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In recent years, a great progress has been achleved in the study
of one-dimensional nonlinear systems, exactly integrable by the
inverse problem technique. However, considering real physical
situations, there appear equations not exactly integrable. If their
difference from the exactly integrable equations is small, they can
be analyzed using perturbation methods. In particular, the problems
of the evolution of a soliton under small perturbations are of
interest. In the analysis of such problems approximate methods are

R and

used which are based both on the inverse problem technique
2%, The detailled study of the influence

of small perturbations on a sine~Gordon (SG) kink was carrled out
5)

direct perturbation methods

using direct methods in a number of works beginning from ‘{In
there has been studied the scattering of a kink at the interface of
two SG systems with a small distinction Iin dispersions for small
vibrations. The kink is perturbed from the interface and produces
small amplitude waves. The ratio of the energy of the reflected waves
to the \incident kink energy was calculated. In thls paper we
generalize these results as follows. 1.The difference of the two SG
systems 1s taken into account both in the characteristic velocity ,c,
as in > and characteristic frequency, fl. At some conditions this
leads to a free passage of solitons from one medium to the other.
2.We consider not only kinks but also antikinks and breathers that
are the exact SG solitons together with kinks.
Thus, we conslider the followling model system:

® -c%® o+ 0%ind =6(x) (e c2® - & 0°sing), (1)
tt xX xX

where 8(x) is the Heaviside step function. The point x=0 divides two
SG regions. The first reglon (x<0) is characterized by the parameters
c =c and ni=n, and In the second one we have c: = c*(1+¢) and
a; =0?(1+8) with le].|8]<< 1. One can easily obtain the transmission
and reflectlon coefficlents for harmonic waves with frequency w which
are the solufions of the linearized equation (1) (sin®=¢). E.g., the
coefficlent of the reflection of the wave is R=[{1-f)/(1+f))% with
f=(cl/02][(uz—ﬂ: )/(uz-ﬂf )P/Z.Scllton solutions of the nonperturbed
Eq. (1) are given by the formulae

0% (x, t)=d4tan"'[ty(x-vt)/d], ((+) - kink, (-) - antikink], (2)



cos [ (t-vxc 2)av]/veoshlyd ™ (13 2 (x-vt) 1),

[breather]. (3)

o%(x, t)=atan H{ (1-v*)1"?

Here y=(1-vZc™3)™Y2,

v is the velocity, d=c/Q and ve(0,1) is the
internal breather frequency. The solitons (2) and (3), beginning to
travel at t=-o in the positive direction, reach x=0 at the time t=0.

Consider first the scattering of a kink ({(or antikink) at the

interface x=0. We assume a solution to Eq. (1) of the form
®(x, t)=0%(x, t)+¥(x, t). (1)

By substituting this into Eq.(1) and linearizing in ¥, we find the

following equation in the lowest order of the small quantitlies:

Vo e t (1-2/cosh®€) ¥ = 2(+8-e4°)8(£+vt/c) sinhEscosh®€.  (S5)

Here, the transformation has been used

=0y (t-vxc ),  €=0y(x-vt)/c. (6)
Eq. {5) differs from the analogous equation 1in s only by the
multiplier in the right-hand side (we note also that Q=c=1 and
4=0 in S)). Thus, we can completely follow s and not give here the
detailed calculations. The new feature appearing here is that the
soliton travelling with velocity v, passes the interface without any
change (in our approximation}:
]2

(vo/c = 1%e/8 . (7}

This is possible if, for kink, € and & have the same, and for
antikink, different signs. Eq.(5) is to be solved using the initial

condition that at t=-» we have only a soliton at x=-w. After

obtaining ¥ the result (4} can be represented as follows:

Bix. t)=05(E2A(T)2Eas/2)+8" (x, t)+0(a?), a=td-e3", (8)
Alt)=ac(t+cv ' Incoshivre ' )+1n2)/4v.

The argument of the first (soliton) term in Eq.(8) as t--o will be

(‘(/d)[x—t(vich/ZvyZ)]A This means that the soliton after passing the

interface acquires an additional velocity
av = lre-a(1-vic3) 1 2y, (9)

different for kinks and antlkinks. The second (so-called continuum)
term &' at t<0 decreases rapidly if |T| increases. Fc‘>r <0, @'
contains terms decreasing with t and waves moving to the left and
right directions. Taking the wave ®' moving to the left, we determine

the reflection constant R:
w

R=E /E , E =(ar2)fdx(8'% + c®o' % + Q%7], (10)
1 s 1 - 1t 1x 1

where [El is the energy of the wave and Es =8AQcy is the incldent
soliton energy (A is a constant different for various concrete
physical models). The result is as follows:

@
—:—4(%)3(28—572)2 fdxscosh®{nlx®+ (e/vy)®1172r2)
27y [}

n(t&-c)z(c/v)7/2exp(—nc/v)/8A2“2, v-0
( 92/16, v=cC. (11)
Now, consider the scattering of breathers The complex
expression (3) makes the analysis more difficult than for kinks. So,
we will consider here only the low-energy {(small-amplitude) breathers

with o=(1-%)""2c

1. Such breathers play a significant role in the
thermodynamic and dynamic properties in a number of systems described

by the SG model %,

s

Using Eq.(4) with ¢® instead of ¢° and

substituting it into Egq. (1), we obtain the following equation in the
lowest order of the small quantities:

2.
ir_n— WEE + ¥ = -40(E+vi/c){d+elv/c) ] X, (12)

where X=ccos{t/y)/cceshe€. If € and & are of different signs and

|8/€}<1 the breather with the velocity Vo

(vo/c)2=—6/8, (13)
freely passes the interface. Eq.(12) is solved using the Fourier
transform and the initial conditions at t=-o. Due to the paper

being short, we omlt the terms vanishing as t-w:

w
W(t.£)=~lr1ﬂl'2, ¥ =-4Dcos(t/7) Tdk[k%+(v/c)?)  coskE cosh™ (nk/20),
o
“ 1
¥,=-D(v/c) Jdk w; cos(k§-w 1) f(k). (14)
—-m

Here D=a‘+c(v/c)2, ".=(k +11"% and f(k)=g_(k)-g*(k), where
g;(k)=((2’-1;\4‘()cosh[u(k+cul/v3c/v7)/20‘])‘l. The main contribution to
Wl for small ¢ is

¥ (x,6)= -aDcos(ty™") (¢/v) e/ coshet. (15)
This means in our approximation that Wl gives only the change in the

breather amplitude:
o"w‘ = 4X[1-Dlc/v)?] = [1-e-8(c/v)Zle. (16)

The term \PZ describes the transmitted (‘Pr) and reflected (\Pl) waves.
For the wave moving to the left the condition k<-vy/c must be
satisfied. Substituting \ltl into Eq.{10) instead of @’l, we find the
energy of the reflected wave, El:



~vy/c
E, = mAQy (vD)? idk ( svk/e) £ (k) fem . (17

The main contribution to El for small o 1s glven by k close to -vy/c.
Then, the integral in (17) can easily be estimated. We divide El by
the breather energy Eb=16Aﬂc1¢ to obtain the reflection constant,R:

-1/2 1372 _-5/2

R » KD%Y 2(vse) ¥y (moderate v and v-0), (18)

R » 4K(3+e)20 V%52 (v=c). (19)

Here K=(48-1)¢(3/2)/1642 and {(x) s the Riemann function. The
calculations were carried out in the lowest order of ¢. The natural
requirement R<1 will be accomplished If #(D{

Thus, the ratio of the energy of the reflected waves to the
incident small-amplitude breather energy has been obtained. For small

1372
v

initlal velocities we find R ~ and for v-=C, R-0 as

(1—(v/c)215/‘. Such a behaviour differs considerably from the above

results for kinks and antikinks.
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¢enauun B.K., Jlucu B, E17-89-740
0 paccesHHMH CONHTOHOB Ha rpaHuUe pasfgena
ABYX CHcTeM cHHyc-[opmoHa

Hsyvaerca pacceaHmse CONUTOHOB MogenM cuHyc-TI'opgoHa Ha
rpaHdue paspena ABYX CcpeAl, HeSHAYHT &IBHO OTJIHYAOIHXCA Kax
B XapaKTepHCTHYeCKOH 4acToTe, TaK U B NpefeJIbHON CKOPOCTH
PacnpoCTpaHeHuA CONHTOHOB,. PacCMOTpPeHn KHHKH, aHTHKHHKH,
a4 Taxkxe HHIKOI3HepreTHyYecKuHe 6pusepnl, B pamMkax TeopHH Bo3-—
MymeHH! HaffeHN ycJIoBHA 6ecCnpenATCTBeHHOrO NPOXOXGeHHA co-
JIMTOHOB H3 OAHOH cpeagnw B Apyryw., COJMTOHH NpH pAacCCeAHHH
HSJTyHaT OpOoXojfAmHe H OTpaxeHHbe BOJHH. IJlanyueHn ko3dgdmuu-
€HTH! OTpaxXeHHA [JIf pacCCesHHLX BOJIH, LCCIIefOBaHO H3MeHeHHe
CKOPOCTH M (OpMul CONHTOHOB.

Pabora BrnonueHa B JlaBopaTopHH Teopéruqecxoﬁ GHIHKH
OUAH.

IMpenpuaT O6BveaHHEeHHOr0 HHCTMTYTA AlePHBIX HecIenoB aluii, JyGua 1989
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The scattering of solitons at the interface of two
sine-Gordon (SG) systems is studied, The systems differ
slightly both in characteristic frequencies and upper ve-
locities of the solitons. Kinks, antikinks and low-energy
b?eathers are taken into account. Using direct perturba-’
tion methods, conditions of the free passage of the soli-
tons through the interface are found, The solitons at the
scattering produce reflected and transmitted waves. The
reflection constants of the scattered waves have been ob-

taingd, and changes of the soliton velocity and form are
studied.
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