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1. Introduotion

The kxinetio equation desoribing the response of the eleotron
liquid in metals is solved for restrioted geometries only in the
relaxation time approximation, of. e.g. /1’2’3/. The reason for this
faot is the possibility to solve boundary problems for differential
squations. On the other hand, suoh problems are muoh more diffioult
for integrodifferential equations, partioularly at general or oompli
oated integral kernels, For some effeots, we exaotly know whioh rela-
xation time should be used, For example, for oyolotron resonanoce,
highly anomalous skin effeot and the films thin in the soale of a
mean-free path, one should use the relaxation time determined by the
soattering probability density avsraged over the Fermi surfaoe, of,

23 . In the opposite limit, 1.e., normal skin effeot or thiok
films, the transport relaxation time 1s proper 2,3/ + Unfortunately,
there are almost no answers oonoerning proper relaxation times in the
intermediate limits or in higher-order approximations to the main
extremal effeot.

A8 41t will be shown, it is possible to solve, asymptotiocally for
thin slabs, some boundary problems also for integrodifferential
equations at their general ksrnels . Let us formulate the restrioctions
imposed on our model,

Caloulations will be performed for the two- or three-dimensional
slabs of the i1sotroplio metal at the temperatures so low that only the
impurity soattering is the aotive meohaniasm., The two-dimensional
slab should not be treated as purely mathematioal oonstruotion beoause
of monoatomio metal layers dspositsd on }he semioonduotor or insulator
surfaoes. The Fuchs boundary oonditions ¢/ at the border will be
assumsd in the purely diffusive limit. Note that it 1s physioally
olear that tha speoular boundary oonditions lead to the solution
oharaoteristio of bulk samples whereas it is rather diffioult to solve
the problem for partially diffuse boundary oonditions. Unfortunately,
the same diffioulties appear also at the boundary oonditions
deduoed from the first prinoiples,

wo shall study the rasponse to a homogensous oleo}rio field paral-
l1el to the border of the sample. In oontraet with ref. 4/ y 1t will be
not assumed that we deal with a d.0. field. For an a.o. field, one
needs to introduos an effeotive quasipartiole interaotion out of the
funotion desoribing the impurity soattering probability and to



distinguish the deviation from the equilibrium and from the local
equilibrium /2,3,6/ « As the Ferumi velocity is much smaller than the
velocity of light, the restriction to the homogeneous field is not
serious at normal skin effect for d=3 and is not serious at all for
d=2.

Let us outline the overview of our paper. The next section is
devoted to the formulation of the kinetic equation in the integro-

differential form. We do it aiso in the a.c. case O # O because all

remaining transformations of this paper are then of the same complicacy

as in the static case. The reader with interests restricted to d.c.
fields could simply put <= () everywhere. It is shown in the thi-d
section that the kinetic equation at diffuse boundary conditions is
equivalent to the given system of nonhomogeneous integral equations,
Moreover, the current response of the system is expressed by one of
the functions being the solutlons of our system of integral equa-
tions. This system 1s solved asymptotically in the fourth section
for slabs thin in the scale of the mean free path. The opposite 1li-
mit is studied in the fifth section. Unfortunately, we are able there
to do something only at almost isotropic scattering on impurit.es.
The conclusion of our paper is devoted to the extension of the deve—
loped metheods.

2. The Izinetic¢ equation

The probability density describing the impurity scattering of the
angle € dependent only on (enr€ Will be expressed as

<F(*’*’> -0, @

where F\_) is the unit vector directed along the electron momentum.
The brackets <...>¢: denote the average over spherical angles (d=23 )
or angles (d=2) connected with the vector m. .

Let us write the kinetic equation, at onoe for the function
and q; y respectively determined via the time Fourier transforms
of the deviations of electron distribution functions from the local
equilibriun, §§ , and the equilibrium §[ , cf. 7243/ anq '8/,
Let us introduce the dimensionless functions Vj and HU as
follows:

it V() :
; I_ = evtk ( p f /3 ) ,Z) . @
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Here € 1s the electron charge, A}’ the Ferml velocity and E;K)
the Fourier transform of the electric field. The spatial coordin%ﬁ;
Z 1s perpendicular to the border of the sample . The function q}
is connected with the function q} via the formula

Yiz) - AEDVR. D),

A
where A (YT.FL") is the dimensionless spin sy'mmetric part of the
forward scattering amplitude of gquasiparticles, cf. at d=3 and
/1 for the base of an analogous construction at d=2, It 1s conve-

- &)
Y(n,2) =

= A
nient to express the functions I‘(Rﬁf’) and A"(RR’) via their
Fourier (d=2) and Legendre (d=3) amplitudes. ¥e have

, .
wr l(6-6) d=2 »

Awiy =) A,

L=0
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P (Rw) , d=3)

q

where 'FL denotes the 1-th Legendre polynomial.
At d=3, the amplitudes /36 can be expressed via the spin-sym-
metric Landau parameters = ¢ as follows?

= F, [+ Fofals )

It 1s easy to see that at d=2 an analogous relation has the form

Foi (3 +DF /2]

The stability oonditions of the Fermi 1iquid impose the following
restrictions on

A

A, <2b+d,



/6/

at d=3, of. e.8. , and, as it is easy to see
A
INPE )
L 2 lo
at d=2, The inequalities

I/, | <241, IRl<2 {21,

respectively at d=3 and 2, are the necessary conditions of the posi-
tivity of the function (I). Ope can verify that the transport mean
free path L{ is expressed via l_-—_«}'t as follows?

r

Lo = LIA-EJd) | d= 2, ®)

Hence, and from inequalities (5) we have

(5)

i
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For the transport in the homogeneous electric field, the electron
density remains homogeneous and, hence, the amplitude A° is cancel-
led in expression (3. Choosing the azimuthal axis in the 7z —direc—
tion at d=3, one can write the standard transport equation in the
form

~ — DY(R,z) S
A4 LT ] o LV o
(A4 )\P(YL Z) + :n0 — Anbon @ + .

(R RO, , d=3,
n

where

9
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with the coordinate Z taken in the units of the mean free path,
L=UT » cf. seg. 7%/, /3 ana The effects of quasiparticle
interaction are important only at 60740 because in the d.c. case
mutual quasiparticle scattering does not lead to redistribution of
the momentum. It is easy to see that an amalogous equation at 4=2
can also be written in the form (8),(9) at P= JU/2 and the angled
varying in the interval (0,27) ; at d=3, () < &§ < 9T . The
rasponse of the system to the external field is expressed via the

conductivity depending on the frequency (&) and the coordinate 2
perpendicular to the border of the slab., Exploliting the first of the
formulae (2) we obtain for this quantity

0.,(2)=(e"n T dfm®) {Hnbany \V(ﬁ),z)z. | (10)

where at d=2 one should take (.P—_— T2 3 = de’/d,‘ﬂ'd'iahd'
gives the density of carriers and m*% 1is their effective mass.

3. Transformations of the kinetic equation

It is not difficult to verify that the solution of equation (8)
can be taken in the form Y(,z) = unguny W(wbd z)
at d=3 and, at d=2, in the same form but at Y =JT/R and D<o
Substituting such LP into eq. (8) and exploiting the addition
theorem for spherical functions at d=3 and the definition of the
Tchebyshev polynomial of the second kind at d=2 we- obtain

?)LL(C,Z)
224 —_ '
Rz tauz) =1 (11)

7 F, R, ()(1-¢*)R (ehunte; z)> )

t=1

where C—ce')Q ,c'cm@' ,a= A+L0T L A ams
(0) — (C) » where the prime denotes the derlvative,

Al :___ +(,uO'CAL)/£[C-¢1) and the average <"'>c, has the
form of one&half the integral over ( on the interval (-l1,1). At d=2,
RL(C) :UL~1((’) where UL{C) 1s the Tchebyshev poly-
nomial of the second kind with the index 1, c.f. eg. N —_ F
and the average remains in its previous form. wt

We will look for the function u,((j, z) in the form

W(C )= LA( P i +1)(a- M/d)“i: ()

It is worth mentioning that the denominator (I — F&M/d can also
be written in the form &/{¢n + L CO T M /X at d=2 and
3, where "M, denotes the "crystal™ mass of the electron and Mm¥*
is its full effective mass containing also the contridbution of the
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interelectron interaction. Substituting the function (12) into
eq. (11) one finds

zZo/C _
PAfoz = (13)

= ' - —zak'
I N (R LA G R YaT) .
n=<A ~ Cl
Foon Ra() B, (2),

n=
where the last equality serves as a definition of the functions B,o(l).

ce

It 1s easy to see that the specular reflection at the border
of the slab, Z=+4& , is fulfilled at A(¢,;2)=0 . In such
a case, O"w(z)-_:e"-n't/rm*'(a_,l:w,'/d) ) is Z -
independent and coincides with the conductivity of the bulk sample at
d=2 and 3, This fact is independent of the ratio 24/f and has a
very simple physical meaning because the mirror is not an obstacle
for the component of motion parallel to it.

Let us 1mpose the boundary conditions corresponding to diffuse
scattering on the function A(C,Z) . We have: U,(é,c)=0
at C<QO and U(-6,c)=0 at ¢ >0 . Taking into account
formula (12) one can verify that the suitable function 4, satisfying
eq. (13) has the form

~40/1cl ~ ‘ / (s
Alcd=e  + )7 ('R () \dy B,,(y)eayC .
" - b/l

Substituting the function (14) into the definitions of the functions
B,.(2z) » cf. the last formula (13), ome finds

Bk(z)—_-zﬂo(k-i\/k(a(bh(z)){—
oL =2
([ o . ntk
2 Fon 547 sgn(z-y) W (a]z-y1)B,(y).
n=i

~b

(15)

Herey, at d=3 we have

1
1 D’ -b/c
V, (6) = zédcﬂ_c DB (e , o
3 2y 4 ! ! B/
\A/kn(é):%Jdc(Lc )R (O e
Q
At 3d=2 one obtains
_k/c an

1 Mo
V16 = 4 Jac(1-9" (e
o]

1
1 .7
W, 1= & fae-cy™cty, ) joe

0

Now, let us express the conductivity Uw(z) in terms of the
functions B, (Z) . Substituting the function ALnB4tnPUWwH,2)
into expression (I0) and then exploiting egs. (15), at ksl, Rd(c) =
='1, after rather simple transformatlions one finds

O_,(2z) = e nt ['l +d BA(Z)/(OL-U:)//YYL*(Q_EM/Q). e

It is easy to see that Bn (z) are 0dd functions at n=2k and even
functions at n = 2k+l. The reason for this fact is very simple
because of invariance of equation (8) under simultaneous =Z -reflec—
tion in the momentum and configuration space.

The next transformation of the system (15) facilitates its solu-
tion, at least at 2b <<'1, l.e., at mean free path much bigger than the
width of the slab. Note that b, oonsequently, is taken in the units
1, analogously to Z . Let us introduce the new funttions D (z)
determined as follows: k

B, (2) =(d-1)[(a-Foy/d)D, (2) = Sy /el 6o

In terms of these functions G’u(z) = ezn’C D4 {z)//Y)U(-,



Exploiting the formula
(22) Mellin's representation of the inverse exponent with the

. k-1 anticlockwise contour |_ around the points 0,1,2,3,... . 0f the
d‘g W(z‘)’) Wk 4(0'12 "yl) - complex plane was exploited. Taking into account that the subinteg-
-5 ral function in the last integral (22) has the first order poles at

(20) all natural numbers k including zero 1f k £y 44 and the se-
_1"d A S /d, ZO(k lv ] 2 e cond order pole at k = n+l, one finds
a(b+42)
A=%A ( ) " S (6) ] ( 6)k n,” n44 /
= 0 1/k (23)
" Z’ (na1-k) k! (nm’ (%6 +C- Z ) /
=0

obtained via the direct integration, one can rewrite the system of
equations (15) in the form

D (2) =a§ —d o<“\/ alb+az)f(d-1) @ o
- P 2;4 b Sy (0==(Bubsc) = 7 (-8) ! N
=1

Exploiting the well-known properties aof the Legendre polynomials

) Z ‘gd? W Z y) w (le y')D (\j) and formula (23), one obtains
Qennn(@=a’ L o -oLZ: V,,,,(albraz)(d- 1)]

where C i3 the Euler constant and the prime above the sum denotes
that the term with k = n+f should be there omitted. Particularly,
at n = -1.

a [of u n or in slabs n 3 2”."" ? I ( :.
/

Let us solve the system of integral equations (21) at Q526<<1 (2 >H
in this case the integral term is small and the system can be solved

as totically exac eration. We proceed w e case d=
Leimﬁs fin:ltZe asy;;)t'o:irc:tof :;e fo:.llovliing iflte;:':.lth = Z O( \/zn(a'll)+olz)) = O(é) ! O(': 3 )
6) SC 6/6 -———-%;d Ji éf n-Y A=t1
Tlde 2~ =
o MnTrf r'(f-M) We have also
(@lz) =-() B (g 1] sl +hu) + O122)
_?Liu_§o;f B3 /aon e 45 -n1) e ' Wranss 2 (2n)!! )
(26

- Wyan(@l2) = O(1) | d=3.

at n= -1,0,4, ... In the transformation of the preliminary integral

8

..




Exploiting the formula
3
. k-1
jdth(z—j) \,Jkﬂ(a,lz-yl)_—.
-4

'*LMS [d - ZO(“V(a 1740(2)):\

A=t/

(20)

obtained via the direct integration, one can rewrite the system of
eguations (15) in the form

D, (2) =[5, &Zo(k1V(a(b+Az))/(d pl+ @

K=11

Z Bd\) Mayr(2- )" W (alz -y)D (y) .

4, The asymptotic solution for thin slabs

Let us solve the system of integral eqguations (21) at Q526<<i
in this case the integral term 1s small and the system can be solved
asymptotically exactly by iteration. We proceed with the oase d=1.
Let us find the asymptotics of the following integral:

4
- *
Sn(")=5 Cne'&/falc— Q—4L— d]‘Jdc 6_ " ’ =

(22)

1 S/ ot -
—a-b_—§>d]° b /an T (5 )5 -n-1)

at n= -1,0,1, ... In the transformation of the preliminary integral

(22) Mellin's representation of the inverse exponent with the
anticlockwise contour | around the points 0,1,2,3,...  of the
complex plane was exploited. Taking into account that the subinteg-

ral function in the last integral (22) has the first order poles at
all natural numbers k  including zero if k‘;‘ﬂl{ri and the se-
cond order pole at k = n+l, one finds

/ le n+4 n+4i
S (4)= (e (4 bab +C—> Ak )
" ;}(md,k)k'. (n+1)t ( * :L?a ) !

where C i{s the Euler constant and the prime above the sum denotes
that the term with k¥ = n+f should be there omitted. Particularly,

at n = -1.
5 (0= (pabsC)= ] ()i 2
k=1

Exploiting the well-known properties of the Legendre polynomials
and formula (23), one obtains

Qonnn@ =07 [SM ~d) VZnM(a(buz))/(uti)] -
A=)

(25)
\ Z(@mﬂ Inlb4a2) +( - 4/2+€na] +Oé)

K =14

n 3 2n+i)
- q(2nM

L\, alb+d2) = Ol4)  d=3.

L=t1

We have also

@iz =-(-1)" (an+D11 (M [+C+42 +€na.7 +01z1)
9 (2!

Wyan(alzl) = O(1)

1 An+
(26)



Let us make analogous estimations at d=2. Exploiting Mellin's
representation of the inverse exponent and the definition of Buler's
B -function one gets

Z (g)EiJ(d‘Cﬂ.)"/che'z/ﬁc: V_ §d§ ,6 ,—- n- T+’1) 27)
9 ehre o:,anfP(jqi)[“(n—g+4

where the contour L coincides with that in the integral (22). Now
we have second order poles at =2k 4n+4, k = 0,4,2, ...

and the first order poles at J= Oy1,... nand ¥ = 2k +n+2. It
leads to a more complicated functional form of these integrals, the
analogue of the expansion (23) has now the form {(é)+g(6)Imb

with the p(g)/ [)) -~ functions expandable into the power series
at b=0. Due to complicacy of the full expansion formulae for Z,, (6/
n=-1,01, ..., we will write them pnly with the accuracy sufficient
for us. ¥e have

Z 4[6)=W,, (6):"54*{-(&\4 +C-b2+1) +0(4) /
U=+ Bt i),

Z (6] =T[4 70 12 10) . olt) m >0,

Taking into account that Tchebyshev polynomials of the second

kind, {J,(c) , determined as /.k,n,L(nM)}O]/y,n,(p expressed in
terms of the polynomials of the varlable ( —- COO}D can be written

) = e %
k M+
(4 s ) T
k=0 k=o g
one can obtaln exploiting egs. (28)

10

Qo (= a“[5mo—dz ear(@l84z)/d- u]—

_ft_r_ +¢lg+otz)l_&1.{6+42)+C ) +£naJ + O
Z AV, (alb+42) = O4),
o=t

(29)

Wi, arten@70== E2 (D 1204 C =821 4 o)t

W’hfzm(alZ\) 30(4); O{,:::Z.

Let us solve the system of equations (21) at d=3 and 2 if
26= Q << 4 .since in the cases d=2 or 3, D om (2= O(Q)and
thm_azl),O(d_) ; hence, the term D,(2) is influenced by
the funotilons Dzm. only with the acouracy O( 9') . Moreover,
the character of the kernels W),omey and the funotlons @
allows one to conclude that Bypm,,(2)= C\)'ZMM(Z)*O/Q%LQ)
at d=2 and 3. This 1is the reason why two first terms of the expansion
over the small variable & +dAZ are free from influence of the

parameters Fc.:)L y 1 =4,2,3,. « To calculate the corrections
o(g“en’g) and (J( Q-,fm_g,) to the "dimensionless conduo—
tivity®  0(2) 1t 1s suffic:.ent to substitute D, ,(2) in the

form szn (z) into the integral term of equations (21)
neglecting the quantities Dzm[z) . By means of formulae (25),
(26) and (29), after elementary lntegration and disregarding the
O(a'z) terms, we hava

D(Z)——éz (b+42Z [%(6+az)+6—4/z+€na] +

]
o( =44 0

16 d) (2) Z Foo znaa[@0!] Tansifnet) ’_(Zn)”]+O/g ) d

11



where

¢3(Z)=¢(z)+2(c+%a)£2%g /2’21 ‘ (31)

The function Cb('z) 1s determined as follows?

¢(z)=Z gia belz-yl f(b+ody) =

o(=+4 b

2.2, &u [(B+dz -4 x)

X =tA > =4
at _f(,()—~ x .ev\,x . Changing the integration variable x = bt,
disregarding the terms O(gf'} and expressing the result via the
variable z'= z/{  one finds

d(2)=q* g ~(340n2)g g + L4 QngZ(uo(z)@n/duz)”
oA =t

-39 ng + awz (b+d2) bulb+a2).

x =11
In an analogous way, we obtain for d=2

D,(@)==2 T (b4s2)[fn (a2} - hllua ]t
. ol=t4 S

J—Q?z quL(Z)Z Fos, 2net O(Q,Q), d=2

where

utd)= $12) 42 (C- b2 515 itma)qhng . 7

The expression in the brackets of the last term of the solution
(34) can be expressed as (l_ (1) - w(—i))/fzz y cf. formula
(I), j.e. via the difference of forward and backward scattering
probability. The result for d=3 is not so easily interpretadble but
it is easy to see that [{2&1—1)!!]1/{2n+1)(n+4)[;(7/n),”.]z—.:. o(1)
and, hence, the series appearing in formula (39) is convergent
provided that the series for F(mnmn ) 1s convergent too.

Let us calculate the average values of (J_, (z) over z 1in the
interval (—b,b) because it is a directly measurable guantity. It is
to see that the averaged quantity d)(z) has the form

(32)

12

3 2
9. (e"ﬁ,“i) —+ 0(22‘) . Calculating also the remaining ele-
mentary integrals, one fi.ds at d=3

Tornr = £ -39 (Ing -2 4bua)yy +

(38)

3396“3(&4 g-2+20+2 @na)z Fosamag Hzn+4)5f}2/4¢(zm1)(n+{)[(zn)gg}

+0l(g”).

Analogous procedures at d=2 give

. “‘C[ 20 (09 +C a2 Ao+l )T +

o QA
! an

(FQU)*EJ('N)&Q&BV(%Q—& -2%2+2(+2€n0)/ﬂ2] + 0(22)

Note that the term O Q&\g_) at W= O and d=2 and 3 always
has the same sign as the term O{g_”- 8,\2 « These terms dis-
appear in the relaxation time approximation. The sign of these terms
is intuiltively clear at d=2 and the static limit; prevalling for-
ward scattering leads to growing conductivity, prevailing backward
scattering leads to diminishing conductivity. For d4=3, disregarding -
the terms 0(228“,19\) ve come to the result 4/. The lack of in-
fluence of the parameters f,, on the term 0[2&\1) in (36),
(37) is quite clear because the main nonanalyiticty is weakened
under the integral. On the other hand, an analogous effect for the
0(3) term of eqs. (36) and (37) cannot be explained so simply.

5. About the asymptotic solution for thick slabs

Let us now discuss our problem at d>> 1; in this 1limit the
conductivity O‘ (Z) should bze close to the conductivity of the
bulk  sample, Giapo= € NT /(- Fooq/d)m*
unless Mon (6+42) < 4 . Now, because the role of the singu-
lar term of the kernels (16),(17) 1is weakened, it is impossible
to obtain an analytic approximate solution for B,' (z) even at

13



FCOLN 8“ . It is easy to find the behaviour of the functions
Vic(6)  and kernels W,, (b at b>» 4. If d=2, then V|_(4) ~
Wi nl6) = O(e""/,{,g/z) at d=3 we have Vklé)"’ Wienl(é) =

= O(C"é/bz) ;3 the concrete forms of the asymptotic expansions
are easy to obtain. The same behaviour should have the functions
B.(2) at Min(ba2)>>1 . On the other hand, at small
values A+dz 5 b, 12) 5> 1 » the functions Bk(z) still
should have the asymptotics similar to those expressed via egs. (30)
and (34), taking into account the relation between the functions

B, (2) and Dy (z) (19). It should be expansized that still
the near-border region of the variable y , i.e. f+ady £ 4 ’
,6, fy, > 4 and small values of the modulus lz2-yi will play the
most important role in the integration in egs. (15). This is the
reason why it is impossible to write the asymptotic formula for
B,I(z) valid in the whole domain of the variable = and, hence,
also the expression for the averaged conductivity.

In the limit b 3» 1, it is possible to simplify the problem by
replacing' it by the problem for the half-space (d=3) or the half-
plane (a=2) neglecting exponentially small mutual influence of the
functions Bk (z) at £+Z ,\{4_ and 4-2 £ . The equations for
the simplified problem by means of egqs. (15), can be written in the
form

B(2)= ‘vk(“)*Z. Fwn J oy Sugpn{z-y ) ”“"wkn(a’l z-y1) B, [7) )(38)

where now the metal is contained in the half-space or half-plane
z,y > O . Nete that the border Z = —§ 1in the previcus nota—
tion, corresponds to Z = ( now. Taking into account formula (18)
one can write that

Ot our =Uw.w |:'].+dj:2 B4(2)/é[d;/,)] (39)

It 1s worth remarking that this formula does not contain any exponen-—
tially small terms. The second term in the square brackets, diminish-
ing the average conductivity at ¢ = O, can be treated as a result of
edditionat resistance of the border, almost independent of the width
of the slab at thick slabs and, hence, giving the contribution

O(é-L) to the average conductivity.

Equations of the type (38) are usually sdlved, if they are sol-
ved, only at one nonvanishing parameter er\_ y by the Wiener-
Hopf method, cf. e.g. /97 | 1z Foon ~ 5‘4"' then the Fourier

14

transforms of the integral kernels will have the form at a = 1, t.e.,

w=0
Wiy (k) =F, II“ k_z)l{im’cg k- kZ/ QW)%T d=3, o
Wyalk) = F [k 1] Jom) k™, d- 2.

These functions, independently of their relatively simple form, do not
a119w one to perform the integral characteristic for the Wiener - Hopf
technique and, hence, to obtain G_,(2) at b4 and Fwna. Ao *
Note that at d=3, this problem is very familiar though more complicated
than Milne's problem, cf. e.g. 9 .

If we treat the integral temm in eqe (8) as perturbation, which
corresponds to almost isotropic scattering, then one can write

B,(2)==)" V, (ab+a2)~

K =%4

< n-t (% . n-1

D R iy s (29) (@129 (alfsay)e.
n=4,ot=t1 -6 " " '
Even this formula and, moreover, even at r‘i?n:() sy does not allow
for additional simplification at ,6, [21>>{ since then $+4z £1
is also possible. Let us obtain the average value of the function
B’(z), B4,QN" at B,‘ given by formula (41). After long but
rather simple calculations, disregarding the terms o(e'i) and
explciting formulae (16) and (17) one finds

= - )4 F ma«" -
BWW/ - (9“@ {q i 4n?orm) j,g'“ g
n=

(41)

(42)
i

(-1)“Jdt§d»9 xy(t «xz)(4-y“)ﬁl'(x)fi'(y)/z(uyﬂ +0 (2'39—3) +O(F ),

O

for 4 = 3 and
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(43)

1(—4)%51)@5&7@4 x’) (1 y2} U, (x 0y )/Tr(,(+y]}+o/(2 5) +0/F)

for d=2, It is not difficult to see that in the next order of the
perturbation theory with respect to l—c.:)h there appear triple
integrals, etc. but, according to formula (39) 84W
the terms O(a ) at k>1.

Double integrals (42) at d=3 have the form Q ,, —+ ,6 Qy\l
with A, and /6,,\ rational pumbers. All these integrals can be
obta1n4ed by the formula

dLSdgg X"y'm/(x-ry) = [(—f)"+[—4)m] Dn2fneme) +

will not contain

6 S
>

(44)
[‘1)n+(-1)m]/(n+m+i)Q+ (—i)ni 1)k (nem«t] +

k<4

()" ( )k'li“)mm-c-i)-i—

dalo

nAM

M(-u“"‘(*;*“) 2k,

which can be obtained in an elementary way. The right-hand side of
equality (44) is not manifestly symmetric under transition of n

and m; it leads to some identity for the sums of binomial coefficlents.

It is worth mentioning that because of definite parity of every Le-
gendre polynomial, formula (44)is useful for us only at (-1)"—_—,(,,1)"‘_
As Tchebyshev polynomials of the second kind satisfy analogous
property, a two-dimensional analogue of formula (44) is sufficient

only at (-i) “—(~i)m . In such a case, after long but elementary
transformations one getis

16

1 1

de dy x"y"‘(«-xﬁ)"z(a-f)””/(x+y)=(—1)’"(1r/z)[fmm).'e/(nm)n-

Q

(=D (nan- L) /nem) (nem4)(n +m+3) ¢ (45)
k-1

b2 ) L (e s syt

’l‘his formula is not manifestly symmetric under transposition of
n and m. It is easy to see that at (~1)"=(-1)™ the expression in
the square brackets of formula (45) is a rational number. Taking

into account that [ (C) =1, R 1(C)= dc s 32,3 via equalities
(44),(45) one finds

-s

Oosrawr/ Oeooo =1 =~ (90 [ 3 + U7 UCLn2)E,, 2100+
(46)

(49n2-19)F 55 1260 +

HZ( an(n ) gdxgdy xy(-x)-y7 )P, (y)/(x+9)?+0(€ 23)+
O(FQ))

at d=3 and
-4
Ouour(00o,a™t = ~(TQO [ S +F | 50 +46F Jjosas

(47,
1 A

4 23 () Fm/m)lwid,x9(4-XQ)%’(4-32/4/2U,,-JK)U.,-M“V)]

+0(e/9%*) +0(F%)
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where CEA,OQ is the conductivity of the bulk sample. Note that
the coefficients at F;Jn_/gﬁl?fr in formula (47) will be rational
numbers. The coefficients at -—lfbn/QjLzare relatively small at
d=2,3 and n=l,2. At d=3 we have 0.1338 and 0.0113 for n=1 and 2,
respectively. At d=2 analogously we have 0.0637 and 0.0485, At
Foon = O formula (46) coincides with that of ref. 74/ ana /1,

7. Conclusions

As one can verify, the perturbation procedure applied directly
to the kernel [ 1n equation (8) leads for diffuse borders to
gerious mathematical difficulties, at least for thin slabs. Namely,
even in the first order perturbation term there appear singular
double integrals. The natural way of their regularization by their
symmetrization with respect to variables x,yy cf. egs. (46) and (47),
leads unfortunately to false results for thin slabs. Hence, the
system of the integral equations (15) shows its usefulness even
in simplest calculations beyond the relaxation time approximation.

It is worth emphasizing the analogue between the electrical
transport ip isotropic metals and the one-=velocity approach to the
neutron transport in isotropic media, cf. e.2. « In this last
case, the theory is richer because of possibilities of absorption
as well as the production of neutrons. Moreover, the form of the
source term, corresponding to the free term of eq. (8), should be
vestricted for neutrons to non-negative functions and, on the other
hand, in this case A’(mR )= O . Our boundary conditions corres-
pond to the walls absorbing neutrons. It seems that the technlque
developed here can also be modified for neutrons provided that their
sources will be spatially homogeneous in the volume of the slab.

The collision term characteristic of the kinetic equation (8)
can contain also the effect of interelectron scattering. It is connec~—
ted with the idea to represent two-body collislon integral for de-
generate Fermi liquid in the reduced form appearing in eq. (8).This
idea has been introuced by Abrikosov and Khalatnikov /ll/and has
beer developed in the papcrs by Braoker and Sykes /12 and ngfle/13{

In this case the collision integral becomes also temperature-
dependent, 1in the manner characteristic of degenerate Fermi system,
o+b (TF/EF)Q', kag= 1 . According to the analysis by Kagan and
Zhernov 14/, the scattering of electrons with the oscillations of
impurities leads to the enhancement of the residual resistivity
by the term ()(T'2).lechanisms like that are not taken into account in
sur collision integral. This is the reason why one can include the
interelectron collision into our scheme but only at T=0 &nd in the

elastic limit.
18

t1sa E:en :mplitudes of the density of scattering probability (I)

ppear in G ,(z)  till the terms O{g"ﬂng) because of
version invariance of equation (8)., It ‘is possible to break t;is
:Z::z;:: ::rsolvi?g the boundary problem with one diffuse and one

. er, it 1s not only mathematical construction becaus f
:azossibllity of preparation of samples. It seems that even in t:1:
e R

umffe::e:1§§:S:h::n:ia:: bfgie(za)m lltO(g 2“2) = 0[2) g
this problem will be obtained in thz ne:ie:utz}:f e solution of

—ina
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