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Recent experimental and theoretical studies of arrays of
Josephson junctions and buperconduﬁtlﬁg layers have attracted
great attention (see for example "'* and citations thersin}.
Though such structures are conducting, one may wonder if there
are existing plasma waves like those in other conducting media
(plasma, metals, ZDEG and so on). The aim of this work is to
cbtain ths excitation frequency dispersion law and to descri-
be how they can be detected.

Let us consider a two-dimensional square lattice with
a lattice constant a (recently used superconducting arrays
contain NxPJgrains (N «1000) '2=4) Fach grain has coordinates
= (x,y) =al; .ty ?12 = 1,2, - The quantities that
are attributed to a grain are the Josephson s phase 9(x) and
the electrical potential ¢(1) The links between the grains
are equal Josephson junctions with critical current I, and
normal ,State resistance Ry . Each link is labeled with two vec-
tors (X, n) , % being the startlng grain coordinates and n
being the direction vector n = (2, 0); (0, a). We will denote
current through the link whlch is dlrected toward X with I(x)
and similiarly for y dlrectlon I (x) (notion I means that the
link is directed in 1o dlrectlon)

Let a plane wave external field w1th electrical potential
(X,1) = 3% exp [i(K,X-wt)] (e* ¢o* <<ho <<A,A=2n/k>>a)
perturbate our system. We will use resistively shunted model
to describe Josephson junctions /2,67, The equations of the mo-
del are (t is the time):

.ex

U(x) =1, 8in (8(£48,t) -0 (X)) + (¢ (L4n,t) =" (£,0)/R, (1)

h—d“t—(e(hﬁ) —6 (%)) =e* (¢ (K1) - T (F40,1)) (2)

where e*=2e is the charge of the Cooper pair, R is the resis-
tance between grains and h is Plank’s constant. In the long
wave limit the phase differences 6 between adjacent grains
are small and we can replace the siné in (1) with 6. In this
limit I(x) <<1, and the resistively shunted model 75/ §2.3 gi-
ves correct descrlptlon of the Josephson junctions if we take
appropriate value for R (equal to 10 +20 Ry for tunnel junc-
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tions, or R, for SNS junctions and for resistively shunted ’
junctions/5ghapter 2).
From (1) and (2) it is easy to obtain the current caused by
the external field in the long wave limit:

- e* ] i 4 2
T(x)-—2 (1-22 ) kg™ (z,1),
hw @,

where w,=e*I R/h . If we introduce the surface density of
the current j(x,t) =I(x)/a we will have:

e*l

flPing ez mex ex _ c _ e
i(x) =0, BT, EV =-Vg—, o =i o 1 ),

c

where o, is Drude’s conductivity of the array (we name it
Drude s conductivity because of the same w - dependence of the
first, term as the high frequency response of free particles)
and E®* is the external electric field. Taking into account
the charge conservation law Vf::—atp (p is charge density)
for the polarizability Il of the system (p=0¢°%") we obtain
I-=-iop k*/0.

In order to obtain self consistent description of the sys-
tem we have to calculate the potential caused by the given
charge density -p(i’,t) =P, exp[i(K.-X-owt)]. We will consider
the general case in which there is ideal conducting plane pa-
rallel to the array at a distance d (see fig.l) like the
ground plane is the integral Josephson schemes /7/ (see fig.1)
(this can be metal layer with negligible resistivity or what
is better superconductor). In this case result is /8/:
d= i p=Up,

l:(e1 +e, cthkd)

where ¢ o are dielectric constants of adjacent dielectrics
and U is the Fourier transform of the Coulomb potential of the
charge in this structure (we are neglecting the retardation
effects and because of the long wave limit the near neighbour
capacitance effects). In the dielectric formalism/9/ the re-
normalized conductivity of the system is o=0,, /« , where

x =1 -TIU. The dispersion equation of the plasmons is x = 0,

so we obtain the main result (neglecting dissipation): *

w:e (k) =4me*I k/(e, +e, cthkd)h. (3)

2

From experimental point of view only the kinetic inductance
per square Lg is essential for two dimensional plasmons.

2

t——

<)
<3
3

[F%}

Fig. Scheme of the stryucture for observation of Josephson plasmons.
i - metai laver; 2 - oxide layer; 3 - Josephson array; 4 - metal
grating; © - microwave irradiation. This scheme is similar to those

. PR . i . - - . P
used in’ “®’ for ohservation of two-dimensional plasmons in Si-in-
version layer.

- ‘o .
For Josephson arrays 2310/ =h/e*1, Depending on the

geometry of the system we obtain the well-known from plasmons
in 2DEG square root "11-14/digpersion law:

0% (k) =27U3 /ey for  d>>h, (4)

and acoustic /15:16/ dispersion law:
-1 1/2
wp (k) =k (4nL5 d/¢,)" % =v k  for d<<A. (5)

In this form formulae are applicable not only for Josephson
arrays but for thin superconducting films.

If we account the dissipation in first order, the plasmon
frequency acquires imaginary part that has to be much lower
than its real part:

Imwpz (k)/Rewpf (k) Smpf (k)/2wc :1/‘&);’?(1‘2).'((1,



where T=2a%:/m2(k) is the relaxation time. To hold this ine-
quality we have to: i) make w, as hlgh as possible; ii) make
k as low as possible; iii) make I, «L. as low as possible.

i) The "characteristic" freg ency (our definition is

different from ordinarily used we =e*I, Ry/h ) may vary
many orders of magnitude: from 10+ 20 A/h for best tunnel junc-
tions, through A/hfor junctions SNS with short thickness
of normal metal layer, to 10~2A/h for resistively shunted
tunnel junctions and SNS junctions with long thickness of nor-
mal metal bridge. So it is preferable to use tunnel junctions
or SNS junctions with short thickness of the normal metal
layer.

ii) Hydrodynamical approach and finite size effects lead
to restrictions a<<A<L (L is characteristic size of the
agray) so appropriate number of the strips of the grating is
N

111) In lowering I, we are restricted by thermodynamic fluc-
tuations which originate the Kosterlitz-Thouless transition
in two-dimensional arrays/2J748/ Ic>>2e*kBTKT/hn , Where
Tgris the temperature of the Kosterlitz-Touless transition
(for elementary introduction see’/19/).

In the case of acoustic plasmon we have additional lowering
in “ﬁl(k) by factor ydk , see (4), (5).

As illustration let take following'parameters I_=1uA,

w, /27n=1THz for Josephson junctions and 1 mm graiting spacing.

In this case the kinetic inductance is L= 0.6nH and the
frequency of the square root plasmon is wpg(k)/217= 12.5GHz.
The group velocity is much lower than velocity of the light
which confirms the neglecting of retardation effects. The dis-
sipation is negligibly small which can be seen from “’B(k)'—
= 161.

As another illustration let us consider the high T, films
made by Fiory and others’20/.The kinetic inductance 1s expres-
sed by the London’s penetration depth § as’2%L = 4n3 /dg c?
where d, is thickness of the film. So for plasmon frequency
we have (¢ is the light velocity):

d k

wpg(k)=-8—\/ y

L

In order to neglect the retardat1on effects the following ine-
quality must be hold A<<16n¢m8 /dg. So for typical values

of those films/20/ 8, = 150 nm, ds 50 nm, e = 102 (em
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half of SrTi0O, dielectric constant) we receive A << 1 mm. For
A =100 ym the plasmon frequency will be hwy = 5.2 meV.This
frequency is less than the gap frequency 2A= 3.2kg T .= 25 meV.
It is interesting to look at the main result (3? in Feyn-
man’s two level Q}cture’zl/. In this approach each site has
wave function ¢ (X) . The equations for the wave functions are:

ih—9 y () A S y(F+t) 40 (E-0),
at 5

where A is the transition amplitude for a Cooper pair to hope
from one site to its neighbour. As it is known in such a sys-
tem there are freely propagating particles (1n the effective
mass approximation) with effective mass m*= h /Aa If we
interpret the modulus of order parameter |¢' in the framework
of the Ginsburg-Landau theory as namber of Cooper pairs grain,
the critical current can be expressed by the surface density
n=|y|?/a® in the form L,:e*na A/h . Subst1tut1ng in this
formula A-h®?/m*a® we obtain L =ne*2/m*. This is the well-
known expression for the gas of free particles. Putting this
formula in the expression for the plasmon frequency we receive
the well-known formula for 2DEG plasmons /11-14/

The result of this work - the existence of dynamic excita-
tions (plasmons) in Josephson arrays returns us to many years
ago work of F. and H.London 722/, They use dynamic equations
describing motion of charged particles without friction to
explain the Meissner effect. Lately Landau (1941) 723/ § 44 ex-
plains’ the Meissner effect merely by use of existence of or-
der parameter and gauge invariance. On intuitive grounds is
also Josephson derivation of his effect’/24/ describing dynamic
tunneling of Cooper pairs. Josephson effect can also be des-
cribed in terms of Ginsburg-Landau theory see’23 § 50. To do
this one has to step a bit over initial assumptions of the
Ginsburg-Landau theory (especially for ac Josephson effect).
This step means adding gauge invariance (a dynamic effect)
to static Ginsburg-Landau theory. Feynmans picture/21 also
gives correct result although it is based on intuitive assump-
tions too. The rigorous microscopical ana1y51s/25/ (on the ba-
sis of BCS) confirms this two level picture.

The result of this work again shows the complete coinci-
dence between intuitive description of the Londons, Josephson,
Feynman and rigorous description in the framework of Ginsburg-
Landau and BCS. In terms of Ginsburg-Landau theory the Joseph-
son effect is described with following term in the free energy
functional:



< s o N b ng =
A X ¢iznirw(x+n)
2
n, K

which in the long wave limit transforms into:

S R
{(ive{x)Y /2w*)d x.
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This may be called simply "kiretic energy’ of quantum mechani-
cal particlies. This is the origin of the kinetic inducrance
in the pLasmon ‘s dispersion law. For example for LLFLK array
2y C ”4WﬂqD e*2/m* where we can substitute a'> /m *=1, /e%ha to
cbtain (g =4nlce*/ha. So we suggest that it may be possible
for 3D plasmons to be detected. For example this can be done
on bad enough High-Tc ceramics {one should ensure that k a7t <<
<«<hQpp << A). So the photon acquires mass as dynamic etfprf -
tne idea in gauge theories with spontaneous symmetry breaking,
returns back in the physics of the supercenductivity where it
came from.
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