pi v N^{-1}(m+n) \quad P_{\alpha}^{(m, n)}=P_{\alpha}+2 \pi N^{-1}(m-n), \tag{5}
\end{equation*}
$$

where $m, n \geq 0$ are integers.
For the present model, $e_{\infty}=L_{n=1}(2 n-1)^{-1}$ if s is an integer, and $e_{\infty}=\ln 2+\sum_{n=1}^{-1 / 2}(2 n)^{-1}$ for a half-odd-integer s [5,6]. The effective velocity of sound $V=\pi / 2$ is extracted from the dispersion
relation for elementary excitations (holes) [5-8] which should reproduce formula (5) as $N \rightarrow \infty$. The conjectured value of the central charge is [8]

$$
\begin{equation*}
c=3 s /(s+1) \tag{6}
\end{equation*}
$$

It agrees with the specific heat capacity at low temperatures [6] which should be $C_{N} / N \simeq \frac{1}{3} \pi C V^{-1} T$. The conjecture for the underlying conformal field theory is the $S U(2) \quad k=2 s$ Wess-zumino - Novikov - Witten σ model [9]. In that case, primary field operators should have the following scaling dimensions [10]

$$
\begin{equation*}
x_{j}=j(j+1) /(s+1) \quad j=0, \frac{1}{2}, \ldots, s \tag{7}
\end{equation*}
$$

For the simplest case of $s=\frac{1}{2}$, when the bulk of the configuration comprises a sea of real roots, powerful analytic methods have been developed to evaluate finite-size corrections [11-13]. The results agree with the numerical computations [14,15], although the logarithmic corrections in formulae (3) and (4) make the extrapolation, even for $N \leq 1024$ [15], rather hard [13].

For $s>\frac{1}{2}$, another difficulty arises, concerning the accuracy of the Bethe string hypothesis [2,16] used in references [5,6]. The hypothesis claims that, as $N \rightarrow \infty$, any solution of equations (1) should consist of some n-strings

$$
\begin{equation*}
\lambda_{m}=x+i[(n+1) / 2-m] \quad m=1, \ldots, n \tag{8}
\end{equation*}
$$

with deviations of $O[\exp (-a N)]$. Already at $s=\frac{1}{2}$, some non-string configurations appear [17,18]. A relaxed version [19] of the string hypothesis involves these configurations on the background of the sea of perfect $2 s$-strings. However, the numerical computations [20-22] show that at least $O(1 / N)$ deformations of the sea strings occur. As a result, the analytic estimate that does not take these deformations into account leads to $c=1$ irrespective of s [22], which contradicts the numerical data [18,20-22] supporting formula (6).

An important step to the analytic description of the string deformations has recently been made by de Vega and Woynarovich
[23]. They succeeded in analytically estimating the leading correction to the imaginary parts of the roots (8) for the vacuum solution through a generalisation of the Euler-Maclaurin integration formula to include nonanalytic contributions in N^{-1}. It is worth comparing their estimate, which describes the asymptotics in $N \rightarrow \infty$ for the bulk of the deformations (except the ends of the string distribution), with the computer data. In table 1 , data for deviations of the distance between successive members of a string (8) from the imaginary unit, $\Delta x+i \Delta y=\lambda_{m}-\lambda_{m+1}-i$, are shown. The minimum Δy is multiplied by N and then extrapolated to $N \rightarrow \infty$ from the computer results for $s N \leq 128$ [20]. This $N \Delta Y_{\min }^{e x}$ is presented in conjunction with the theoretical predictions [23] $N \Delta Y_{\text {min }}^{\text {th }}$ for $1 \leq s s_{\frac{9}{2}}$. A perfect agreement is observed within extrapolation errors, presumably of $O(1 / N)$.

Table 1. The extrapolatedminmm string deformation $N \Delta Y_{m i n}^{e x}$
and its theoretical prediction $N \Delta y_{\text {min }}^{\text {th }}$ for different S.

$2 s$	$N \Delta y_{\min }^{\mathrm{ex}}$	$N \Delta Y_{\min }^{\mathrm{th}}$		$2 s$	$N \Delta Y_{\min }^{e x}$	$N \Delta Y_{\min }^{\mathrm{th}}$
2	0.220	0.220635600	6	0.053	0.050403	474
3	0.153	0.153174481	7	0.043	0.040913	071
4	0.093	0.091572048	8	0.034	0.031946	720
5	0.072	0.070258730	9	0.030	0.026892	235

> Table 2. Numerical solutions λ and theoretical predictions $\lambda^{t h}$ for the roots of a g-string at $s=9 / 2 \quad N=52$.

Re λ			Im λ		Im $\lambda^{\text {th }}$			
0.019	295	132866	0		0			
0.019	294	724871	± 1.000	61728746	± 1.000	518	108	80
0.019	293	355234	± 2.001	32957757	± 2.001	136	553	89
0.019	290	441652	± 3.002	32360198	± 3.002	054	142	
0.019	284	156.898	± 4.004	29049252	± 4.003	997	205	57

A comparison of internal deformations of a sea string near the origin for the $s=\frac{9}{2} \quad N=52$ vacuum with the asymptotics [23] is presented in table 2. The roots of equations (1), computed numerically, and their imaginary parts in the asymptotic approximation
[23], taking into account the real-root position, are presented. One can see that the theoretical predictions underestimate by $7-20 \%$ the actual string deformations. The error seems to be of $O(1 / N)$.

Nonetheless, for excited states there are still no analytic results taking into account string deformations which are not smaller than $O(1 / N)$, as we have seen. Thus, numerical computations may provide an important information. The results of the present letter (tables 2-5) have been obtained by a Newton-type method for the logarithms of equations (1) [20], regrouped [18] according to the chain configuration of strings [16] and multiplets [19], to localise singularities in internal deformations of the chains.

To extract the critical parameters, it is convenient to consider the following finite-size energy correction

$$
\begin{equation*}
f=\left(E-e_{\infty} N\right) N /(2 \pi v) . \tag{9}
\end{equation*}
$$

According to formulae (3) and (6), we expect that for the vacuum solutions, as $N \rightarrow \infty, f_{v}$ should approach the limit of $-\frac{1}{4} s /(s+1)$, proportional to the central charge. Thus, for $2 s=1,2,3,4$, and 9 , we get $-1 / 12,-1 / 8,-3 / 20,-1 / 6$, and $-9 / 44$. Besides the vacuum, for each s and N, two lowest excitations are computed, the singlet (with the total spin $S=0$) and the triplet ($S=1$). Solutions of the latter type have already been studied [21,22] (sector $r=1$); in the domain of overlap, the results are in agreement with ours which extend to larger N. A conjecture to be verified in tables 3 and 4 is that the conformal dimensions both for the singlet and triplet are given by formula (7) with $j=\frac{1}{2}, x_{s}=x_{t}=\frac{3}{4} /(s+1)$. Hence, the finite-size energy corrections should approach $f_{s}, f_{t} \rightarrow \frac{1}{4}(3-s) /(s+1)$, which equals $5 / 12,1 / 4,3 / 20,1 / 12$, and $-3 / 44$ for $2 s=1,2,3,4$, and 9. The normalisation factors in tables 3 and 4 involve the denominators of the expected limit values, to make the comparison easier

Table 3. Finite-size energy corrections for the vacuum and the lowest
singlet and triplet excitations $f_{v, s, t}$ in conjunction with the higher-level
Bethe-ansatz approximation $F_{s, t}$ and their extrapolations to $N \rightarrow \infty$.

The data are extrapolated to zero in $1 / 1 n N$ linearly (using two last rows) and quadratically (three last rows). The extrapolation of the vacuum correction f_{v} includes the terms $1 n^{-3} N$ (3) and $l^{-4} N$. For estimating extrapolation errors and getting improved values, the results of the higher-level Bethe-ansatz approximation [17-20] are included in table 3. The corresponding values of F_{s} and F_{t} for the singlet and triplet take into account non-string narrow pairs [19] on the background of the sea of perfect $2 s$-strings. The asymptotic behaviour of these values is known $[20,22]$

$$
\begin{align*}
& F_{\mathrm{s}}=\frac{1}{4}\left[s^{-1}+3 \ln ^{-1} N-3 \ln (8 s / \pi) \ln ^{-2} N+O\left(\ln ^{-3} N\right)\right] \tag{10}\\
& F_{\mathrm{t}}=\frac{1}{4}\left[\mathrm{~s}^{-1}-\ln ^{-1} N+\ln (8 s / \pi) \ln ^{-2} N+O\left(\ln ^{-3} N\right)\right] \tag{11}
\end{align*}
$$

therefore, they can be used to improve the extrapolation, since logarithmic corrections may be noticeably diminished in the ratios f_{s} / F_{s} and f_{t} / F_{t}.

Table 4. The finlte-size energy corrections for the vacuum
and the lowest singiet and triplet excitations at $s=9 / 2$.

In the considered excitations, one of the sea $2 s$-strings should be replaced by a (2s-1)-string; in the singlet, another $2 s-s t r i n g$ is replaced by a perfect ($2 s+1$)-string at zero, without any deviations [24] from formula (8). However, for the (2s-1)string, a strong violation of the string hypothesis occurs: the imaginary parts of all its complex pairs get incremented by $\frac{2}{2}+O(1 / N)$, and thus, the pairs are 'dissolved' in the sea of the
deformed $2 s$-strings. This is the limit picture. For high s at a finite N, an intermediate structure may be observed, when the higher members of the ($2 s-1$)-string have already 'stretched' to the size of $2 s$-strings while the lower members are still near their prescribed positions (8). An example - the $s=\frac{9}{2} \quad N=32$ singlet - is shown in table 5. Also, large Δx-type deformations may be present. These facts entail numerical instabilities due to difficulties in finding a good initial guess to start iterations.

Table 5. The deform (2s-1)-string and the nearost roots
of the $2 s-s t r i n g$ seafor the lowest singlet excitation at
$s=9 / 2 \quad N=32$.

	$\|\operatorname{Im} \lambda\|$	\mid Re λ \|	$\|\operatorname{Im} \lambda\|$
		0.03340733576	0
0	0.67291120507	0.03378070097	0.98859450452
0	1.97527581140	0.06040573144	1.97592958181
0	2.99229988769	0.06463733732	2.99215051994
0	4.00116060099	0.06513126986	4.00117626026

As concerns the logarithmic slopes d_{α} in formula (4), their numerical estimates are very rough. For high s, when large values of N can hardly be achieved, even the signs for d_{α} may be wrong. This is seen from a nonmonotonous behaviour of f_{t} at $2 s=3$ in table 3. Also, a difference is observed between the values extracted from the direct extrapolation of $f_{s, t}$ and from $f_{s, t} / F_{s, t}$. A fit of the data, which is consistent with the analytic result for the triplet at $s=\frac{1}{2}$ [12], looks like

$$
\begin{equation*}
d_{s}=\frac{3}{8}\left[1+(2 s)^{-1}\right] \quad d_{t}=-\frac{1}{8}\left[1+(2 s)^{-1}\right] \tag{12}
\end{equation*}
$$

For the vacuum, however, the values of the leading logarithmiccorrection coefficient are more reliable. The vacuum finite-size energy corrections in table 3 are well described by the formula

$$
\begin{equation*}
f_{v} \simeq(c / 12)\left[1+r_{v} 1 n^{-3} N\right] \quad r_{v}=s /(s+3) \tag{13}
\end{equation*}
$$

Our fit $r_{v}=\frac{1}{7}$ at $s=\frac{1}{2} \quad$ agrees neither with the earlier renormalisation-group prediction $r_{v}=\frac{3}{4}$ [1], nor with the analytic estimate $r_{v}=0.3433$ [12,13]. Strangely enough, the inadequacy of
the latter value has not been noticed in the more advanced data [15]. An explanation of the contradiction may be the dropping of higher-order terms at the very beginning of the analytic calculation when a sum is replaced by an integral. In fact, the next term diverges, and nonanalytic contributions [23] may be essential.

Finally, it is worth mentioning that, according to all the available data, the $X X Z$ model (with the anisotropy that does not lead to a mass gap) belongs to the same universality class as the XXX model. Thus, the results obtained here may apply to the integrable XXZ gapless magnet of $\operatorname{spin} s$ as well.

References

[1] Cardy J L 1984 J. Phys. A:Math. Gen. 17 L385 Blöte H W J, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56742

Cardy J L 1986 J. Phys. A:Math. Gen. 19 Llo93; erratum 205039
[2] Bethe H 1931 Z. Phys. 71205
[3] Faddeev L D 1980 Contemp. Math. Phys, C1 107
de Vega H J 1989 Int. J. Mod. Phys. A4 2371
[4] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5393

Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics 151 (Berlin: Springer) p 61
[5] Takhtajan L A 1982 Phys. Lett. 87A 479
[6] Babujian H M 1983 Nucl. Phys. 8215317
[7] von Gehlen G, Rittenberg V and Ruegg H 1986
J. Phys. A:Math. Gen. 19107
[8] Affleck I 1986 Phys. Rev. Lett. 56 746; 562763
[9] Knizhnik V G and Zamolodchikov A B 1984 Nucl. Phys. B247 83
[I0] Affleck I and Haldane F D M 1987 Phys. Rev. B36 5291
[11] de Vega H J and Woynarovich F 1985 Nucl. Phys. 8251439 Hamer C J 1985 J. Phys. A:Math. Gen. 18 Lll33
[12] Hamer C J 1986 J. Phys. A:Math. Gen. 193335 Woynarovich F and Eckle H-P 1987 J. Phys. A: Math. Gen. 20 L97 - 20 L443

Hamer C J, Quispel G R W and Batchelor M T 1987
J. Phys. A:Math. Gen. 205677

Woynarovich F 1987 Phys. Rev. Lett. 59 259; erratum 591264
[13] Hamer C J, Batchelor M T and Barber M N 1988 J. Stat.Phys. 52 679
[14] Avdeev L V and Dörfel B-D 1986 J. Phys. A: Math. Gen. 19 L13
[15] Alcaraz F C, Barber M N and Batchelor M T 1988 Ann. Phys. (N Y) 182280
[16] Takahashi M 1971 Progr. Theor. Phys. 46401
Faddeev L D and Takhtajan LA 1981 Zap. Nauchn. Semin. LOMI 109 134
[17] Destri C and Lowenstein J H 1982 Nucl. Phys. B205 369
Woynarovich F 1982 J. Phys. A:Math. Gen. 152985
[18] Avdeev L V 1989 J. Phys. A: Math. Gen. 22 L551
[19] Avdeev L V and Dörfel B-D 1985 Nucl. Phys. B257 253
[20] Avdeev L V and Dörfel B-D 1987 Teor. Mat. Fiz. 71272
[21] Ziman T and Schulz H J 1987 Phys. Rev. Lett. 59140
[22] Alcaraz F C and Martins M J 1988 J. Phys. A: Math. Gen. 21 L381 - 214397
[23] de Vega H J and Woynarovich F 1989 Solution of the Bethe ansatz equations with complex roots for finite size: the spin $s \geq 1$ isotropic and anisotropic chains (PAR-LPTHE 89-32: Paris)
[24] Avdeev L V and Vladimirov A A 1986 Teor. Mat. Fiz. 69163

Received by Publishing Department
on December 29, 1989.

