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1. Critical exponents are among the most characteristic
parameters of phase transitions and ceritical
phenomena[1].0alculation of eritical exponents has been Eerrormed
by various methods for a wlde varlety of models.{i'a'ijThe
obtalned results, Dbased on  the renormalization group
approachf?’s’slprovide us with a set of successful quantitative
predictions. The eritlcal exponents exhibit a universal and
model-independent behaviour. What 15 essential 1s the dimension of
space I and the number of physical degrees of freedom. For some
particular values of these parameters the resulls are known
exactly. This 1s true e.g. for the b =2 Ising model.[1]However,
usually, the exact solution 1s absent. The most accurate estimates
of the exponents have Deen cbtained up 30 now 1in the fleld
thearetical formulation of the renormallzation group, involving
the g(¢?)? fleld tneory, where ¢® 1s an n-component lsovecior
scalar fleld.

2. We now present the results of these caleulations for the
arltical exponent ¥ as a function of two variables: the number of
components n and space dimension D. They are summarized in Table 1

Some commentg are in order:
1yWhenn = -2 ¥ =1/2 for any b as a result of perturbation
theory, as far as all the corrections are properticnal to (n+2)
and hence vanish when n = —2.
2) When D = 4 v = 1/2 for any n as far as D = 4 1s the critical
dimension where the critical charge vanishes and so do the
perturbative corrections.
3) Por n = Q0 one has the Flory conjecturete]

» vp = 3/(D+2) , (1
which ig not proved yet, but seems rather probable[gl and 1s in a
good agreement with mimerical data (see a dlscusslon below).
4) The n = 1 case corresponds 1o the Ising model, which 1s exactly
colved for D = 2 with the result vp= 1"
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Table {
fritical exponent v (exact and numerical resulta)

-‘\'“' (al
1’]\< 1 c 3 4
eV 17z /72 172 1/2
=1 T 578 172
D 3/4 375 3
o 1 b).76:.03 2).588+.002 172
b).589:.003 D+2
1 a).630+.002
1 o D}.9%9+.04 b).631:+.003 172
.628+.002
¢).630+.003
d).625:,005
a).6692.002 7
2 X ¥ byleTis.gos 12
L6662+ .004
d).675+.001
a).705:.003
3 X x ).7104.007 172
700007
£).7T155,025
’ 1/ {4-c)
&) For D = 2 the Nienhuis conjecture[10]gives the result
Vy = 1/(4-2%) , 2)
where i 1s connected with n by the equation
n = -2 cog{2n/t) (3)
4 solution of eq.(3) 1s ¢ njg 2 )
n I -2 -1 0 1 2
(4)
t | 1 65 43 sz 2

The Nienhuis formula is in agreement with the

Ising model for D = 2 and n - 0,1.

6) The absence of a phase transition for the I
= 1 corresponds to v = o 7 .

The numerical values in Table 1 are
a) perturbation theory in the ¢o

dimensionfe];

give

Flory result and the
Sing model when D

n according to:

upling constant for a fixed



b) & - expansion method, where £ = 4 - T (3’7];

¢) high temperature expansion[ :
d) experiment .
Tn the first two ocases a speclal techalque for  summing
asymptotical serles was applled. It is based on the Borel
summation methed plus some  improvements diue  to  the asymptotic
estimates for high order perturbative coefficlents and analytical
progerties (for detalls see ref.(2,3,71).

Tt should be noted, that the errors presented In the table
for mumerical results are not properly proved mathematlcally and
should not be taken too geriously. Because of the asymptotical

character of the original series the method of summation itself

contains some arbitrariness thus making the estimation of the
errors not ciear encugh.

3. The existence of some analytlcal results, though may be
not proved yet, suggests an attempt tuo find a general analytical
expression which covers all Table 1 for v as a functlon of n and D
and fits all the exact values. Furthermore the analytlcal form of
Vg and vy s egs. (1) and (2}, suggests it to be a linear fractional
function of t and D :

AtD + BD + Ct + E

U(t,D} = ]
PtD + SD + Qt + ¥

where A, B, efc. are some numbers. If we now Impose the
constraints
p(1,D) = v{t,4) = 1/2 , v(4/3,D) = vy , ¥(1,2) = ¥y V(3/2,1) = w
we get
1 (D-2)(3t-4) + 2
v(t,0} = — - (5}
2 (D-2)(3t-4) + 2 - (t-1)(4-T)

To tind the values of v for n»2°, we have to modify eq.(3)
somehow. Our hypothesls is that to get one to one correspondence
between t and n for |n|>2 we have tc reflect the coslne function
with respect to x-axis as shown 1n Fig.1. Then eg.(3) is modified
in a cumberscme way




n= -2 () FVeog gy - 4 1x-11, X=2/t , (6)
wiiile the solution for integer n looks like

= —— for n even ,

4
5-n+ (n /4] ()
X = ———————Tg—u—f- for n odd .

With account taken of egs.(5) and (7) the eXponent v can be
ralculated for arbiirary n and D. The results are summarized in
Table 2.

Table 2
Critical exponent v according to egs.(5) and (7)
A\ D
n\\ i 2 3 4
-2 172 1/2 172 172 172
-1 2/3 5/8 4/7 172 (7-D)/ (16-D)
Q 1 374 3/5 172 37(D+2)
1 X 1 5/8 1/2 (D+2}/74(D-1)
2 X X 2/3 172 (D-1)/3(D-2)
3 X X 7/10 172 (5D-8)/2(TD-16)
e-t 1 3t-2 f

The comparison of the Tables 1 and 2 1s shown in Figs.2-4.
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Solid lines correspond to eq.(5), the error bars are taken from

Table 1

(me can observe a remarkably good agreement of data having in mind
the note concerning the errors of numerlical calculations made
above, An important partlicular case 1s n = w (¢ = 0, accerding to
eq. ()}, which corresponds to the spherical model. The latter I1s
exactly solved with the result[12]: p=1TforD=3and v = 1/2
for D = 4 1n agreement with eq.(b). Anyhow, even 1f eq.(5) 1s not
the true exact sclutlon (1f the latter exists}), 1t can serve as a
very accurate approxlmation and probably can be derived 1n a
rigorous way, unlike the one presented here.

The author I grateful to V.Zagrebnov, V.Prierzzhev, D.Shirkov
and A.Vladimirov for useful discussions.
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