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One can study the physical properties of disordered systems 

for Fermi-energies deep in the localized tail in a 

systematic way. This was done first for the density of 

states by Lifshitz [I]. Mott and Davis [Z] have calculated 

the frequency-dependent conductivity u(w) in the same limit. 

The conductivity is then determined by the probability of 

finding two deep potential wells with eigenvalues at Eiw. 

Because of the repulsion of energy levels by tunneling these 

wells must be separated by a minimal distance proportional 

to In w .  In the one-dimensional case, to which we will 

restrict our considerations for simplicity, this implies 

that the conductivity will be proportional to w21n2w [Z]. 

These qualitative arguments can be made more explicit by 

calculating the semiclassical limit of a certain functional 

integral.The interesting results come from nontrivial 

saddle-points and cannot be reached by ordinary perturbation 

theory. For the density of states this has been done already 

in a number of papers [3-61. However, to the authors know- 

ledge, there exists only one' analogous calculation of the 

conductivity [ 7 ] .  In the present work we start from a super- 

symmetric formulation of the problem. As a first step we 

only present the exact solution of the saddle-point 

equation. The calculation of the fluctuations around it 

shall be published in a forthcoming publication. 

The saddle-point equation corresponds to the classical 

motion of a particle in a two-dimensional nonlinear and 



anisotropic potential. It is of the type considered in a 

different context by Garnier [ a ] ,  who proved its 

integrability already in 1919. There are, in fact many 

possibilities to solve it: one can separate the coordinates 

in the corresponding Hamilton- Jacobi equation [9,10], one 

can use the integrability of the nonlinear Schrodinger 

equation with two components [ll] which in the stationary 

case is equivalent to our problem and one can work with a 

certain ansatz like in [12-141. We choose the last 

possibility as it gives the instanton solution in the most 

direct way. But before we give the exact result in Sect.4 we 

present an approximate instanton solution in Sect.3. 

We consider the model of a free electron in a white-noise- 

potential V(x) given by the Hamiltonian 

setting h/2n=2m=l. In general the dimension does not play a 

crucial role in the instanton approach[3-71. We concentrate 

therefore on one dimension and express the conductivity o 

with the help of a correlation function S2(x) ([7]): 

The correlation function can be expressed in terms of aver- 

aged Greens functions: 

where 

Next we write the Greens functions as functional integrals 

over commuting fields 9, and anticommuting fields xl and 

carry out the average. This results in a supersymmetric 

field theory [15]. The product of advanced and retarded 

Greens functions for instance, is given by 

with G = x m  and the action 

where YI is a short-hand notation for (91,9:,x1,x:). In (6) 

we already introduced by a simple rescaling the 

dimensionless parameters of the theory, namely e= 1 E 1 /r2I3 
and ii=w/2I~l. The relevant saddle-point of (6) lies in the 

complex plane. We go from Y,=0 in the ,direction of steepest 

descent by rotating the real and imaginary part of Yl such, 

that I Y I '-1 i 1 Y, 1 and 1 Y2 12-1 -i 1 Y2 1 2. Thus we obtain a real 
action: 



In deriving the saddle-point equation we may neglect the 

anticommuting fields. Furthermore we consider only the real 

part of rpl as the action (7) is invariant with respect to 

rotations in the complex and rp -plane separately. The 

saddle-point condition 6S=0 gives than the classical problem 

of motion in a wine bottle like potential 

known as the Garnier-problem [8,9,12]. The instanton 

solutions of (8) are the only one with finite action. They 

approach $=o at the boundaries x+tm and therefore must have 

zero energy. There exists a second constant of motion 

rp4 rp4 
K= (rp p -rp p ) 2+;(p2+ 2- -p2- - -(I+;) 0:- ( 1 4 )  0:) 1 2  2 1  

I 4  4 

with p,=drp,/dx, which has been found in [9]. It also must be 

zero for the instanton solutions, because of their boun- 

dary conditions. A complete set of instanton solutions 

depends therefore on two parameters. 

A mathematical investigation of equations like (8) can be 

found in [9,11]. Here we look for the solution with finite 

action relevant to the conductivity problem. The usual 

arguments about two nearly degenerate potential wells lead 

us to expect that it looks like a two instanton solution. A 

first indication about it gives the approximate 

consideration in the next section. 

3.Approximate solution 

In close analogy to [2,7] we start with two isolated one 

instanton solutions: 

2/5 (9) 

g1/ = 
2 cosh (-(xtD/2) ) 

of the equations 

We have written the instantons in this form in order to show 

the analogy with the quantum mechanical eigenvalues of a 

potential well. They are solutions of our problem (8) in the 

limit of an infinite separation D when 9=;. To obtain a 

solution for a finite distance D we apply ordingry 

perturbation theory of two nearly degenerate ei.genstates 

[16]. Due to the overlap matrix element t=4 exp(-D) the 

energy splitting increases. If we set it equal to G: 

we get an approximate solution of (8): 

(12 
sin 8 -cos 8 

The angle 8 is determined by 



t=w sin 28 , I)< cos 28 (13) 

One can see from (ll), that there exists a minimal distance 

equal In 4/3 where both potential wells have the same depth 

and the angle e equals n/4. It will be seen later, that the 

exact instanton-solution has the same qualitative behaviour 

as (12). But to calculate the fluctuations around the saddle 

point of (7) we need the exact instanton solution. 

4.The exact instanton solution 

As already mentioned in the introduction, we have different 

possibilities to find an exact solution of (8). There exist 

a lot of similarities to the nonlinear Schrodinger equation 

for which the N-soliton s~plutions are given in [13,14]. We 

follow this very direct way to find the two instanton 

solution of (8). 
2 

We interpret -4 /2 as potential V(x) and investigate the 

solutions of 

in dependence on k. It is known from [13] that the two in- 

stanton can be found with the ansatz 

Comparing (14) with (8) we see, that we look for a potential 

V with two eigenvalues at the following values of k: 

Because of LK =LK* the relations 
1 I 

must be fulfilled with some free parameters aI. On the con- 

trary, already these ai determine uniquely the functions 

al(x) in (15). By inserting (15) in (14) the potential is 

given by V=2idal/dx. 
2 

To fulfill the selfconsistency condition V=-@/2, it is very 

convenient [13] to define 

with R(k)=(k-K~) ( k - ~ ~ )  . The residua *n of *(x, k) at K" are 

eigenfunctions of (14) at I?;. They are determined by (17) 

which is now written as 

with the new free parameters cl=a1R1 (K~)/R(K,). 

Now we consider the function 

Q(x,k) = *(x,k)**(x,k9) . 
The residuum at k m is equal to al+a: and must vanish for 

real V. Comparing it with .all the other residua gives the 

condition cl=-c*. By inserting an expansion of *(x,k) in 

powers of l/k into (14), we find that the residuum of 

kR(x,k) at k m is equal to V(x)/2. Once again we use the 



fact that the sum over all residua of kil vanishes and find 

Now, we can fulfil the condition V=- 3 / 2  if we set 

and 

The general solution of (19,21,22) containes two parameters 

bl as it must be. It represents the exact solution of (8): 

where we have introduced 

fl= 2ulx- lnlbll . (24) 

and the minimal distance Do between the solitons, defined by 

The two degrees of freedom bl correspond to a general shift 

of the x-coordinate which we will keep fixed in the 

following and to the distance between the instantons. 

To make the result more transparent and to show the simi- 

larity with the approximate solution, we introduce instead 

of fl the new parameters xl: 

(26) 
xl= fl+ In /l+exp(-2hf (x) ) = s(x)+D(x)/2 

with Af(x)=fl-fa. We choose the bl in (24) such that 

Af (x) = 2 (ul-u2) x + xo 

and 

s(X)=(U1+Uz)x , (28) 

where the new parameter xo determines the spacing between 

the instantons. By introducing the angle B(x) 

sin B(x) = 
exp(-Af (x) ) 

/l+exp(-2~f (x) ) 

and with the help of (26) we rewrite (23) as follows 

(30) 
cos e (x)e"~ + sin e(x) ex2 

O1(x) = 8 5  
1 + e-2Xl + e2'z 

sin e(x)e-*~ - cos e(x)eXz 
#,(XI = 8u2 

1 + e'2Xl + e2%z 
It is interesting. that the distance D(x), introduced in 

(25), depends on the angle B(x) in the same way as in the 

approximate solution: 

exp(-D(x)) =.exp(-Do) sin 28(x) a (31) 

The formulas (32) represent the final result of this paper, 

where the parameters xl, x2 and t3 are determined by 

subsequently inserting the expressions (16),(25-29) and 

(31). These form a family of zero-energy solutions 

parametrized by xo corresponding to varying distances 

between the instantons. These solutions are similar in 

structure to the approximate solutions found in Sect.3. The 

only difference is that the angle 8 and the distance D now 

depend slightly on x, and the gl have changed a little bit. 

One finds (12) to be a good approximation for small w and 




