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INTRODUCTION

The most popular model to study ferromagnets is the Heisen-
berg model. It allows one to investigate behaviour of quantum
systems reducing jinto the e.v. problem. For studying quasi-
classical behavior of the systems, and for example, collecti-
ve excitations (magnons) over ground state, one should pro-
ceed from the quantum level of description to a quasiclassi-
cal one, and such a transition should be done very carefully.
Thus the problem to formulate a consistent reduction procedu-
re appears.

In fact this procedure consists in choosing trial functions
(i.e. some basis) which can be used for averaging the Hamilto-
nian. It is natural to choose for that coherent states (CS)
since these states are the most classical and minimized the
uncertainty relation (according to Perelomov /).

Conventional coherent states (the so-called Glauber CS)
are constructed on the Heisenberg-Weyl group and can be utili-
zed in the case when the Hamiltonian is given in terms of Bose-
operators only. The most familiar way to treat spin (or pseudo-
spin) Hamiltonians in such a way is applying the Holstein-Pri-
makoff transformations (HPT). Then the (2s+l)-dimensional sta-
te space enlarges infinitely due to appearing of the so-called
nonphysical states. Moreover radicals these . transformations
contain give rise to asymptotic quasiclassical series to ap-
pear as a result of operators ordering. These series must be
truncated.

More natural in studying spin Hamiltonians is to use cohe-
rent states constructed on the spin operators of the group
SU(2) (the so-called SCS). Such states for arbitrary spin S,
are those corresponding to points of the coset space
SU(2s+1)/SU(2s)*U(1). It is not necessary in this case to per-
form bosonization of the Hamiltonian since the latter as well
as corresponding CS are constructed via the same operators.

It is namely due to this fact generalized SCS are the most
adequate tool to study spin (magnetic) and quasispin (finite-
‘level) models.
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1. MATRIX OF THE GENERALIZED SPIN
COHERENT STATES

Dimension of parameter manifold of spin coherent states M
is given by representation

2i+ 1
|¥> = 3 8 |S,-S+K>
k=1 &

which gives us 2j+1 complex constants (or 4j+2 real constants).

Since vector |¥> is defined up to the arbitrary phase 6 we
can put it equal to zero. Another additional condition is the

normalization of |¥>, viz.,
<Y | ¥>=1
so that

dimM=4j+2-1-1=4j.

In what follows we will treat the spin Hamiltonian of the
form

o . 533 P N A
He-03 18,8, 88185, ) (1)

i.e. the Heisenberg Hamiltonian with uniaxial anisotropy in
the nearest neighbour approximation. We will also take into
- consideration (if necessary) the terms of one-ion anisotropy

-[§;12-a[§;‘19. (2)

Operators we use to write the Hamiltonian are the genera-
tors of the SU(2) group, and as such for any representation
they can be expressed through the generators of the correspon-
Qing group SU(2j+1). It means that for any spin j Hamiltonian
H can be written in terms of the generators of the group
Su(2j+1).

This promts us possible coherent states which can be utili-
zed as the corresponding trial functions. For each j besides
the SU(2) CS one can construct the so-called generalized spin
coherent states (GSCS) on the group SU(2s+1) in the Perelomov
sense’1/ Choosing as a vacuum state the vector of the most
minimal weight we define the group SU(2s)eU(1l) as the isotopy
group, then GSCS correspond to the points of the coset space
SU(2s+1)/SU(2s) eU(1) the so-called complex projective space
CP 2s,

One can easily calculate the dimension of this space M
dmM = @j+ 1% -1 —(@)%+1 -1 = 4

and find that dimensions of M and M coincide.
We construct GSCS on CP28 as follows

2j .
2L -¢ 1]
l‘P>=e ! !0) =
(3)
= cos (¢ 110> + W15+ .+ ¥, 020> 1,
where
2j .
df = 3 1600 1Kl <z, v = g, (4)
=1 <l

and T® are the generators of faithful representation of the
group SU(2j+1) and given by the formulae

00 .1 00 ..... 0
R 00 ..... 1 - 00 ..... 0
T . . T = o

00..... 0 11..... 0

We denote through |i> the vector with unity on the i+l line
from below and zeros otherwise.

From (4) it follows
cos|¢| =[1+|W )12

and finally
2]

9> = [1+ 9217200+ 2 w1t (5)
1=

The system (5) of GSCS is the first point in the consequen-
ce of the systems which are related to more higher representa-
tions of the SU(2j+1) group. As a result the construction as-
sumes the form of upper triangle matrix



eP! fs-1/2,1, 372,000, ‘a
cp? )
cps 3/2, it -s. (6)

ész i

Each point of this matrix is the set of GSCS, and naturally
we can call it the GSCS matrix. We note that its diagonal ele-
ments are given by the fundamental representations of the cor-
responding group and are the most natural (complete) basis for
the spin system of a given §.

IT. THE GLAUBER COHERENT STATES
AND THE HAMILTONIAN BOSONIZATION

The Glauber C$ are the states constructed on the Heisenberg-
Weyl group, which algebra is the algebra of bose-operators a,
at.

In order to use these states as trial functions one should
first  bosonize the Hamiltonian (1). The most wide-spread
way to do that is to apply the Holstein-Primakoff transforma-
tions

— ata .
= 2S \/_ 1] ra, i
2

~A - + a-!-aj 1
5, -V 2s a 1___5__—, (7) 5
S

The radicals in (7) one must regard as corresponding operator
series. Had been ordered, these series become asymptotic se-
ries which truncated parts allow one to take into account
quantum corrections. The procedure of truncation makes us to
do an additional careful symmetry analysis of the Hamiltonian
and the ground state’/?/,

We consider the following operator of the spin angle

aa
cosf =8%/s =1- ——. (8)

Let the value of S increase while keeping 6 fixed (in the qua-
siclassical approximation) then new operators b and b* are
more appropr;ate

4

t_a't/ys, b=a/ys (9)
with the commutation relation )
[bb+]=-1— (10)

Whereby operators b and b* may be regarded as c-numbers in the
limit s > 1 (with 0(s~!) accuracy).

In’?/, a classical Hamiltonian was obtained via averaging
the quantum Hamiltonian (1) over Glauber CS
-1iq)? +
la>=e *° e?® | 0> (11)

after its bosonization.

Up to terms 0(la|® it reads
2
a
[+]
H, = _J_f[28s|a12+Alal4+ -—1—--,la|6 +sai|ax\2— -—E—A*
ag 18s? (12)
2 2 2
=|=(|a|2)2 + ——(a2a2+a a2)+ -——|a|2(lal2) Jdx,
x 4 18s
where A = - § + _l_.+._l__and a2, is the lattice spacing.
8s 3257

In classical limit (when only the main terms in series in
1/s are left) one gets.

2
18]
4

+28yiax
(13) -

2
5 1
g - 52,3 [ 1aIBIE+ 18,10 (1= L) L Zami® o

3.2
with § = —2—° A..
To identify quantum terms of order of 1/s in the Hamiltonian
we proceed to variable

iBl2=|a‘2/s (14)
so that
(15)

cosf=1 -|[3|52
Tn the classical limit one can derive the total Hamiltonian

'3

via summarizing the series u1|B|2 =,

*This Hamiltonian after notation coincides with one obtained in/a/.



; : 181 -l
H=sa,J [{A|B] +|B,12)(1—-—-)+ (1/321 225} |ax.
t-—18°
(16)
When expanded up to the 0(|8|% terms it naturally coinci-
des with (13).
In’/%/ the truncated Hamiltonian was shown to describe cor-
rectly easy-axis magnons (A>0) but it gives a wrong result
even for easy-plane magnon dispersion formula (A< 0) . Let us

look at this. Consider for that the dispersion of easy-plane
magnons in the framework of (16). Make a substitution

B=1+n (17)

which means the expansion in the vicinity of the easy-plane
classical vacuum state and keeping terms of the second order
in n we come to

_ 1 .2, L 2 2 3 - 2 :
H——z—saoJf{—A(n+n) +|nx| +(T +8)(nx+7)x) }ax . (18)
This Hamiltonian generates the following linear equation

i,;=-A(_n+17)--:-nxx<1 +—8) -2,.0 +._s)

Along with complex conjugate equation it gives the dispersion

- 1k]V 1+ 8k ]A]. (19)

Hamiltonian (13) gives rise to

7
=|k|\/(-§+3)k2+|A|. (20)

From (19) and (20) it follows that Hamiltonian (9) correctly
describes the dispersion of easy-plane magnons with accuray
7% for large k > |A]. .

The Holstein-Primakoff series is often truncated to allow
for the 0(}8|2) terms. In this approximation we have

in=-Aln+n)-n_(1+8) -9, (1+28) (21)

or

! -
=|kw<-§-+s>k2+m|, (22)

i.e. the dispersion a bit worse than (20) in the large k li-
mit.

From (20) and (22) we see that H, and Hy well describe
even easy-plane magnon dispersicen in the region of small k <<
<< |A| and then the classical easy-plane vacuum as well.

It was shown in/2/ that if in bosonizing (1) via HPT one
takes into account the quantum ground state (vacuum) symmetry
then the truncated 0(|8|%) series gives correct result. In
fact, let us direct the quantization axis OZ along the spon-
taneous magnetization axis lying in the easy-plane, then we
obtain

a2 2

. - A BB 18]
Hep_s a.OJf{|Bx| -E(|ﬁ| ——5—-—)(1— )idx (23)
whereby _
- A~ = A g2 AT 38 . a2~

= —(B - -— - — A
1B = Bex +5(B-B)-51BI" B 2 g2+ 3 1B1* B
which when expanded near the ground state, |é} = 0, gives
o=|klvVk®+A. (24)

The latter is just the same as (19) if § << 1. The condi-
tion § << 1 is also necessary in order to derive the Landau-
Lifshits equation starting from (1). The function B8 and spin
angle 9 are coupled with the relation following from (19)

=\/—2_sin —Z— el® (25)

We proceed now to estimate '"quantum' corrections of the or-
der of 1/s to both easy-axis and easy-plane vacua. The Hamilto-
nian (12) gives for classical vacua the equation

2y, Ligizga . & -
B8] (1-181%) + B |B1°(1 + 4l/3l2)¥ 0. (26)

The equation (26) possesses two solutions

1. B =0,

which corresponds to §% =S(1-]ﬁ\2) =S, 1i.e. to the easy-axis
vacuum. Here quantum corrections vanish.

—161C1-181%)y s L8121+ BB ) =0 (27)
8s 4

Assuming 8s8 >> 1 we have (§<0)

B2 =1- - 1 (28)



whereby in the easy-plane case ''quantum corrections spoil
even the classical vacuum |8|? = 1 and spin S goes out from
the easy plane the more the less value of [§|S is.

So we can formulate quasiclassical condition

§7E|8|S>>1, (29)
Nearly the same we come to in the case of easy-axis model if
we take into account magnon interaction. The latter as it fol-
lows from (13) and (26) is given at small |82 << 1 by the for-
mula

int

H . - (c8+-2) 8. (30)
8s

It means when 8s <1 the interaction term changes the sign
and magnon-magnon attraction is replaced by their repulsion.
Such an effect does not occur in the framework of the exact
solvable S = 1/2 quantum Heisenberg chain and in the model ob-
teined by averaging over SCS. So we come to the conclusion:
quasiclassical condition for the easy-axis model again is

8s8>> 1. (31)

If we direct the quantization axis along the spontaneous
magnetization axis, we obtain

A-_' Xa X YaV 2q 2
H-= JZj{Sij+1+ijSj+1+Sij+1¥. (32)

Having ordered and averaged it (up to 0(1/s?)) becomes

H=H0+Hs
2 2 2 a2
Ho= 2 paxir- 8L (BB g2y,
%0 (33)
8% 1 8%, 15 1, B¢
Hs=dex{1+K+—2]-(1+i—g)+——4—]—!X

0

«[(1+ 8) lﬁ|4__¢i lﬁ|2(32+3_2) 1.

2 Bs 2 18
Consider terms not higher than 0(1/s) then

_ 82 e B2+p° 181%,. 1
HB—:;fdxl5|(lB| - ) - 3 (1+ Ss))’

or after substitution
B=18lel

we get

(B2 +B?)/2 = BRos2¢,
(34)

252 . 1812 1
K== Zsin®¢ (1 - -El-(14+ —-=)) > 0,

oo 181181 %sin®8 (1~ - (Le 50 >
whereby H=H _;, when |B|= 0. "Quantum corrections vanish
in this case as well.

Conclusion

Nonvanishing '"quantum" corrections for the easy-plane va-
cuum is an artifact viz., the result of unappropriate applica-
tion of HPT.

Hamiltonian (33) leads to the correct dispersion

w=lk|vV@+3)k2+|A]. (35)

All this tells in favour of necessity to do a careful analysis
of symmetry of the quantum ground state and the Hamiltonian
before performing HPT.

III. SPIN COHERENT STATES
AND THE LANDAU-LIFSHITS EQUATION

Spin coherent states or generalized CS of the SU(2) group
(see’Y) were used to study quasiclassical behaviour of the
Heisenberg ferromagnetic in a number of papers. Following Pe-
relomov we write SCS in the form

-
> = (14 (%D e 10>, (36)

where [0> =| §j, -j> is the vacuum. In this case complex func-
tion ¥ performs the stereographic projection of the sphere §?2
onto the complex plane

Y= mniei¢ .
2

~~

37)

a o4
In what follows spin operators will be denoted by J°and J*

and their classical descendants by J° J~, i.e.



A A4 +

<J°>=3°, <<JI™>=1

calculating the correlators

<W|T°¥> =(J9) + %—.<5+>A<JA—>,

Ay AL ~ Ao 1 ~

<W|ITHITw> = <TT><d >+—é-j—-(<J°>-j)2, (38)
D= 24 At A 1 ~ 2

<W|ITIT|¥> =<T ><T > +-2]-(.<J°> +§)

one can see that pair correlatgrs as well as three-points ones
are expressed through J° and J- . Therefore we introduce

PPTIEILE (39)

the classical spin vector.

Since spin operators commute in neighbour lattice sites.
The GCS of the total lattice is just a direct product of sepa-
rate sites

> =T j¥>,. (40)
i
On the average of the Hamiltonian (1) with the help of (40)
we loose all 0(1/s) quantum corrections and arrive at the
classical model

¥ 2 Aw|®
% - dx + const . (41)

A+ ¥ 3

This Hamiltonian yields stereographic projection of the Lan-
dau-Lifshits equation if & << 1, since in getting it we dis-
regard the term

. 0B,
Hcl._2s aoJ_f

5 (%) ax . (42)

We also stress that in the easy-axis model minimum of the
functional (41) is reached when ¥ = 0 or in terms of SCS the
vector

lq’ >=1].<j,—j> EU|0> ] (43)
°" ey Tt

generated by the classical vacuum agrees with an exact quan-
tum easy-axis ground state at any S. When A < 0, the Hamil-
tonian (41) minimum is defined by the equation |¥[2® = 1 and
the corresponding vector (SCS) is now

10

-8

v >-nzte i PSS (44)
f

This state structure depends substantially on j (SU(2) repre-

sentation). Had been expanded in pure spin states, this assu-

mes the forms

1 A 2
¥, > =T ezo\/cf [ §, -1+1> (45)

with Cj’ being the binomial coefficients and [¥,>= IL|¥ >, .

The state (45) contains all 2j+1 spin states with pro abifity

for each

w--Llc¥. (46)
22 !

The state (44) is not an exact quantum easy-plane ground state
and approximates to it to terms 0(1/s).

The Hamiltonian (41) gives for the easy-plane magnon dis-
persion

o = k| VA +8)kZ+|A] (47)

which is none but the dispersion (35), obtained via the HPT
procedure at S = =,

We can now infer that when S =« the Glauber CS system and
that of SU(2) group coincide (after compactification of the
former). We should also underline here that SU(2) SCS can be
applied to average only quantum Hamiltonians with very small
anisotropy &8 << 1 for the greater § the more significant dif-
ference in symmetries of the Hamiltonian and the SCS image
(manifold).

If the Hamiltonian contains one-ion anisotropy terms of
the type (2), e.g.

&Z\2
My =-8,80)% . A (48)
then averaged via SCS Hamiltonian gives again the Landau-Lif-

shitz equation (when 8, << 1) but with the following renorma-
lized anisotropy

S 1
8 =8 +8,(1~—=). (49)

Averaged via HPT procedure Hamiltonian gives the same equation
with §= 6 + Sf plus an additional term linear in $ viz.

. 11



8,(8%~8), which can be thought of as the one corresponding
to an external magnetic field directed along 0Z axis.

IV. THE S = 1 MAGNETIC MODEL
AND SU(3) COHERENT STATES

Now we focus on the spin S=1 model which is related to the
second element of the first line and the first element of the
second line of the matrix (6).

Corresponding CS for S = 1 read

1 —
W> = — e {[0> + V2 Y |1> 4+ 22> (50)
14+ |92

in the SU(2) version, and
[£ > =(1+|C|2)_l/z {|0>4-§1|1>-+§2|2> } (51)

in the SU(3) version.

The S = 1 quantum system lives in four-dimensional parame-
ter manifold of spin states, so that SU(2) averaged Hamilto-
nian governs behaviour of the system in its two-dimensional
section

42=i242, £, -VE V. (52)

The spin operators iﬁ this case are of the forms

A 0 V2 0 A 0 0 0 o too

st=do0o o0vy2 ), B~ =¢v2 0 04, sz={0 007} (53)
0 0 O© 0vV2 0 0 0-1

Upon calculating their averages and correlators we have

<§™> = \/_2_ﬁ+ €1le , ,<§->=.<§—+>, <§%> = ﬁg-l—z;l, (54)
1+1¢1% 1+1¢|®

<EN)%>=2NZ,, <ET%>-aN¢, (55)

and N=@Q+[[®"1 . Whereby the Casimir operator is

<C?% =%(<§+§’>+<§'§+>) +<(8%) %> =2, (56)
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Then
<8'878*> = N2V (L1481l =<8 S 2SS

~ 2A~ L. —_ - AL~ A A~
<EM*8> =Nave ¢ &y =<§TE N> 8% <8787,

ST EME> - N2y 2 =<@)B8 > - —2<8%§% - —2<8%57 >, (57)
<@H8s - 0, <(§%53> =<§%.
The following relations can be found from (57)
<(§*)2%87> +<§7(8M) %> =2<8*>
(58)

<87%8*> _<87§ %> —<8*>.

All triple correlators are expressed through the pair correla-
tors and the averages. The same holds for the higher correla-
tors.

Relations (57) and (58) enable to write all the averages
and pair correlators as linear combinations of any of these,
for example through the following

A A A4Ag A—AZ

<§'>, <8%>, <88, <8 87>, (59)
One can also obtain the identity
S24 {<8~82%> <8%8%> + <828 ><8§%*> + <§7§7> <88t > 4+
A~ 2 (60)
+(1-<8%%)% =1,

where we use the notation

>. (61)

Uy,

>
S =<

>
The identity (60) replaces the conventional one, S = const and
hence leads to breaking down the conservation law of spin vec-
tor modulus, so that

93,8240, 98%40. (62)
Instead we have conservation of the sum of S2? and of a bi-
linear combination of pair correlators.

Let us consider the influence of (62) on the quasiclassical
behaviour of S=1 magnetic (1). We begin with a simplest iso-

13



tropic model (& = 0). Upon averaging (1) via SU(2) CS one ob-
taines the Landau-Lifshitz Hamiltonian

Ja, -~ o
el 5 [ ) dx. (63)

Averaging via SU(3) CS gives

Hei = T [ <8875 <8Y8%> 4 <87%8™> <SE8 > +
a,

S+ a4 - Jedz 2 a% 3y 2 (64)
+ <8785 <878 TS+ (1 - <88 )] + —5—(Sx) bdx .

This Hamiltonian contains additional terms of the quadrupole
moment nature. Thus starting from isotropic quantum Hamilto-
nian we arrive at the classical one with some effective ani-
sotropy.

To begin with we consider classical vacuum states, i.e. we
find minima of the integrand of (64).

Easy-axis model. The classical vacuum

€1=€2=0 (65)

agrees with the SU(2) model and the quadrupole term vanishes.
Easy-plane model. The classical vacuum

IEl =v2, [l =1 (66)

is the same as in the SU(2) model and again the quadrupole
term equals zero. The vectors (CS) describing these vacua also
are the same in both models,

|¥>

ea

1j'1|o>j , (67)

|®>
ep

r!_;_{|o>+\/2_|1>+|2>}. (68)
J

There are analogous results for vacuum states when S = 3/2 and
averaging goes via SU(4) CS.

We can thus suppose that the classical vacuum states for
arbitrary S lie in the SU(2) section of the whole 4S-dimensio-
nal spin state manifold.

We proceed now to discuss dispersion relations of the modes
allowed in the S = 1 system.

For the case & >0 we obtain

w, =k?a?-285, (69)

14

wg =~-4(1+8) . (70)

The first relation coincides with the SU(2) one and corres-
ponding low frequency waves of the field ¢y can propagate in
the system. In addition, in the system also there are the high
frequency oscillations of the field {, with dispersion (70),
and then quadrupole term does not vanish

K o=4(¢, % (71)

and the system leaves the SU(2) section. The dispersion rela-
tions for the easy-plane model are

4 = k2% ? +2]3), (72a)

w,=40@+|8]), (72b)

The first formula is equivalent to the well-known Bogolubov
dispersion but renormalized by the coupling with the second
mode. The latter corresponds to the high frequency oscillations
of the field {, and again due to excitation of this mode the
system goes out the SU(2) section and quadrupole contribution
does not vanish

}(a-%‘nz -V§17ﬂ2 £0.

. : 4 . . .
Taking into account 0(|¢] ") nonlinear interactions of the mo-
des in the easy-axis model we arrive at two coupled equations
which solutions

164 ‘ i0,
{,=ne and ¢, =nge (73)

are related to each other as

n =nf/@+28+w) (74)

2

and §5=201. Then the equation for the first component assu-
mes the forms

2
Lot P + (@28 +w)nl-+280? =0, (75)
i.e. the conventional nonlinear Shrédinger equation.

This equation possesses many-soliton solutions and plane

wave propagating through the system is unstable against its
decay into the set of solitons.

15



Solutions (73) and those of (75) show that the high frequ-
ency oscillation are captured by the low frequency waves and
together they form solution like solutions such that the quad-
rupole contribution of such composite solutions vanishes un-
like that of the linear waves.

CONCLUSION

For the Heisenberg model studied SU(2) section may be re-
garded as classical attractor in the spin phase space (mani-
fold) of the initial easy-axis quantum system, for both the
vacuum states and for the nonlinear (soliton) '"trajectories"
in the vicinity of the vacuum. It may be of interest to under-
line once more that had adjusted two modes form nonlinear sta-
tionary waves (solitons) which tend to the SU(2) attractor.
Once again mysterious properties of solitons?
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AbénynnoeB X.0. u nap.
0600meHHbe CNHHOBbHIE KOTepeHTHbe COCTORHHA
KaK HHCTPYMEHT H3YyYeHHs KBa3HUKJIaCCHUECKOro
noBefeHHs MarHeTHka [efiseH6epra

Ans onMcaHHs KBasHKMacCHYeCKOro NOoBemeHHAa ¢eppomardHeru-—
ka 'eiseHbepra Hcnomb3oBaHb o606meHHbIE KOT@pPEeHTHb€ COCTOSi—
HHA , ollpeferneHHrle Ha rpymnnax [eiseHbepra-Beiinma, SU(2)
H SU(3). CpaBHeHHe mMONyuyeHHHX PE3yNbTATOB BLIABHIO HEKOTO-
pbleé 3aMevaTenbHele CBoHMCcTBA HMsyuaemoit mopenu. llokasaHo,
B UaCTHOCTH, UYTO HCHOJNb30BaHHe mpeob6paszoBaHui XonmTeHHa-
[IppMakoBa [0 YCpeOHEeHHUda Nno rnay6epoBbiM KOTEPeHTHbM COCTOs-—
HHUAM IIPHBOOHT K NOABIIeHHI® aCHMITOTHYECKHX PAOOB, KOToOphble
JOJKHBI 6bITb oGopBaHbl, [Ina H3ydYeHHA MATHETHKOB CO CIIHHOM
S=1 HauGomnee ameKkBAaTHbIM HHCTDYMEHTOM SBIHIOTCS KOTepeHTHble
coctoaHua rpynns SU(3), a SU(2) ceueHHe NOMHOTO CHHHOBOTO
$®a30BOro npocTpaHCTBa OKas3bBaeTcsa KJIacCHUeCcKHM aTTpPakTOpoM
LI HeIIHHeHHbX Gas3’0BbX TPaeKTOPHH.

PaGora BbmonHeHa B JlaGopaTOpHH BBIMHCJIHTENBHOH TEeXHHKH
U aBTomaTu3anuu OWIH. ‘

E17-89-800

MNpenpuutr O6beAMHEeHHOr0 HHCTHTYTa ANEPHBIX HcclenoBaHmii. [lyona 1989

Abdulloev Kh.O. et al.

Generalized Spin Coherent States as a Tool
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To describe quasiclassical behaviour of the Heisenberg
ferromagnet generalized coherent states defined on the
Heisenberg-Weyl, SU(2) and SU(3) groups are used. The re-
sults thereby derived are compared to show some remarkable
features of the model studied. In particular SU(2) section
of the total spin phase space turns out to be a classical
attractor for phase trajectories.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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