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( INTRODUCTION 

The most popular model to study ferromagnets is the Heisen- 
berg model. It allows one to investigate behaviour of quantum 
systems reducing into the e.v. problem. For studying quasi- 
classical behavior of the systems, and for example, collecti- 
ve excitations (magnons) over ground state, one should pro- 
ceed from the quantum level of description to a quasiclassi- 
cal one, and such a transition should be done very carefully. 
Thus the problem to formulate a consistent reduction procedu- 
re appears. 

In fact this procedure consists in choosing trial functions 
(i.e. some basis) which can be used for averaging the Hamilto- 
nian. It is natural to choose for that coherent states (CS) 
since these states are the most classical and minimized the 
uncertainty relation (according to Perelomov ' I /) .  

Conventional coherent states (the so-called Glauber CS) 
are constructed on the Heisenberg-Weyl group and can be utili- 
zed in the case when the Hamiltonian is given in terms of Bose- 
operators only. The most familiar way to treat spin (or pseudo- 
spin) Hamiltonians in such a way is applying the Holstein-Pri- 
makoff transformations (HPT). Then the (2s+l)-dimensional sta- 
te space enlarges infinitely due to appearing of the so-called 
nonphysical states. Moreover radicals these transformations 
contain give rise to asymptotic quasiclassical series to ap- 

'\ 
pear as a result of operators ordering. These series must be 
truncated. 

More natural in studying spin Hamiltonians is to use cohe- 
rent states constructed on the spin operators of the group 
SU(2) (the so-called SCS). Such states for arbitrary spin S, 
are those corresponding to points of the coset space 
SU(~S+~)/SU(~S)*U(~). It is not necessary in this case to per- 
form bosonization of the Hamiltonian since the latter as well 
as corresponding CS are constructed via the same operators. 
It is namely due to this fact generalized SCS are the most 
adequate tool to study spin (magnetic) and quasispin (finite- 
level) models. 



1. MATRIX OF THE GENERALIZED SPIN 
COHERENT STATES 

Dimension of parameter manifold of spin coherent states M I 

is given by representation 

which gives us 2j+l complex constants (or 4j+2 real constants). 
Since vector )'P> is defined up to the arbitrary phase 0 .we 
can put it equal to zero. Another additional condition is the 
normalization of IY>, viz., 

.<'PI y >  = 1 
* 

so that 

d i m M = 4 j + 2 - 1  -1 = 4 j .  

In what follows we will treat the spin Hamiltonian of the 1 
form I 

i.e. the Heisenberg Hamiltonian with uniaxial anisotropy in 1 
the nearest neighbour approximation. We will also take into i 
consideration (if necessary) the terms of one-ion anisotropy j 

Operators we use to write the Hamiltonian are the genera- 
tors of the SU(2) group, and as such for any representation i 
they can be expressed through the generators of the correspon- 

I 

Qing group SU(2j+l). It means that for any spin j Hamiltonian 
I PI can be written in terms of the generators of the group I 

Su(2j+l). I 

This promts us possible coherent states which can be utili- 
zed as the corresponding trial functions. For each j besides 
the SU(2) CS one can construct the so-called generalized spin 
coherent states (GSCS) on the group SU(2s+l) in the Perelomov 
sense'l'. Choosing as a vacuum state the vector of the most 
minimal weight we define the group SU(~S)@U(~) as the isotopy 
group, then GSCS correspond to the points of the coset space 
SU(2s+l)/S~(2s)@u(l)the so-called complex projective space 
CP 2s 

One can easily calculate the dimension of this space M 

dimM = ( 2 3 + 1 ) ~ - 1  -(zj)'+l -1 = 4j 
- 

and find that dimensions of M and M coincide. 
We construct GSCS on Cp2= as follows 

where 

A 

and  re the generators of faithful representation of the 
group SU(2j+l) and given by the formulae 

, l o o  ..... 11 - - 1 0 0  ..... 0 1 .  

We denote through\i> the vector with unity on the i+l line 
from below and zeros otherwise. 

From (4) it follows 

and finally 

The system (5) of GSCS is the first point in the consequen- 
ce of the systems which are related to more higher representa- 
tions of the SU(2j+l) group. As a result the construction as- 
sumes the form of upper triangle matrix 



Each point of this matrix is the set of GSCS, and naturally 
we can call it the GSCS matrix. We note that its diagonal ele- 
ments are given by the fundamental representations of the cor- 
responding group and are the most natural (complete) basis for 
the spin system of a given S. 

11. THE GLAUBER COHERENT STATES 
AND THE HAMILTONIAN BOSONIZATION 

The Glauber CS are thestates constructed on the Heisenberg- 
Weyl group, which algebra is the algebra of bose-operators a, 
a +. 

In order to use these states as trial functions one should 
first bosonize the Hamiltonian (I). The most wide-spread 
way to do that is to apply the Holstein-Primakoff transforma- 
t ions 

The radicals in (7) one must regard as corresponding operator 
series. Had been ordered, these series become asymptotic se- 
ries which truncated parts allow one to take into account I 

quantum corrections. The procedure of truncation makes us to 
do an additional careful symmetry analysis of the Hamiltonian 
and the ground state 12/. 

We consider the following operator of the spin angle 

Let the value of S increase while keeping 0 fixed (in the qua- 
siclassical approximation) then new operators b and b+ are 
more appropriate i 

b+ = a + / J s ,  b = a /\I 7 (9  

with the commutation relation 
1 

[ b b ?  = - I .  
S 

(10) 

Whereby operators b and b+ may be regarded as c-numbers in the 
limit s >> 1 (with ~(s'l) accuracy). 

~ n / ~ / ,  a classical Hamiltonian was obtained via averaging 
the quantum Hamiltonian (1) over Glauber CS 

after its bosonization. 
uptoterm~O((a1~) itreads 

1 1 where A = - S + - + --and a ,  is the lattice spacing. 
8s 32s2 

Ig classical limit (when only the main terms in series in 
11s are left) one gets. 

ac 
with S = - $ A , .  

C. 

To identify quantum terms of order of 11s in the Hamiltonian 
we proceed to variable 

so that 
2 

C O S ~ =  1 - I B I  . (15) 

In the classical limit one can derive the total Hamiltonian 
via summarizing the series in 181 *. 

.b ..This Hamiltonian after notation coincides with one obtained inl9/ . 



When expanded up to the O(IP1 6, terms it naturally coinci- 
des with (13). 

Inl2/ the truncated Hamiltonian was shown to describe cor- 
rectly easy-axis magnons ( A > O )  but it gives a wrong result 
even for easy-plane magnon dispersion formula ( A <  0) . Let us 
look at this. Consider for that the dispersion of easy-plane 
magnons in the framework of (16). Make a substitution 

/ 3 = l + q  (17 

which means the expansion in the vicinity of the easy-plane 
classical vacuum state and keeping terms of the second order 
in q we come to 

This Hamiltonian generates the following linear equation 

Along with complex conjugate equation it gives the dispersion 

Hamiltonian (13) gives rise to 

From (19) and (20) it follows that Hamiltonian (9) correctly 
describes the dispersion of easy-plane magnons with accuray 
7% for large k >> ) A ( .  . 

The Holstein-Primakoff series is often truncated to allow 
for the 0 ( 1  /3 1 2, terms. In this approximation we have 

i.e. the dispersion a bit worse than (20) in the large k li- 
mit. 

From (20) and (22) we see that H 4  and H6 well describe 
even easy-plane magnon dispersicn in the region of small k << 
<<1A1 and then the classical easy-plane vacuum as well. 

It was shown in/2/ that if in bosonizing (1) via HPT one 
takes into account the quantum ground state (vacuum) symmetry 
then the truncated 0(//316) series gives correct result. In 
fact, let us direct the quantization axis OZ along the spon- 
taneous magnetization axis lying in the easy-plane, then we 
obtain 

whereby - - 

- 
which when expanded near the ground state, 1/31 = 0, gives 

The latter is just the same as (19) if 6 << 1. The condi- 
tion 8 << 1 is also necessary in order to derive the Landau- 
Lifshits equation starting from (1). The function B and spin 
angle 8 are coupled with the relation following from (19) 

We proceed now to estimate "quantum" corrections of the or- 
der of l/s to both easy-axis and easy-plane vacua. The Hamilto- 
nian (12) gives for classical vacua the equation 

The equation (26) possesses two solutions 

1. 8 = 0, 

which corresponds to sZ = S(1- (fj I 5 = S , i.e. to the easy-axis 
vacuum. Here quantum corrections vanish. 

Assuming 8sS >> 1 we have (6 < 0) 



whereby in the easy-plane case "quantum corrzctions spoil 
even the classical vacuum 181 = 1 and spin S goes out from 
the easy plane the more the less value of 161s is. 

So we can formulate quasiclassical condition 
32 -- 161 S >> 1, 
7 (29) 

Nearly the same we come to in the case of easy-axis model if 
we take into account magnon interaction. The latter as it fol- 
lows from (13) and (26) is given at small << 1 by the for- 
mula 

It means when 8s < 1 the interaction term changes the sign I 
and magnon-magnon attraction is replaced by their repulsion. I 
Such an effect does not occur in the framework of the exact 
solvable S = 112 quantum Heisenberg chain and in the model ob- 
teined by averaging over SCS. So we come to the conclusion: 
quasiclassical condition for the easy-axis model again is 

If we direct the quantization axis along the spontaneous 
magnetization axis, we obtain 

Having ordered and averaged it (up to O(l/s2)) becomes 

Consider terms not higher than O(l/s) then 

or after substitution 

we get 

2s H = -- I Pi" 161 la1 2sin2Q (1 - --- 1 
2 

(1 + Ti)) 2 0, 
= o  

whereby fi = H ,in when la 1 = 0. "Quantum corrections vanish 
in this case as well. 

Conclusion 

Nonvanishing "quantum" corrections for the easy-plane va- 
cuum is an artifact viz., the result of unappropriate applica- 
tion of HPT. 

Hamiltonian (33) leads to the correct dispersion 

All this tells in favour of necessity to do a careful analysis 
of symmetry of the quantum ground state and the Hamiltonian 
before performing HPT. 

111. SPIN COHERENT STATES 
AND THE LANDAU-LIFSHITS EQUATION 

Spin coherent states or generalized CS of the SU(2) group 
(see / l / )  were used to study quasiclassical behaviour of the 
Heisenberg ferromagnetic in a number of papers. Following Pe- 
relomov we write SCS in the form 

where (O> = I j ,  - j >  is the vacuum. In this case complex func- 
tion performs the stereographic projection of the spheres2 
onto the complex plane 

9 id  tan-e . 
2 

(37) 

In what follows spin operators will be d~noted by i0 and $' 
and their classical descendants by JO, J-, i.e. 

9 










