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1. Introduction

As is well-known high-temperature superconductors H.T.S. have a
strong anisotropy connected with the weak binding of different
conducting CuO-layers [1-3]. In the CuO-plane the anisotropy created by
the orthorombic splitting is not large [4,5]. In this sense, the
CuO-planes (a-b-planes) are "easy" planes [6,7], and the effective mass

L of a Cooper pair in them is much lower than the effective mass m
u c

in the c-direction perpendicular to the CuO plane. For the ratio of
these masses

b
m > H
c c2 c2
m - c,2
Cuo (H )
c2

experimental data [8] for YlBaZCu307_6 give 25+30; see for the

2 8+8
obtained by measuringbthe upper critical field in principal _directions
a

of the crystal H~, H °, H ¢ s considerably larger, (1:2)x10
c2 c2 c2

Anisotropy of the mass tensor m of Cooper pairs for noncublc
superconductors is an old idea [11,12], which is successfully used for
the description of the transverse magnetization ML and the torque @ of

discussion {8]. But for the Bi2 2CaSr1 9Cu 0 ctystal {10] this ratio

the Abrikosov lattice in H.T.S. (13], for the angular (8,¢) dependence
of . the HC“ {14-17]), and for other thermodynamic characteristics of

anisotropic superconductors (for introduction into the problem see, for
example, papers [18-29]).

The upper critical field is one of the most important
characteristics of superconductors. The temperature dependence HcZ(TL

for example, determines GL coherence lengths Ea(O),Eb(O),EC(O) along the

principal axes of the crystal. But unfortunately, for the H.T.S., the
determination of H 2(T) by resistivity measurements is difficult due to
c

the depinning of the flux [30] and strongly fluctuational phenomena

[31-32]. Care is therefore needed in determining coherence lengths from

"H 2“ measurements [17]. The nonlinear dependence of M _(T) provokes
c

some considerations [33-36] of strong fluctuations or even modifications
of the classical [37,38] GL model. This problem is widely discussed in
the literature [39,40], but some recent clear experiments give,
nevertheless, the linear temperature dependence for the lower [42]
H ,(T) and upper [4) H__(T) critical fields, as for usual BCS-GL

superconductors

g




In
some cases, as for example the temperature de,

a-b-plane penetration depth [41] A(T) pendence of the

in t
he YlBaZCu307<a epitaxial

films, the comparison

, ] of the H.T.S. i
weak-coupling theory is remarkable. perinental data with the BGS
The main aim of this work 1s to sy

for the determination of H YT of anisoggeSt a new contact-free method
c2

tropic H.T.s, by the measurement
the method gives the inverse function T (H)
perature as a function of the external magnetic fij

of the FT. More precisely,

the critical tem
{n=H/H).

An ex i
(gaussi Plicity arises due to the 0
Tg(galag) nature of Superconductive fluctuations at te chermodynamic
c2H). Under these conditions, i mperatures 1 >
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" t h mainly in t -
Cﬁzgiizzf, their magnetic moment M g orig;ted k:;ﬁ?? Plﬁnes, the
on. As a result, the anisotropy of the material creite;na FTthe

1d H

©® =H x M, B=HM
L
which aspires to turn "

easy” -
as s shown in fig.1. ¥ CW0-planes parallel to the magnetic field,

ion of a two-dimensional
Is affixed to the torsion
eld and c-axis.

electron gas [43).

; The supercon
Wire and 8 is the a b ductor specimen

ngle between the magnetic fi

In the normal region the gaussian integral for

the partition
function can be easily obtained, and in the framework of the GL theory a

simple analytical expression for the Gibbs free energy G is derived.

Thermodynamic quantities such as the heat capacity,
moment, and the diamagnetic susceptibility are expressed

diamagnetic
in terms of

derivatives of G. For example, FT is a derivative with respect to

angular variables which describe the orientation of the specimen with

respect to the magnetic field. Near to the phase curve an(T) the FT has
<

a singular behaviour

The main idea of the proposed method for the determination of
T 2(H) consist in the extrapolation of this high-temperature dependence

from the gaussian region to the critical one. A similar method has been
used [44] for the determination of the BCS critical temperature T of
c

thin film superconductors with the help of the

fluctuational

Aslamasov-Larkin conductivity. By that method the experimental data
processing does not require a investigation of the critical region,where

the theoretical picture is very complicated due to disorder, defects of

a crystal, and due to interaction of different fluctuational modes.

2. Model

Our starting point is the Gibbs {ree energy functional of the

anisotropic GL model

‘ GULAY = P> + (br2) J-‘¢\4d3x

‘ + I(rotﬁ -2 & s 8n

|

‘ where

| N R , -

‘ H= (p - qA/cl) (2 m) (p - qA/Cl) + alT),
m d] 0

; a ~

! m = 0 n 0 , p = -ihV, q = 2e,
Q0 ] m

alT) = al®)r, T = (T - T VT,

and <, is the light velocity. Here g is the Cooper pair

charge,and the

coordinate system (a,b,c) is chosen so that the Cooper pair effective

mass tensor m is diagonal.

w



In the normal region T > Tcz(H) outside of the narrow band near to

the phase curve fluctuations of the order parameter are small, the
diamagnetic screening is negligible, and the magnetic field rotA
coincides With the external magnetic field H. The second term in (1)
which represents the interaction of different fluctuational modes is
also negligible in this case, and the free energy is expressed through a
gaussian integral and the determinant of the operator H; see for a
introduction the nice review of fluctuations in superconductors [45].

exp(-G(T, 1)k T) = J' j Dy Dy" exp(-<u[H|y>/k T)

i}

det(nkBT/ﬁ), (2)

The spectrum of the "hamiltonian" H is given by the well-known
expressions for the cyclotron resonance in the effective mass
approximation [46]

= 1 2
En’p" = hw (n + 3Vt ey ?_m“ + alT), (3)

where: n=0,1,2,..., ~w < p“ < +o, w = qH/mlcl
c

_ 12 _
m = (det(m)/m”) =m,/g(n),

_ 173 _ 172
m, = (detm) "7, Moo (mamb) )
n = H/H = (sec¢,ses¢,c9),
s8 = sin @, C¢ = cos ¢,

=n n = mg’( )
m, = .m . & (n

1z 2 2, 2 2,172
= = +

g0, ¢) (n . p.n) [(uacW ubsw)sG + “cce)] s

p=m/m, dety =1

Here (8,p) are spherical angles of orientation of an external magnetic
field in the coordinate system (a,b,c) connected with main axes of the
tensor m and the crystal,
Each of these eigenvalues is Nl time degenerated
Nl = SLH/¢07 (4)
where: ¢0=2nhcl/q is the fluxon, 51 is an area of the specimen

perpendicular to the magnetic field.
The upper critical field H"Z(T) can be obtained from the condition
c
of vanishing of the ground state (n = 0, P, = 0) energy of the spectrum

(3). From this condition

1. a(Tizhe =0,
2 <

after elementary substitutions we easily obtain formulae [47]:
H'.(T) = H".(0) (-1), 0 < (~1) «1, (5)
c2 c2

where

" =H = -T (A H'(T) 7 8 T) .
HcZ(O) - HCZ(O)/g(n) c( c2 T=T

W' (0) = ¢ /ZnE2(0),
! )= * 173

£.(0) = [ﬁa(O)Eh(O’EC‘O) ,

h2/2mx£?(0) = a(0), i = a,b,c,
1

172

El(O) = E‘(O)/(u))
This angular dependence is in good agreement with the experiment, and
the data [8] for YlBaZCu307_S give (9}

H'Z(O) =370 T, &0 =9.3%
c
= =0.3 = 8.8.
Ho=0.4, 0.3, n
3. Calculation

The substitution of (4) and (3) into (2} gives

-] ‘0

Py (6)
= —_— E / nk T }.
G(T, 1) = kI!TcN.L Z OL" Im 2nh In [ n,p" B ¢
L,

Here L. is the length of the specimen in the direction of the magnetic
I

field. The geometrical form, of course, does not matter, and the result

= i . Only the
depends only on the volume V = L" Sl of the specimen nly

temperature dependence of a(T}) « T is relevapt for theb c;itical
behaviour, and therefore in (6) the temperature T is replaced by .

Let us introduce the notation

_ .2 172
k = (pll / Zm"hwc) R
-1, a(T)
=z hw

c

In the argument of the logarithm in (6) we separate the irrelevant
for the critical behaviour multiplier hwc/nkBTc

2
1n |E / nkBTC] = In(n + x + kK) + In hwc/nkBTa

ney

The last term in this equality adds an irrelevant .(alfhotgz
infinite) constant to the free energy and we ux%l neglect it 1zetic
further analysis. It is useful also to introduce dimensionless mag



_ n _ . . -
h = H/ch(O) = gh, h = H/HcZ(O).

Thanks to the equality
172 _ 372,172
kBTCNL(L"/h)(Zm"th) = th /2"

Eo kBTcV/ga(O)ib(O)ic(O),

which is checked by an elementary substitution, the Gibbs free energy
takes the form

G(T,H) = (E/2"°mn™?f(x), (7)

where

] +o

fx) =) J In(x + n + k%) dk/2n .
n=0 “w

The obtéined function f(x) contains ultraviolet (UV) divergencies
and for their regularization we will use a method similar to the
zeta-function method [48].

Let

(-]
Clv,x) = z 1/(x + m)¥
n=0
be the Hurwitz zeta-function ([49] defined for v < i
. 1 b 1
continuation in the variable v. Y enalytical
In our further thermodynamical analycis we will use the formulae:

, x > 0, v > 1

d

—E;C(V.x) = - v{(v+1,x) (8a)
x Y 0<x«l (8b)

Cw,x) = | @Y-1ew), x =12 (8c)

1 1 1

— - , X » 8d

(v-1)xY 1 24x”¢l (8

) = le/n" =W, 1), wv>1, (8e)
Z(v) = V¥t sin(mv/2) T(1-v) (1-v) , (8f)
¢(-1/2,1/2) = 0.060888. (8g)

The equality

f(x) = g(-1/2,x) + Ax + B (9}

can be ea;ily checked after double x-differentiation of the definition
in (7) using (8a). Our method for UV regularization of (7) consists in

the neglect of infinite, but irrelevant for the critical behaviour
constants A and B in (9).

For the Gibbs free energy we finally get

G(T,H) = [ Ul ]kBT v nZ(-1/2,x), (10
2% n ° £ (0)€ (0)§ _(0)
a b c
where
I S S
X =5+ 5p=ts2h

=3 [(T -T (H))/H] [—a H'_(T)/d T]
c2 c2 T=TC

t =(T-T_(H)) /T
H c2 c

The latter formulae are verified directly by substituting the
definition of x, and using the linear temperature dependence of the
upper critical field. In the dimensionless variables the phase curve

H 2[T) can be found from the condition
c

x(t,h) =0,
and has the obvious solution

h (t) = (-t) or T (h) = - h, for Jtl,h « 1.
c2 c2

Formula (10) is a central result of our consideration. This formula
has the same functional form as in the "spherical cow approximation"
[50], i.e. as for a usual isotropic type-II BCS superconductor ([51]. In
the next section, we will present expressions obtained by this formula
for the FT in different physical conditions and mathematical variants of
(8).

4. Fluctuational torque

Let the H.T.S. single crystal is oriented as is shown in fig.1. The
b-axis of the crystal is parallel to the torsion wire and ¢ = 0. Under
torsion the magnetic field turns in the (a,c)- plane and the torsion
angle coincides with 8. In this case,

8(6,h',1) = -G /ae) ». (11
b T,h
Angular variables ap.ear in G only through the function g(6,¢) and
therefore it is useful to express the magnetic fjeld in (10) through the
angle-independent dimensionless magnetic field h

172 372

GLH) = (E/2"%n) (0'9)™2 g(-1/2,172 + /20 g), (12)

g = (unsinzo + uccosze), ¢ = 0.



4. 1. ch DETERMINATION

Near the phase curve 0 < tH « h and x « 1. In this case we can use
in (11,12} the approximative formula (8b). We get for the FT

172

8, =5 (nn) (VkT) £,(0) (We)? sin(20)/(t) (13)

b 2
This law gives the possibility to determine the ch by measuring the

FT. Experimentally, FT is determined by subtraction from the torque,its
value at high temperatures and in the same magnetic field Bb(T » T ,H}.
c

That is why a part of normal electrons cancels and so does irrelevant
for the critical behavior part of superconducting fluctuations. This
experimental procedure is analogous to the cancellation of constants A
and B by UV regularization of (9). Formula (13) can be rewritten in the
form

2
n 2 .
[ 5 kBTc (uc—nal (H/¢o) sin(2a) 7/ [Gb(T,H)—@b(T»TC,H)] ]

ty T -T_(H)
= , t =——% =1 +h. . (14)

£2¢0) T

c

With the help of (14) the transition temperature T 2(H) can be
<

determined by a linear extrapolation of the expression in the left-hand
side versus the temperature. This field-cooling method is shown
schematically in fig. 2 and 3.

Hee(T)
S N |
e
\NT T>>T,
- e
I\- H=const
\
VAN _
0
T(H) T, T
Figure 2. Determination of the upper critical field ch(T) by FT

measurements. Field-cooling of the specimen begins off a high
temperature

1/ [8(r)-e(r>>% )"

U

2

Top(H) T

[=]

Figure 3. Critical temperature determination by extrapolation from the
normal (N) high temperature region where only gaussian thermodynamical
fluctuations of the ideal crystal are essential. The method is analogous
to that described in [44,45].

If the magnetometer is calibrated in absolute units, then the
coefficient in front of tH in (14) gives the value of (u —p )€,(0). Such
c a

measurements are however more difficult

4.2. STRONG MAGNETIC FIELDS (T =T )
c

Just at the critical temperature T the high field approximation h »
c

T is applicable. By the substitution x = 1/2 in (8c), from (8g) and (12}
we obtain

G(TH) = VT A 2 (Hg)¥? (15)
< c* 3

A= 3k '’ c(-1/2,1/2) /4’3/2'

.
3n'"? ¢(-1/2,1/2) = 0.32376.
It is interesting that £,(0) cancels and A, 1s a constant general

for all superconductors [53]. When the magnetic field is parallel to
some of main axes, the c-axis for example, for the magnetic moment

M= - (4G / 8H)
from (15) we get




- M/ VTCHVZ =a, g7 (16)

c

172 172

32 _ _
g% = (£ (0€,0) )%/ € (0) = (ms/m_ )

u0
For an isotropic material g = 1. As can be expected, the diamagnetic
moment has a maximum when H is perpendicular to CuO-planes.
In this strong field regime we get for the FT from (11-12} and (15)
3/2 2 2,1/4
— = - . 7
e, 7 VTCH A_(uc ua)sece / (uas6 + ucce) (17)
Certain deviations from this law will give valuable information
about the nonlocality of the Cooper pairs analogous to the well-known
[54] deviation from (16) for conventional superconductors. For H.T.S.
the nonlocality can be connected with the Josephson junction between
CuO-layers and also with the Pippard type nonlocality for Cooper pairs
propagating along these two-dimensional layers. It must be remembered
that few per cent deviations {54} from (16) are observed even if the
coherent length £(0) is an order of magnitude smaller than the magnetic
length
o
1, = (he /em)'’® = 256 A / (H(T))'.
Therefore in strong magnetic fields = 5T 3;3 is possible to
anticipate deviations from the power law (17) (eb/H versus £ h(0)/1H)
a

created by a Pippard type nonlocality in CuO-planes. In framework of BCS
theory the Pippard type nonlocality of anisotropic superconductors is
investigated in [55].

The advantage of torque measurements over SQUID measurements is the
possibility to work with higher magnetic fields. In addition to this,
the sensitivity of some torque magnetometers is higher [43] than that of
best commercial SQUIDs.

4.3, WEAK FIELDS

At the end we get the anisotropy of the magnetic susceptibility x

for a superconductor in a weak magnetic field (h« T «1).In this case x
T/2h » 1, and for the zeta-function we will use the asymptotic (8d)
obtained by the Poisson-Euler summation. Thus, from (12) we get

G(T,H) = %c vt 32_ VH.x.H/2,
where [56,57]

C* = kBTC/Snﬁa(O)Sb(O)EC(O),

- 2 172
x = ~(ns6) (kT /¢ p £ (0)/T7" .

10

The anisotropy of the magnetic susceptibility follows the anisotropy of
the Cooper pair mass tensor. For example, susceptibility is maximal when
the magnetic field is parallel to the c-~axis and Cooper pairs rotate in
"easy" CuO-planes.

The diamagnetic moment in this case is

M- Z'H )

and the torque can easily be found.
5. Discussion

Torque measurements are a well developed method in physics of
magnetism [58]. These measurements have been long used for the
investigation of anisotropy of superconductors [59].

On the other hand, investigations on fluctuations in H.T.S. are a
vast field of activity. Here can be mentioned the specific heat [60],
the excess electrical conductivity [61,62], the fluctuation induced
diamagnetism (63}, and the thermopower [64]. Fluctuations in strongly
anisotropic H.T.S. are pronounced because of a small coherence length

Therefore we may expect many experimental papers to appear on
measurements of FT « E . For Y Ba Cu O

0 12 37-8
E/V = 1.50 J/cm’.

Observation of the Pippard type nonlocality in CuO-planes may be a
more difficult problem. In particular, for the extremely layered
material 812 2CaSr1 2Cu208 5 [65]), it can be expected that main

. . .

deviations from the local theory are caused by the Josephson junction
between layers [66)

H = p2/2m + p2/2m + 1 (1 - cos(cpz/h)] + alT)
a a b b c <
1= (bvc)om .
c c
For strong magnetic fields
h(ch/mCuocl) » lc R HC =H Icel
a crossover [67,68] from a three-dimensional (3D) to a purely

two-dimensional (2D) behaviour will be observed in this superconductor
The analytical result in our approach is obtained by the replacements:

Jdp"/Znh = 1/¢c in (6),

, = /1 i
mo» w ch m.oC1 in (3)

Thermodynamlc quantities in this case are expressed through
zeta-functions of integer v. Such a 2D model is also appropriate for the

11
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