


The most of technically important materials are based on crystals. 

Therefore, crystalline parameters and their anisotropy determine the 

macroscopic properties of materials in a high degree. Besides classi- 

cal characteristics of the crystalline phases such as crystal symme- 

try, chemical c:omposition, shapes and sizes of grains,etc.,the orien- 

tation distribution of the crystallites becomes more and more inter- 

esting. In materials manufacturing deformations of different types are 

very important technological steps. Consequently one of the main field 

for texture investigation is the description of plastic deformation 

processes. Corresponding experimental studies have been carried out 

for a long time (see the monograph Wassermann-Greven /I/). Fundamental 

theoretical works become possible since powerful computers have been 

available. Some models for simulation of plastic deformation of poly- 

crystalline ensembles have been developed and tested in the last years 

/2/,/3/,/4/. Those models which yield the best agreement with experi- 

mental results are based on the Taylor model /5/. Some improvements 

were introduced by van Houtte /6/. Especially cold deformation tex- 

tures of fcc metals were predicted in some works with these models 

till now. Other crystal systems like bcc or hcp have been considered 

in a less extended manner. In the present work we summarize the essen- 

tial ideas of the theory of Taylor and their use for modeling plastic 

deformation and their application to rolling deformation of bcc 

metals. 

The Taylor model is based upon two main assumptions : 

- each grhin undergoes the same strain as the whole sample 
- this strain is supposed to be realized by multiple slip on dif- 

ferent slip systems 

These statements correspond to the experimentally observed plastical 

behaviour of polycrystals, especially with the material continuity at 

grain boundaries and with the actuation of multiple slip systems in 

case of higher deformation steps. 



For mathematical treatment it is necessary to introduce sample fixed 

and crystal fixed coordinate systems (see Fig.1). The sample fixed or 
external system KA is an orthogonal system (x1,x2,x3) well adapted to 

the sample and deformation geometry. The crystal fixed system KB is 

adapted to the crystallite, in the case of cubic structure we have an 
orthonormal system (xy , x:, x:) . Usually the orientation of the crystal 

fixed system with respect to the sample fixed system will be described 

by the direction cosines of its axes with the help of the so-called 

orientation matrix G (an orthogonal 3x3 matrix) or by the three Euler 

angles p1,+,p2 as used by Bunge et a1 /7/. 

Fig. 1. The sample fixed 

coordinate system KA and 

the crystal fixed 
coordinate system Kg. 
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The macroscopic strain tensor E is known in the sample system, but the 

simulation must be carried out for every individual crystallite. The 

microscopic strain tensor EC could be calculated from E by : 

EC can be split up in a symmetric and in a asymmetric part as follows: 

E~ = EZ + E,C (2) 

E: = (EC + ECT)/2 E; = (EC - ECT)/2 , 
where the symmetric component E: represents a change in shape, and the 

antisymmetric component E: represents a rotation of the selected crys- 

tallite. On the other hand, crystallographic shear 6i in the slip 

system i gives a change in shape 

and a rotation 

Eci - 6i si 
s slip - 

stl = (r: vi + ri v;)/~ 
. . .  

ri, ri, r: - direction cosines of 
slip direction to Kg 

vi, vi, vf - direction cosines of 
normal on slip plane to Kg 

E ~ i  = hi .i 
a slip . . 

R:~ = (r; vi - ri vi)/2 . 

Plastic deformation in a crystallite can be realized by activating of 

5 independent slip systems (von Mises / 8 / )  that means summation must 
be carried out over 5 slip systems. Summation over all activated slip 

systems produces forthe selected crystallite resulting deformation and 

rotation 

From the first Taylor assumption, strain equality, follows : 

EZ = slip 

E: = E; slip + EZ, , 

The rotation E;, must be added because in general no correspondence 
between macroscopic rotation of the sample and rotation of the crys- 

tallit due to shear can be expected (see Fig.2). This additional rota- 

tion E:, determines the orientation change of the selected crystallite 

(the texture development) by plastic deformation. For calculation of 
E:, the unknown shear 6lwill be determined from (6), (7) suppling the 
additional rotation; I?: and I?: can be considered as known. The solp- 

tion of (6) is not unique, there exists a high degree of freedom in 

choice of a concrete solution (e.g. using the 3 typical slip systems 

of bcc crystal class there are 1 712 304 possible variants for dif- 
ferent shear, all fulfilling the Taylor assumptions). To overcome 

this, Taylor introduced the condition, that the solution to be selec- 

ted is the one that minimizes the internal work during plastic 
m 

deformation wc = c Tci l r i (  
i=l 

Tci - critical resolved shear stress. 
Now (6) and (7) can be effectively dealt with the formalism of linear 

optimization, mostly with the SIMPLEX algorithm. Unfortunately, in 
contrast to classical problems of linear optimization the optimal 

solutions are not unique because of the high symmetry of the problem. 
This is a serious complication, since for description of plastic de- 

formation processes all possible solutions must be calculated and con- 

sidered. There exist different ways to calculate the lattice rotation 

EZA from the multiple solutions. Usually Monte Carlo methods, aver- 
aging or additional physical restrictions (e.g. latent hardening of 

activated slip systems, relaxation of geometrical constraintments) 
were used. 

For simulation a plastic deformation the above discussed formalism 

must be carried out for a statistical representative number of crys- 
tallites respective for a certain number of small deformation steps. 



Fig. 2, a,b - A shear 6 on a slip plane does not rotate the lattice, 
although a material vector may be rotated(vector AB 

e.9.) 
b,c - An additional rotation - which is also executed by the 

crystal lattice - will bring the crystal in a position 

corresponding with the imposed strain; e.g. pure elonga- 

tion in the direction AC /6/. 

The new crystallite orientations found after a deformation step are 

the start orientations for the next step. The initial orientation set 
could be chosen randomly or specially so that an orientation distribu- 
tion near the isotropic one is represented. 

Inverse pole figures represent in a stereographic projection the ori- 
entation distribution of an external sample axis within the crystal 

coordinate system /7/. From this special projection is seen which ori- 
entations of the polycrystal are parallel to a given direction of the 

sample (mostly to the normal direction). 

w& la , Fig. orientation 3,Representation in inverse of pole a crystal figures 

, I  

D* a) Representation of sample-fixed 

xC axis in the crystal-fixed frame, 

b b) Convention used by P. van Houtte. 
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To increase the evidence of inverse pole figures we use the extended 
representation of van Houtte (Fig. 3)/6/. Instead of plotting the 

sample axes x1,x2,x3 in the standard projection of the crystal only 

the x.,-axis with a special symbol will be plotted. The center of the 

small circle represents the projection of the xj-axis, the small 

stroke is directed parallel to the direction OX1. 

001 

Fig. 4. General fundamental area 

in orientation space for cubic crystals. 101 

Resulting from the cubic crystal symmetry it is sufficient to consider 
only a fundamental area of the inverse pole figure ( in Fig.4 the two 
projected spherical triangles 001-011-111 and 001-101-111 ) .  Any pos- 

sible orientation outside this range can be transformed by symmetric 

transformations into the fundamental area. Taking advantage from the 

deformation symmetry we can in most cases further reduce the fundamen- 
tal area to the triangle 001-011-111. 

Starting from a quasi isotropic initial orientation distribution, re- 

presented by a set of 147 single orientations, the Taylor simulations 

were computed. The parameters were chosen to simulate a plain strain 

deformation of a bcc metal. 40 single deformation steps, each reali- 

zing 5 % reduction, were applied to a total deformation of 87 %. The 

non-uniqueness of the optimal solutions was considered in all calcula- 
tions by averaging. 

Fig. 5 shows the stepwise texture development, calculated for the main 
slip system (110)<111>. Clearly seen is a homogeneous 'flowing' of the 
single orientations to the final components. By more detailed inter- 

pretation of the final distribution we can point out final directions 

in the orientation tube (112)<9 ii 1> to (344)<452>. With the help of 

the simulation method we studied the effect of the experimentally 

determined slip systems (110)<111>, (112)<111> and (123)<111> to the 
resulting final texture independently of each other or in any correla- 

tion. The respective final orientations are shown in Fig. 6. Although 



I n i t i a l  orientations 

10 stsps 40 steps 

Fig. 5,Texture development of plain strain deformation of bcc crystals 

calculated by simulation of multiple slip on (110)<111> slip 

systems. The 147 crystallite orientations were initially 

equally distributed over the fundamental area 001-011-111. 

Pig. 6.Final textures of simulated plain strain deformations of bcc 

crystals, different active slip systems were used in the simu- 

lation. 

the individual influence of the different slip systems is seen, a 

general tendency is established. From the simulation analysis follows: 

slip system final rolling texture .................................................................. 
(110)<111> (112) 19iill to (344) 14521 

(112)<111> (5511) [llc] to (335) [llc] 

(123)<111> (337) [iio] to (456) ~5401 + (1811) [01181 
( ( 1 1 0 ) + ( 1 1 2 ) + ( 1 2 3 ) ) < 1 1 1 >  (5511) [iio] to (344) [452] 

This represents a correspondence to measured rolling textures of bcc 

metals. There were found texture components at orientations: 

a-fibre ( [llo] parallel to the rolling direction ) 

from (001)<lTo> to (111)[1T0] 

p-fibre 

from (112)<110> to (11 8 11)[4 11 41 

y-fibre ( (111) parallel to the rolling plane ) 

from (111)<110> to (111)[120] 

These rolling textures may vary strongly from one bcc metal to 

another, and even materials with identical chemical compound differ in 

their deformation character from each other. The existing deviations 

of the simulation to the experimental results are interpreted as a not 

complete adapting of our model to the deformation process and as spe- 

cific influence of experimental conditions such as inhomogeneous 

deformation and start texture. 

Comparing the simulation results and the above given experimental be- 

haviour of bcc metals it is seen, that with the used general condi- 
tions for describing plane strain a good agreement for development of 

p-fibre and somewhat less good for y-fibre is possible. The simulation 

does not supply positions (001) parallel to the rolling plane and also 

the exact position of (111) parallel to the rolling plane is not sup- 

ported. 

001 

Fig. 7.Experimental inverse 

pole figure of a cold rolled 

Fe Si-sheet (82% deformation) 

For comparison with experimental results Fig.7 shows the inverse pole 

figure of a Fe-3 w% Si-sheet, that has been rolled at room tempera- 

ture, the rolling reduction was 82 % /9/. The texture development of 

polycrystalline samples was there investigated by stepwise rolling and 

careful measuring of the orientations of specially selected single 

crystals. The final deformation state of the 37 representative crys- 

tals shows that our simulation is in agreement with the real texture. 

The components near (001) parallel to the rolling direction are 
missing in the modeling. 



To overcome the existing disagreements further simulations should be 

calculated by including individual parameters with respect to the 

chosen materials (e.g. special weightening of activated slip systems, 

relaxing of geometrical constraintments especially at higher defor- 

mation steps and consideration of actual start orientation distribu- 

tion). 
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In this paper the essential ideas of the Taylor theory 
are summarized. This Taylor model is the most used model 
to understand the development of texture on the base of 
microscopic processes like slip or glid. Calculations for 
various degrees of deformations were done for BCC mate- 
rials. 
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