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1. The nonlinear Schroedinger equation (NLS),
. 2
ig, + ¢, +Flid[T)e =0 o (1)

has received a considerable attention when ¢ is subject to-the vanishing boun-
dary conditions, ¢+ 0 as {X| »e. The case of the nonvanishing conditions,

l¢|2+po as |X| o0 ' : (2).

is much less explored though it also has plenty of applications in diverse
areas of physics. In the present note* we analyze stability of the soliton solu-
tions of (1)-(2) i.e., stability of the “dark” solitons.

Our treatment will be based on the integrals of motion of egs. (1)-(2)
which are the energy, momentum and number of particles. In terms of r and
@ where ¢ =(p, —r)* elf , these can be written as

1 o -1 '
E =flIrE(po—r) 1+0x2(po—r)+U(r)}dx. 3)
where U is defined by F(p)=-dU(p_~p)/dp
P-=- fl‘ﬂxdx, (4)
resp. The travelling waves @#(x-vt) satisfy
~1vg, + by +F(101%)6 =0 (6)
whence we have, by integration,

1 -1
0x=--§vr(po—r) . (7)
Using this in eq. (4) we obtain

Pv = 2 (02 (p,-r)dx. @)

* This communication is an extended abstract of an article to be submitted else-
where.




2. It is straightforward to see that eq.(6) arises as the condition {3E )p = 0,
with N not necessarily being preserved by the variations. The number of par-
ticles is also irrelevant for the stability analysis. Indeed, the condition N=0
amounts to the requirement that the variations &¢=f + ig belong to the
kernel of the functional

Fit,g) = 2f(H't + ¢”g)dx,

where ¢=¢'+ i¢” . Since ¢’, ¢ are not square integrable, this linear
functional is not continuous in L2 still less in the Sobolev space and accor-
dingly, its kernel is everywhere dense in W' . Hence, if some perturbatlon
8¢ not preserving N prov1des (&° E)p with a negative value, the same value
will be attained by (8% E)py e, by 3%E with both P and N fixed. So the
_condition for stability is (B?E)P > Q

: 3. Now let us apply a composite perturbation consisting of a Eimple
scaling 8(x) -af(x) preceded by the velocity shift. This shift, v- v' pro-
duces variations in P-and E: P(v) - P(V) ,E(v)-E(V) , while the scaling
leads to additional changes: P(V) » P’(¥) E(V) E’ (V) The aim of the

velocity shift is to compensate the change in P caused by the scaling, i.e. we

require P(V) =P(v).
Infinitesimally, one obtains V=v+dv ,

P(V) = P(v) +B,av+ B, (@)%, )
E(V) =E(v)+Evdv+—;—-Evv(dv)2l. 10)
On the other hand, a= l+de and

P/(V) =P(V) +da-P(V), (11)
E’(V) =E(W) +[2da + (da)?) f02(py-1) ax, (12)
with 8 and r corresponding to v. Now using (8),

E'(9) ~B(¥) =[da+ () 1P(W7. (13)

Next, the equality P’ (V) =P(V) yields

. o 1
da-P(V) +Pyav + =Pyy (av)® =0, (14)

defining da in terms of dv. Consequently, eq. (13) becomes
APY —E(T) =3 lsrp2/p(3) - 2
ESV) E(V) =-VP, dv +—2—\g[Pv/P(v) va I(av)=. (15)

Finally, comparing (15) to (10) and recalling that E = vP_, we arrive at

(6%E)p =2(E*(V) ~E(v)] = (v3/P) P, (P/V), (av)?, " ae)

Thus the stability criterion is B, (P/v) >0,

4. As an example, we discuss the so-called viog® NLS, i.e. eq. (1)
with F‘(p) =(p-1)(2A +1-3p) . This equation arises in a large variety of
contexts'!” and possesses both kink and bubble solutions /2’ which can be
written in a unified way: !
$=v2eosh(£/2 -1 (2= A) A%+ By ¥ | cogne) ™ a7
with £=(c®=v?)" (x—vt), e®= 4(1 -A), cos2u = (A+v¥2)(a%.
+v2)~% | For A< 0 eq. (17) descrlbes a kink, for 0<A <1 a bubble.
The momentum (4) is readily computed to be

P = VN/2 + 2, N = Arcosh[(2 -A) (A% +v¥) %] < (18)

A direct numerical simulation has shown % that certain critical velo-
city exists, ¥, such that the bubble is stable for V2V, and unstable otherwise
(this conclus1on has been corroborated later’4’ in the precise study of the
associated eigenvalue problem). Next M.M.Bogdan, A.5.Kovalev and A.M.Ko-
sevich observed (private communication; to appear in Fiz. Nizk. Temp.) that
E(P)is a double-valued function whose two branches meet at a cusp at some
P=P, . Guided by the proximity of this P, to P(v,) , where v, is the nume-
rical result of ™ | they have conjectured that the two in fact coincide. Speak-
ing otherwise, BKK’s conjecture is that v, is the root of P,(v) =0

Now differentiating (18) we have that (P/v), < 0 holds for all A and
V. Consequently, the stability condition for the ’dark’ solitons (17) is merely
Py <0. For A<0 eq. (18) yields P, <0 for all v, so that the kinks are always
stable. As regards the bubbles, the above conclusion justifies BKK’s conjec-
ture and provides a natural interpretation of the results of 34" |

I am indebted to M.M.Bogdan for useful conversations and for infor-
ming me of his joint work with A.S.Kovalev and A.M.Kosevich prior to publi-

_cation. Yu.P.Rybakov’s helpful comments and V.G.Makhankov’s continual

encouragement are gratefully acknowledged.
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