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In solid state theory, a defect solid can be considered as an
elastic medium perforated by singularities in the form of points,
lines, and surfaces. The complete field theory of material bodies
with dislocations and disclinations based on the Yang-Mills
universal gauge construction has been presented first in [1]. As
has been shown in [1], the space group Gw= SO (3)pT(3) may be
viewed as a 6-parameter gauge group that leaves the Lagrangian of
elasticity theory invariant. Breaking of the homogeneity of the
action of SO(3) was shown to give rise to disclinations and
rotational dislocations, while homogeneity breaking of T(3) gives
rise to translational dislocations. The recent development of the
gauge approach in solid and 1liquid defect systems has been
presented in [2-4] where further references can also be found.

It should be noted that disclinations with the Frank index
N2l are now not so well studied in solids to be compared with the
case N«l. The reason is that the investigation of disclinations
with N=1 as well as cores of disclinations meets considerable
mathematical problems because the nonlinear relation between
stresses and strains must be taken into account. As we shall show
here, the gauge model of defects allows us to describe the
disclinations with N=1 quite well. We shall restrict attention to
phenomena where there is novbreaking of the homogeneity of the
action of the translational group.

Let us start with the disclination Lagrangian which is
invariant under the inhomogeneous action of the gauge group

G=50(3) [1]
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where

_ 1 ) AB, 2 AC . BD
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describes the elastic properties of the material, and
- - o _ac _bd_f
W (sz/z)CaBFabg 9 F 4 (3)

describes the disclinations. Here E -B's B’-s and F% .3 W%

AB A 1) B AB ab a b
abw‘:q cngfw:. As has been shown in [1], in defect dynamics the
deformation gradient matrix must be replaced by the distortion
tensor,B:. In accordance with the minimal replacement argument, we
have

§_ 1 1 )0
Ba— aax + 7an W‘l R (4)

where aax’ describes the integrable part of the distortion, while
W?w&)x’ describes the nonintegrable local rotation acting on the
instantaneous state vector x‘(x")=xl(x‘,T) which characterized the
configuration at time T in terms of the coordinate cover (X‘) of a
reference configuration; w‘: are the compensating gauge fields
associated with disclination fields. In (2) and (3) A and u are

the Lame€ constants, P, is the mass density in the reference

configuration, s, is the coupling constant, CaB are the components

o
B

are the generating

of the Cartan-Killing metric of the group G, C are the structure

constants of the Lie algebra G, and 7;)

matrices of the group G. In (3) the guantities g™ are given by

gAB=_6AB

, g“=1/c, and g"b=0 for a*b. We have used here the same
notation as in [1). The labels 1i,j,k,a,8, and ¥ are the S0(3)
labels and take their values from the index set I={1,2,3), whereas
the labels a,b,c,... and A,B,C,... are the space labels and take

their values from the index sets J=(1,2,3,4) and I, respectively.

1 .
For the rotation group SO(3) we have 7aJ= €0y’ where slaJ is the

s T __n7
full antisymmetric tensor, c123=1; CaszaaB' and CaB_ CBa' where
1

C23=1.

Following (1], we assume disclinations being continuously
distributed in materials. We also discard the assumption that the
reference configuration is defect free. The Euler-Lagrange

equations for (1) take the form

ab_ B ..¥.ab — b 5
86Ga CvawaGB Ta/2, (5)
and
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where Gub_aL/aFub' Ta—(aL/awa) !Fitb 7aJZ‘x , and 7 =3L/8B

that in the defect theory Z:=-0': and Z':=pl, where the explicit

A .
expression for the stress tensor o is [1)]
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o= 8.8 (O xW¥X ) (A8778 E v 2u ps) N
and the momentum
= J %yl ¥y, (8)
p= posu(a‘z + WYX )

As can bee seen, the stresses,ot, and momenta,pl, are not elastic
as well as’the strain measure E is essentially nonlinear. The
coupled nonlinear field equations (5) and (6) are difficult to
solve in the general case. .Usually, the linearization procedure is
used, and the displacement vector u' is introduced as follows:
2 (X =slx"+u' (X

It has been shown first in (1] that the system (5,6) may be
solved if the disclination energy density coefficient s, is very
large. In this case the right-hand side of (5) tends to zero thus

reducing (5) to the free Yang-Mills equation. The static solution



(see,e.qg.,[5])) was used in [1] to describe the far field of a
static disclination.

As we shall show here, there exists the exact static solution
of (5,6). First of all, two additional assumptions must be done in
accordance with {1]. Namely, we shall satisfy both the antiexact
gauge conditions, x‘wf:o, and the boundary conditions. Let us use
the boundary conditions in the form:

a) the Dirichlet data for x'

8x' ], = O ( x'|, specified) (9)
4 4

b) the homogeneous Neumann data for w?
aB _
G, “a’az‘ 0. (10)
3
Here, 6E4(6E3) are the spatial boundaries of the 4(3)-dimensional
Euclidean space, respectively, and My is a top-down generated
basis for the [Z]— dimensional space AZ(EJ.
We choose the monopole-like ansatz for (5) and (6) in the
form
' (x") = & F(r)x/r (11)
and
8, 2

W (X®) = S“BCBABX /r%, W' = o, (12)

where r’= x‘xA. Note that (12) is the known Yang-Wu solution that
is singular as 1r+0, while (11) is the exact monopole form
analogous to that for the Higgs triplet in field theory. 1In
accordance with (9), the function F(r) in (11) must tend to the
constant value, F, as r-o . The dislocation fields wf tend to zero
as 1/r.

Let us note that the solution (12) is already antiexact since

XAWT+TWTEO. Using (11) and (12) we can rewrite (7) as follows:

ot= X'¥’q(r)(a19”(x)-31/2+u19" (x) -1])/2%, (13)
where g(r)=8F(r)/dr. Clearly, a: is symmetric. Substituting
(11-13) directly in (5,6), we obtain that (5) turns out into the

identity, whereas (6) reduces to

8 g(r) (3ag°(r)-B] = -2[Ag’(r)-Bg(r)]/x, (14)

where A=a/2+u, and B=3A/2+u. Carrying out the integration in (14)
we obtain the following condition:

|ag’(r)-Bg(r) | = g /T, (15)
where g9, is an integration constant. The stress tensor takes now
the form

o= gox‘x‘/r‘, (16)

which agrees with the result of [1], but is valid for all r (with
the exception of the small region near r=0 where the elasticity
theory does not work). We would remind that in {1] only the region
of large r has been considered. It is known that the solution
(12,13) has a vortex-like behaviour. Such a behaviour is usual for
disclinations and rotational dislocations. The correspondence
between vortices and dislocations has been recently discussed in
[6]. Due to the nonlinear character of (15) the new principal
feature, as compared to the monopole solution, arises. Namely, the
analysis of (15) shows two distinctly defined regions
characterized by the dimensibnal parameter ro=(27g§A/4B%1/ﬁ

The solutions of (15) are obtained to be

gl(r)=Nocosh[§cosh'1r2/rs], r=r
9(r) = 1 1.2, 2. T (17}
gz(r)=fNocos[5cos ro/r + ;], rzro ,
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Ocunos B.A. E17-89-749
MoHononenonob6Hoe pelleHHe OJIT CTAaTHYECKHX
OUCKIIHHALMH B HeNnpephBHLIX Cpenax

B paMkax xanuOpoBouHOf Mogesnn AedeKTOB NOJIYyYeHO TOuyHoe
MoHOQoIenoao6HOe pemeHHe [T CTaTHYEeCKHX gucknuHanmuii. [lo-
Ka3aHO, 4YTO II0 CPAaBHEHHI0 C H3BEeCTHHM DeleHHeM 1 'Xodra-Tlo-
JIAKOBA Halle pelmeHHe HMeeT 4YeTKO olnpepeneHHyw obinacTs, Xa—
pPaKTepHu3ylolyl AOpO AMcKIMHauuu . OnpeperneHsl TeH30p HANPA—
XEeHHH M pajuyC AOpa OHCKIIHHAIHH.

PaGora spoimonHeHa B JlaGopaTopuu TeopeTHUYeCKOH (PH3HKH
OHSAH.
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Osipov V.A. E17-89-749
The Monopole-Like Solution for Static
Disclinations in Continuum Media

In the framework of the gauge model of defects the
exact monopole-like solution for static disclinations 1is
obtained. It is shown that in comparison with the known
't Hooft-Polyakov monopole our solution has the distinct-
ly defined region that corresponds to the core of dis-—
clination. The stress tensor as well as the disclination
core radius are determined.
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