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1.Introduction

Mixtures of nematic liquid crystals are widely used in practice, e.g.
in LCD’s and for this reason they are extensively investigated by
experimentalists and theoreticians too. The microscopic theory of
nematogenes and their mixtures has been established in the last
decades to propose the macroscopic physical properties from the
molecular data of the constituents. Although it is perhaps impossible
to perform first principles calculations of the mixture's properties
more and more details of the molecular structure were incorporated
into the theory. In the framework of the mean field approximation
(MFA) some essential features of the phase transition nematic-
isotropic and the behaviour of the order parameters are well
understood . Nevertheless there are some discrepancies between the
mean field treatment of nematic mixtures and the measured relation
between the component order parameters 5; and S, of the constituents
(53 and Sp are the second rank order parameters S; = <Py(cos(8;))> ;
8; is the angle between the director and the principal molecular
axis). According to the theory of Palffy-Muhoray et al. [1] this
relation should be of the form

Sy = £(2)
1)
Sy = f(r z2) ,
Wwith r = ( Tyvy/ Tlvl)l/z (Ty/Ty clearing point ratio, v1/vo

molecular volume ratio of the components). Eqs. (1) are a parameter
representation of the function 5,(Sy). To discuss this relation it is
not necessary to know the order parameters as a function of
temperature. Hence we do not deal with the temperature dependence of
z. If the anisotropic intermolecular potential is assumed to be




proportional to Pz(cos(elz)) ( 912 is the angle between the principal
axis of both molecules) the function f(z) is given by
4

-d
£(z) = 2 dm|Pa(¢ ) explz P5(§ )1d . (2)
PR £ 024

The mean field result (1),(2) is valid if
uyp = ( uyyupp)1/2 , 3

where the u), are the interaction constants of the anisotropic forces
between the molecules. This geometric mean rule is often used to
reduce the number of parameters, the observed violations of (3) are
snall and not important for our considerations (2,3,4]. uyq and up»y
are connected with the transition temperatures of the pure

components, namely

Upp = 4.54153 v kT .
which is known from simple Maier-Saupe theory ([5].

It is & strange fact that relation (1) does not depend on the
composition of the mixture ! This could be a hint that the MFA fails
qQualitatively to explain the order parameter relation 5,(5;) . To
confirm this idea we consider a fictive mixture with a low
concentration of component 2 which has a considerable higher
transition temperature than the (host) component 1 ( r is large ).
According to (1) a moderate value of S; corresponds to a component
order parameter S, tending to 1 since f(z — o00) = 1. This is a
direct consequence of the mean field picture which considers a
molecule of component 2 in the effective "field" of the other
molecules. From a microscopic point of view the molecule 2 should be
affected by the random motion of the host molecules resulting in a
decreasing value of its order parameter. Thus, the order parameters of
both components differ much less than predicted by the MFA. To confirm
this consideration we compare Eqs. (1),(2) with some experimental and
computer simulation data (Fig.1). The Cla-NHR neasuremnents where
performed by Grande et al. [6} whereas the Monte Carlo results are
taken from Hashim et al. (7]. It is obvious that the MFA cannot
explain neither the experimental nor the simulation data . The model
used in [7] reflects the situation discussed above, &.g. a molecule of
component 2 is surrounded by the molecules of component 1 only, Tp/Ty
is large ( r = 2 ) and the MFA of the model yields exactly the result
(1),(2).

Fig.1l: Order parameter difference Sz - Sy versus 51 for r = 2 in mean
field approximation (a), from the simulations of Hashim et al.
[7] (®m), for the 3-state model (5) in MFA (b) and from the
experiments of Grande et al. (8] (v). The experiments were
performed with a mixture containing 25 mole percent of
CoHa <L X {OcN (T, = 4268 K) and 75 mole percent of
C;HM-<::>-@CN (Ty = 322 K), the molecular volume ratio is
about v,/vy = 1.3 and so r = 1.33. (e¢) is the mean field result
for r = 1.33

2. The Model

In this section a restricted orientation lattice model is introduced
which simply permits non mean field calculations. Since we ares not
interested in the details of the thermodynamics of nematic mixtures
but in the influence of fluctuations on the order parameters some
essential simplifications were made. We assume that the axially
synnetric non-polar rigid molecules are living on a simple cubio 3-
dimensional lattice ( $he practical and conceptional problems of
lattice models for 1liquid orystals have been disoussed elsewhere
[14]). Further, the allowed orientations of the moleoules are



restricted to the x , vy and z - axis of the lattice. Thus, there are
no peculiarities with the symmetries of the lattice and molecular
orientations (a similar model was discussed in [8)). Now we consider
the intermolecular potential, which is, in general, of the
form V(?iz.elz, ¥12), where #;, is the interparticle distance vector
in the principal axis frame of molecule 1 and 8;; is the angle between
the long axis of both molecules. The le dependence of V is ignored
in this paper. We mention that this potential is non separable which
is of some importance for the existence of a phase transition in the
system ( see [9,10])). Taking into account only the nearest neighbour
interactions one yields four invariant pair configurations which are
shown in the scheme below. :

() (b) (c) (d)

00 g l= B/

Since we neglected the ?12 dependence of the potential configurations
(e¢) and (d) have the same energy which is set to be zero. Now we
mention that in nematics the molecules are interacting via anisotropic
attractions and hard core repulsions too. Assuming that in case (b)
attraction and repulsion forces will compensate, the potential V is
fully determined by the energy of configuration (a) which should be
nedgative to prefer the parallel alignment of the molecules in the
nematlic phase. Of course, this is for technical convenience, but one
can extend the model and take four different interaction constants for
all configuration (a) - (e).

Now we introduce "spin” variables s; = 1,2,3 for the three possible
orientations of a molecule at lattice site i, the values Rid = 1,2,3
label the direction of the link between the two sites i and J. As a
result of the considerations above the hamiltonian of the model reads

H:-JZ (1‘Cg;.R..)crs.s. . 4
i3> ! U] LN |

( <ij> denotes summation over nearest neighbour (nn) pairs only.) The
extension of this model to a binary mixture with quenohed disorder

4

yvields a hamiltonian given by

yRix - _ E Jn. n. (1 - J;- R.. )cg.s. : )
R

<ij>

J11- J22' Ji2 = Jg, are the interaction parameters between the two
kinds of moiecules, the randomly chosen numbers n; are equal to 1(2)
if a lattice site is occupied by & molecule of component 1(2).

Since model (4) is very similar to the 3-state Potts model it is of
some interest to investigate its properties in the pure nenatogenic
case. Besides the MFA we employed (I) a cluster variation (CV)
technique , (II) a cluster mean field (CHF) approximation and
performed (III) Monte Carlo simulations of the model.

3. The cluster approximations

In order to get some corrections to the mean field picture the
approximation scheme of the cluster variation method is utilized
[11,12], restricted to the two-cluster case or pair approximation
[12). In the framework of this theory the entropy E: and internal
energy U of the system (4) are given by

> ‘2 @ 1np® (6a)
T /kN = sqz':palnp“ -“,hxd pqﬁlnp.%

3
u/IN = - ;JEM( 1 - A:ﬁ)p_‘_f_"’ \ (8b)

where p, is the probability to find a molecule in state o and ps,g: is
the probability to find a molecule in state o< and in Y-
direotion a molecule in state /3 . Ba. (6b) follows immediately from
(4) whereas (8a) is an extension of a formula given in [12].

In the uniaxial nematic phase the director is assumed to be aligned
with the z-axis (or= 3); hence p; = pp = (1-p3)/2, pg =x , § =
<P2(eos(9)> = (3x - 1)/2 ( 6 angle of the principal molecular axis
with respect to the z-axis). Taking into account the symmetries of the
system the probabilities 92; nay be expressed in terms of 5

S



parameters a...e ,

) (1-x)/2-a-b b a
a
p = b (1-x)/2~a-b a
a a x-28a
(1-x)/2-e-d d [}
@
E? = d (1-x)/2-c-d c
e c x~c-e
(1-x)/2-c-d d c
(A
E“P = d (1-x)/2-e-d e
c e x-c-e .

The free energy F = U - TZ (J=k-= 1) reads now

E/R = -2(1-a-b-c-d-2e) - 5T{xln(x)+(1-x)1n((1-x)/2)}
+T{(x-2a)1n(x-2a)+4aln(a)+(1-x-2a-2b)1In((1-x)/2-a-b)
+2bln(b)+2(x—c—e)1n(x—c-e)+4c1n(c)+4e1n(e)+4d1n(d) N
+(1—x—2c-2d)1n((1-x)/2-c—d)+(1-x—20—2d)1n((1—x)/2—e-d)}.

Minimizing F with respect to a,..,e,x one vields B coupled equations
which, in part, can be solved analytically. After some algebra we get

a = (l—x){Z -b(1-9) , q = exp(1/T) (8a)
0 = b2(1-q2 _ C (1-x32
9°) + b(x+q-9x) (1-x)“/4 (8b)
czq
d=(1-x)/2 ~ ¢ -~ ——— (8c)
X ~-c-e
2 X-e cz(q - 1) + x-c
0=¢e + - (8d)
q -1 q -1
6

1 - x 1 - x 2
0 = ( - ¢ -d ) -e-d)-dg (8e)
2 2
1-x 5 2 5 1-x
0= ¢( ) (x-2a)(x-c-e) -~ x ( - a-b)
2 2
1-x 1-x .
*( - e -d ) -e-d), (8f)
2 2

For a given x and ¢ one immediately solves (8a - d). Then Eq. (B8e) may
be solved numerically and one calculates the value of a..e for all
possible x. Finally it is easy to solve Eq. (8f) on a computer. From
this procedure one obtains the order parameter S , the values of 22, U
and F as a function of the temperature T. The phase transition
temperature Tni is determined by F(Tni*S(Tni)) = F(Tni,o).

The pair approximation allows the calculation of the short range
correlation function K(Rlz) = <Pz(cos(8(R12))>, where S(Rlz) is the
angle between two nn molecules separated by ;&2, |F32|= 1( The long
range correlation function tends to S2 as l?&zf-—’ o0 ). The result is

K|l

K(3) 1 -3(2a+b)

(9)

KX =K(2) =KR(1)= 1 -3(c+d+e).

In contrast to the 3-state Potts model and the Lebwohl-Lasher model
(lattice version of the Maier-Saupe theory [13]) the short range
correlation function is anisotropic; at Tni one obtains K“= 0.38 , KL=
0.415 , 82 = 0.274

Now we turn to question of extending the CV technique to mixtures.
Since the number of equations would be considerably increased the
application of this method seems to be complicated. Therefore, a
second approximation scheme (cluster mean field CMF) is proposed which
is simpler to manage. The basic assumption is that only short range
correlations are important. This is not so restrictive, even at Tni'
as shown in computer simulation experiments [7,14]. Thus, the s8ix
nearest neighbours of a molecule are almost statistically independent

from another, and so



exp[-E(3, {84}, )/kT]

= x = 10
Py x WT. z (10)

{sjpn V=1 %: exp[-E(8,{8; ), )/kT]
s=1

X(s,T) ,

where E(s,{s;},,) is the energy of a molecule in state s surrounded
by the s8ix nn molecules in the states 81,..,8g. Bq. (10) is a
selfconsistent equation for x or S which has to be solved numerically.
To determine the phase transition temperature one needs the free
energy and hence the entropy in an appropriate approximation.
According to the arguments which led to the CV formula for 3, we get

T /2N = D) g lnp,, (11)
or

+ E p(x, {s;}n)InlpCe/{8;},n2]
o {silnn

where p(o¢ ,{s;},,) is the probability for a configuration {s=
&,s8;1,..,8g}. The joint probability plr/{s;},,) is proportional to
exp[-E(e,{s;},,)/kT].

For comparison we briefly recall the mean field theory of (4) which
is the same as for the 3-state Potts model (besides a resoaling of J
due to the maximum energy per lattice site of 3J in the Potts model
and 2J in our model). The free energy in MFA is (k = J = 1)

F(T,S)/N = -2(1 + $2)/3 + T(xln(x) + (1-x)1n((1-x)/2))
Minimizing F with respect to $=(3x-1)/2 one obtains
oxp(4S/T) - 1
$ = —— , T, = V/1n2 , S(T,; ) = 0.5.

m
exp(4S/T) + 2

The entropy jump 4% and the latent heat AU are

AZ /N = —-——- , AU/N = 1/3 .

In table 1 the results of the CV ,CHMF and mean field calculations are
shown.

MFA cv CHF
Tos 1.44 1.205 1.231
Avu 0.333 0.250 0.254
A 0.231 0.207 0.2086
Sni 0.5 0.525 0.505

Tab.1.

As expected from non mean field calculations the transition
temperatures and the jumps of configurational entropy and internal
energy are considerably reduced with respect to the MNFA results,
whereas the differences between the CV and CHMF method are not so
significant. As a consequence, it is sufficient to use the CNF
approach in order to deal with binary mixtures (Sec.5).

4. The Monte Carlo simulations

We turn now to the computer simulation of the model (4) to test the
consistence and reliability of the cluster approximations. As known
from the 3-dimensional 3-state Potts model it is rather diffioult to
get sensible informations about the nature of the phase transition
[15,18], 1large lattice sizes ( >30»30=30) and long computer runs are
necessary. Nevertheless small scale simulations are useful too, taking
into account the possible failure of the calculations in the vicinity
of the transition point.

We have employed the standard heat-bath Monte Carlo technique with
periodic boundary conditions which is more advantageous for discrete
systems than the Metropolis algorithm. The properties evaluated by the
sinmulations were the internal energy U and the order parameter S. Due
to the fluctuations of the director within the laboratory frame one
has to average the largest eigenvalue of the tensor order parameter

= (3«1, 5’ > - s )/2 during the simulation run, where 1, is the



direction cosine of the molecular axis with the lattice eor axis. <..>
denotes the average over one lattice configuration ( for a detailed

discussion see [14]).
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Fig.2: Order parameter S versus temperature T for the model (4), MFA
(a), CMF approximation (b), CV method (c), MHonte Carlo data
(d). The arrows indicate the transition temperatures of the
‘ approximations (a)-(d) and the corresponding values of the 3-
state potts model (these temperatures are rescaled by a factor
of 2/3 to obtain the same transition temperature in HFA). The
values for the CV (e) and the Monte Carlo method (f) were taken
from [15] and [1B8], respectively. The estimated order parameter
in the nematic and disordered phase at T, ; is indicated by the

dashed arrows.

In Fig.2 and Fig.3 the simulation results of a 8¥8x8 lattice are
shown. We performed 500 Monte Carlo steps per site (MCS) for
equilibration and 500 MCS to take data. The estinated transition
temperature is about 1.18 but this is truly a rough value since finite
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size effects and possible metastable states were not considered [11].
From a long run (2 -104 MCS at T = 1.16 ) the variance of the
distribution function of the order parameter was determined indicating
that the system is coursing between an ordered and disordered phase.
The estimated upper and lower values of 5 at T ; are indicated by the
dashed arrows in Fig.2 . For temperatures well below 1.16 the errors
of the simulation data are sufficient small and hence & sensible
comparison with the other methods is possible. From Fig.1 and Fig.2 it
is obvious that the cluster approximations yield a satisfactory
improvement with respect to the MFA whereas the CV technique is
'slightly better than the CMF approximation. Further, the rescaled
transition temperatures of the 3-state Potts model are well above the
corresponding temperatures of model (4). So, the thermodynamics of (4)
is more affected by fluctuations and one expects similar consequences
in the case of binary mixtures. Finally, the simple CMF approximation
is sufficient to descriﬁe the influence of fluctuations and one may
apply it to the mixture hamiltonian (5).

M
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454
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(44
(4,1 ]
40 MFA
oM 40 S

Fig.3. Internal energy versus order parameter for the model (4). The
MFA yields simply U = -2(1 + 258%)/3
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5. The model mixture

Now, the considerations of Sec. 3 and 4 are extended to the case of a
binary nematic mixture whose hamiltonian is given by (5). As mentioned
above the distribution of the two kinds of molecules is assumed to be
unchanged during a macroscopic time interval. So, we exclude the
formation of a two phase redion in the phase diagram actually observed
in experiments. Sinoe we are interested in the relation between the
order parameters in the nematic phase this assumption is not so
restrictive.

To begin with the the mean field theory of (8) one starts with the

free enerdy
- 252 - _x $s2
3F/N = 4 [J11x55° + 2J4ox (1-x )5, S + Jg0(1-%.)8,]
@ (Y
+ 3kT [ xmz p:'lnp:+ (1-x) pX P lnpd+ const., (12)
ot L3

where x, is the mole fraction of the component 1 and the probabilities

ps‘ , pY¥ are related to the order parameters via S; = 3(p‘;) -1)y/2 ,

59 = 3(p%‘ -1)/2 . Once more the geometric mean rule Jyp = (J11J22)1/2
for the interaction parameters is used. Thus,the theory contains two
parameters, the mole fraction x,, and the ratio Jp3/Jq1 = r? which is
equal to the ratio of the transition tenperaturea(Tl/TZY?
From (11) we return to Eqs. (1) but the function £(z) has to be
replaced by [exp(z) - 1]/[exp(z) + 2] . In comparison with the theory
of Palffy-Muhoray et al. [1] the restricted orientation model . yields
an order parameter difference S, - S; somewhat enhanced for Sy > 0.4
(Fig.1). Nevertheless, the qualitative behaviour of both models is the
same.
Now we turn to the CMF approximation of (5). In the limiting oases x
—> 0 and x —>» 1 each moleoule of the minority component |is
surrounded only by molecules of the other component and so the
solution of the problem is given by the equations

Sy = 3(X(T,89)-1)/2 , 85 = 3(X(T/r,$9)-1)/2 , (Xpm*= 1)

Sy = 3(X(T r,S5)-1)/2 , B8y = 3X(T,89)-1)/2 , (x,, = 0),
where X(T,S) was defined by (10). The case 0 < x < 1 1is more
complicated because the averages are to be taken over all possible
configurations of the constituents in the cluster of the six nearest
neighbours. Nevertheless, these averages may be calculated exactly (on
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a computer) since all sums are finite. Finally one obtains the
following equations:

=3 4 =3
81 =3X1(S1.82.%,,7)} Sz =3Xp(81.82,x,, 1), (13)
with

Z 8 - exp[-E;(3,{s ), {n;},,,1)/KT)
X5 =2, T 8§, g :
{s3}yn {njlp, M=l Zexp[-EJ-(S.(si)nn.(ni)nn,r)/k'l‘]

)
s=1

where Ej("(si}nn'(ni)nnr) is the enerdy of a molecule of component J

surrounded by the six molecules in the states 81,..,8g of oomponent
ny,..,ng ; BS;"\i= qixn for ngy =1 and B‘;,‘I. = ps‘.(l-xn) for ny = 2

From the solutions of Eqs. (13) one yields the desired relation
between the two order parameters.

In addition to this the configurational entropy is determined by the
sane approximation which 1led to Eq.(11). This enables us to
investigate the influence of the fluctuations on the phase diagram but
not carried out in this paper.

8. Results and discussion

We begin with the 1limiting case of x;, —» 1, r —»oo in order to
verify the considerations made in Sec.l. We employed the CMF
approximation for model (5) and the corresponding 3-state Potts model
where the Jj& Ri; term in ($5) has been dropped. The results for S, -
31 are shown in Fig.4. It is obvious that the MFA fails qualitatively
to predict the relation between the order parameters. In addition the
32 - 31 values in Fig.4 reveal that the 3-state Potts model is less
sensitive to fluctuations as proposed by the higher transition
temperature in the pure nematic case.

As known from other cluster theories [17] the deviations from the MFA
are inoreasing with a decreasing number of nearest neighbours. Now,
one may explain the results for model (5) by an effective reduction of
the coordination number due to the ;12 dependence of the potential
(expressed by the J;;Rﬁ term). Thus the details of the interparticle
potential are important for the interpretation of the observed order
parameter differences.

Now we turn to the case of finite but large value of r to compare the
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results of the CHF approximation with some simulation data. Once more
the Monte Carlo simulations were performed on a 8»8+8 lattice with
periodic boundary conditions. According to the value of x; a random
distribution of the molecules on the lattice sites was generated.
Actually we repeated the simulations with different random number
sequences to get reliable data. Unfortunately it is rather difficult
to deal with x; — 1 or x; — 0 since the number of moleoules of the
minority component is too less to get satisfactory statistics. Hence
we performed calculations for xg = 0.5 to compare with the CHF results
at xp = 0 (Fig.5).

52-34
MFA
0.5 4
.
(- 8
0 T
0 0.5 S,

Fig.4: Order parameter difference S -5y versus Sy in CMF
approximation for the model (5) (a) and the 3-state
Potts model (b) in the case of Xp —»1 and r —so00. The
straight line is the MFA result.

Because of the lack of computer time (only 1000 MCS after reaching
equilibrium) the simulation data are not very acourate. Nevertheless
the MFA cannot explain the simulation data but on the other hand the
CMF approximation underestimates the order parameter difference; the
data are rather consistent with Xy = 0.
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In order to get a sensible explanation of these discrepancies one has
to perform more accurate computer simulations perhaps at r values of
experimental relevance (r £ 1.3).

'S‘L's«

oM -

Fig.5: Order parameter difference versus 5; for r = 2; MFA (a), CMF
approximation (x = 0.5 (b), x = 0 (c)) and Monte Carlo data
for x; = 0.5 (v).

Finally we note again that the simple approximation made in Sec. 5 are
sufficient to explain the order parameter differences in binary
nematic mixtures whereas the MFA fails qualitatively. Furthermore we
nenyion the importance of the ;32 dependence of the intermolecular
potential which led to the model (5). 1In comparison with the 3-state
Potts model this model exhibits an increased sensitivity to
fluctuations and yields an anisotropy of the short range correlation
functions. This properties are of considerable interest for the
interpretation of the measurements of liquid crystalline mixtures.
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3aii¢epT .
BnusHHe QUIyKTyaluHR Ha napaMeTphl mopsgka
B HeMaTHUYEeCKHX CMecAax

E17-89-648

Ha ocHoBe 3KcnepuMeHTOB IO SIMP M UHCJIEHHOMY MOLEIHpO-—
BAaHHI0 MOXHO 3aKJIOYHTh, 4YTO IIapaMeTpbl NOPAOKA KOMIOHEHT
S] H Sy OHHApHHX HeMAaTHUYECKHX cMeceH OTIIHYawTcA APYyr OT
gpyra HaMHOTO MeHbHie, 4eM cljiefyeT H3 TeOpHH cpemHero MoJiA.
HabmopaeMoe mnoBefeHHe NapaMeTpOB MOpAKa ymaeTcA obbaAc—
HHTBL B paMKaX MpPOCTOH MOJeJIH OPHEHT alHOHHOTI'0 OBKKEHHA MO-—
JeKyJl C OrpaHHYeHHeM 3a paMKaMH HNpHOJIMXEHHA CcpegHero mno-—
an, HalpgeHHBle COOTHOmEHHA MekAy S| M S)? NOOTBepXZANTCH
MOHTE-KAapJIOBCKHMH pacueTaMH OJiA OAaHHOH MOJOEeJiH.

Pa6ora BrnosiHeHa B JlabopaTopuH TeopeTHUecKOH GH3HKH
OnsiH. )

Coobuenne O6HeIHHEHHOTO HHCTHTYTA AAEPHBIX HecltedoBanuil. Hy6ua 1989

Seifert F,
Influence of Fluctuations on the Order
Parameters in Nematic Mixtures

E17-89-648

NMR measurements and computer simulations suggest that
the component order parameters S| and S of binary nema-
tic mixtures differ much less from each other than propo-
sed by mean field theories. Using a simple restricted
orientation model for the nematogenes and going beyond
the mean field approximation one may explain the obser-
ved behaviour of the order parameters. The calculated re-
lations between S| and S2 are confirmed by Monte-Carlo
simulations of the model.

The investigation has been performed at the Laboratory
of Theoret1ca1 Physics, JINR.
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