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1 . INTRODUCTION 
In the crystals near first-order phase transitions there 

exist the so-called pretransitional phenomena/1/ when local 
fluctuations arise breaking the symmetry of the crystalline 
lattice. For example, under melting these fluctuations are 
connected with the local dissociation of the lattice and are 
the nuclei of liquid phase having no regular structure inside 
a solid with a fixed crystalline structure. Under structural 
phase transitions these fluctuations are metastable clusters 
with one crystallographic structure inside a matrix with ano- 
ther structure. Near the stratification point of a binary com- 
pound the stratification fluctuations can appear. Fluctuatio- 
nal coexistence of an ordered lattice and amorphous matter is 
also a kind of structural fluctuations. 

The appearance of structural fluctiations near the phase- 
transition point leads to a number of pretransitional pheno- 
mena/l/ that are manifested in anomalies of thermodynamic and 
dynamic characteristics. Thus, the specific heat strongly in- 
creases near the transition point; in metastable matters the 
specific heat even can have a maximum below the transition 
point. The diffusion coefficient also displays an anomalous 
increase in the vicinity of the phase-transitopn point. The 
Mossbauer-effect probability has there a sharp sagging. 

Fluctuations of one thermodynamic phase inside another have 
been called by ~renkel/~/ the heterophase fluctuations. Struc- 
tural fluctuations are just a sort of the latter. 

Flatters in which the heterophase fluctuations occur are 
nonuniform and nonequilibrium, more correctly, they are quasi- 
equilibrium; all this strongly complicates their consistent 
statistical description without involving phenomenological 
considerations. However, it is possible to overconme the men- 
tioned difficulties using the based on the avera- 
ging over heterophase configurations when calculating obser- 
vable~. As a result, one is able to define a renormalized Ha- 
miltonian and equations for the probabilities of the corres- 
ponding phases. All observables depend only on microscopic 
parameters of a system and on thermodynamic variables, thus 
do not requiring the use of phenomenological functions. The 



behaviour of the phase probabilities allows us to describe 
the phase transition itself and to explain the anomalies of 
thermodynamic and dynamic characteristics caused by the exis- 
tence of pretransitional fluctuations of the crystalline struc- 
ture. 

This communication contains the results reported at the 
Twelfth European Crystallographic Meeting in Moscow, 1989. 

2. AVERAGING OVER HETEROPHASE CONFIGURATIONS 

In this Section we shall explain the main idea of obtaining 
the renormalized Hamiltonian after averaging over heterophase 
configurations.The mathematical details have been published 
earlier /5-7/ . 

Let any heterophase configuration be described by separa- 
tion of the real space V into two submanifolds Vv ( v  = 1,2) 
corresponding to two different thermodynamic phases. Such a 
separation is always possible with the help of the Gibbs me- 
thod of separating ur aces/8/. In the real space this sepa- 
ration can be f i ~ e d ~ . ? ~  by the set 

over characteristic functions, 

- 
The renormalized Hamiltonian H is defined by the equation 

@being the temperature, k B  1. If we are able to find out 
the renormalized Hamiltonian, then we have for the partition 
function 

- 
The renormalization factors entering into the Hamiltonian H 
are the geometric probabilities wv ( v =  1,2) of the corres- 

I ponding phases. 

The phase probabilities are to be found by minimizing the 
thermodynamic potential 

- 

in which N is the number of partices in the system. 

of the two characteristic functions 
3. FLUCTUATIONS OF CRYSTALLINE STRUCTURE 

assuming that 

The partition function for a fixed set of characteristic 
functions, that is.for a fixed phase configuration is given 
by d 

here the trace is taken over inner degrees of freedom of the 
quasi-Hamiltonian r(51 describing the quasi-equilibrium system. 
The tptal partition function is to be defined as an average 
of Z((1 over all possible configurations of phases. The latter 
average in our case should be defined as a functional integral 

Let t\e phase numbered have a stpcture described by 
the set l a i v  1 of crystalline vectors a i , ,  (i, = 1,2 ,... N). 
The renormalized Hamiltonian is ~ritten/~-~/ as 

- 
H =  e v H ,  = H ~  s H ~ ,  (1) 

where 
'2 Piv 2  

W 
V + 

H ,  = w V :  -+ - 2 ~ ( R l j y  ) r , 2rn 2 i j  

+ 
p i ,  is the momentum+of a particle of the number i in the phase 

V ,  rn is the mass, v ( R l j v  ) is the interparticle interaction, 
-3 + + 

R i j v  = R i v  - R j v  ( 3 )  
+ 

and R i v  is the corresponding space vector. For a particular 



-+ 
crystalline structure- v(Rijv) can be expanded near the lat- 
tice sites given by (aijv 1 and the phonon variables can be in- 
troduced either in the standard way or defining the relative 
displacement /g/ 

According to their definition, the phase probabilities have 
the property \ 

~inimizing the thermodynamic potential 

it is convenient to introduce the notation 

Then,the equation for the phase probability takes the form 

1 a i i  d y = < - > = 0 .  
dw 

Simplifying equation (7) we may neglect the dependence of dis- 
placement (4) on the probability wv, which is admissible at 
low temperatures. Then, with the use of the notation 

and 

equation (7) yields 

In the case when w is the probability of the basic phase,w2 
is the probability of structure fluctuations. 

Formula (10) shows, for instance, that one-dimensional and 
two-dimensional crystals are impossible. This follows from the 
fact that, as is known, for these situations a1 - m; thus 
w - 0 if a2 is finite. The latter is true when the second 
structure (v = 2) corresponds to the liquid. 

4. SOME MODELS AND RESULTS 

Begin first with a very simple mechanical model qualitati- 
vely illustrating some features of system with structural 
fluctuations. The following mechanical experiment has been 
accomplished / lo / .  

The two-dimensional system was considered. The role of par- 
ticles was played by solid triangles placed on a plane surface. 
In our case, the surface was made of fabric. The vibration of 
the surface modelled temperature fluctuations. By varying the 
intensity of vibrations, it was possible to regulate "the tem- 
perature". Changing the number of triangles we could vary the 
"particle" density. At high densities, the system presented 
a rigid crystalline structure pictured in Fig.1. At more mo- 
derate densities, the "temperature" fluctuation of triangles 
occurred; however all of them fluctuated in the vicinityof fi- 
xed points forming the same crystalline structure as in Fig.1. 
More correctly, the triangle centers of masses vibrated near 
the corresponding lattice sites, see Fig.2. At lower densities, 
the behaviour was as follows. ?or a period of time r l o c  each 
of the triangles was localized vibrating near its lattice si- 
te, thus preserving in the average the crystalline structure. 
Then, for a time r d e l  the local breaking of the average cry- 

Fig. 1. The close packed cry- Fig. 2. The mechanical model a t  
s t a l l i n e  structure of the  intermediate dens i t i e s  display- 
mechanical model. ing the pure c rys ta l l i ne  order. 



Fig. 3. The mechanical mode l 
forming i n  the average a crys ta l -  

stalline symmetry occurred, when 
some group of triangles moved 
chaotically interchanging their 
places. These chaotic movements 
of delocalized "~articles" mo- 
delled the structural fluctua- 
tions corresponding to the f luc- 
tuational dissociation of the 
lattice of real crystals. The 

low--density case is shown in Fig.3. The probability of the 
structural fluctuations could be defined as the ratio 

W 
2 = 'del /' loc ' 

At very low densities there was no crystalline structure even 
in the average, this state corresponded to the pure liquid 
state. 

The calculations of the phase probabilities (10) for the 
case of the cr stal-liquid phase transition have been given K/ by the author with the help of the correlated Hartree ap- 
proximation. The results of the calculations for the inert- 
group crystals are presented in Figs.4 and'5 ,where 0 and e2 
are the temperatures of the stability boundaries and @,is the 
temperature of melting. 

The specific heat of a heterophase system has been calcu- 
lated/lo/ for a pseudospin model in the mean-field approxima- 
tion. In metastable systems the specific heat can have a ma- 
ximum below the critical temperature (see Pig. 6), and in 
stable systems it has a jump at the nucleation temperature @,, 
where the probability of heterophase fluctuations becomes non- 
zero (see Fig. 7). 

The MZjssbauer effect probability has also been calcula- 
ted/g/ and its experimentally observed anomalous saggins have 
found an explanation as due to the presence of heterophase 
fluctuations near the transition point. 

The author is grateful to M.Nawrocik for the analysis of 
the above-described mechanical model. 

F i g .  4 .  The probabi l i  t y  
of  the c rys ta l l i ne  s ta t e  
as a function of tempe- 
ra ture . 

Fig. 5. The probability 
of the l iquid s ta t e  uer- 

I sus temperature . . . .. ' . 

F i g .  6 .  The spec i f i c  heat 4 of a metastable system 
for di. f ferent interac-  
t i o n  constants.  

0 

F i g . 7 .  The jwnp of the 
spec i f i c  heat a t  the nuc- 
lea t ion  point. 
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f l p e ~ I I e p e x 0 ~ ~ b l e  RBJIeHUR U @JIyKTyaqPiU 
K ~ u c T E ~ J I J I U ~ ~ C K O ~ ~  CTpyKTypbI 

~ ~ ~ A c T ~ B J I ~ H  MeTOA JJ,.JIR OIIUCaHUR MaKPOCKOIIU~eCKMX &lly~- 
Tya~Ufi O A H O ~ ~  K P U C T ~ . J I J I M ~ ~ C K O ~ ~  CTpyKTypbl BHyTpU Apyrofi. 
~pU~epaM%i TaKkiX @JIyKTyaq?ifi CJIyXaT: XUAKOCTHaR JIOKEiJIbHaR 
HuccoqaaqaR pernema BHYTPU KpucTanna, K ~ U C T ~ ~ J I O I I O ~ O ~ H ~ I ~  

KJIaCTepbl B XUAKOCTU , 3apOAbI~Pi K0HKypUpyK)UUX KPUCTaJIJIOrPa- 
( ~ I U ~ ~ C K H X  CTpyKTyp, @JIyKTyaq?iU paCCJIOeHMR B ~ U H ~ P H ~ I X  CMe- 
C R X .  IIpOUJIJIfOCTpUpOBaH HeCKOJIbKUMM MOAellRMU. 
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