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I. INTRODUCTION 

There are two important classical approaches to calculation of the free 

energy, correlation functions and other thermodynamic properties of lattice 

models with discontinuous site variables: cluster variation methods 
(cw)/1.2,3/ and the transfer-matrix method"! In the first one, the free 

energy is constructed from the configuration probabilities of a finite 

cluster, and to obtain thermodynamic quantities. it is minimized with 

respect to unknown probabilities. The cluster variatioq methods yield 

explicitly low symmetry phases and phase transitions between them and the 

high symmetry phase varying the temperature or other parameters. They give 

classical critical exponents but renormalization group ideas are easily 

applied to However, it is not clear how to construct the free 

energy functional in the most effective way and the minimiyation procedure 

is generally tedious for higher approximations and Long-range interactions. 

The transfer matrix method is applicable only to one - dimensional 
systems and instead of higher-dimensional systeqs only one-dimensional 

slabs or strips are in fact treated by it.Naturally, for these systems no 

phase transitions occur. Nevertheless, the values of critical temperature 

and critical exponents can be derived from a finite-size scaling 

procedure/6/ but no values of the low symmetry correlation functions are 

available. The simplicity of mathematical methods being used allows one to 

treat large systems with rather long range  interaction^'^: 
Our treatment combines both the mathematical simplicity of T-matrix 

method and the explicit occurrence of low symmetry phases and phase 

transitions of CVM's. The construction of an arbitrary approximation is 

straightforward and the method is more effective than CVN as it uses less 

unknown parameters than is the number of configuration probabilities in CVN 

of the same accuracy. The results are obtained by simple iterations. 

Recently, there has appeared a double-chain approximation for the Ising 

model'8/ similar, to some extent, to our approach. But our method, in 



distinction to it, is applicable to very general lattice models, uses a 

number of multi-site mean fields instead of a one single-site field, and 

can be formulated with arbitrary accuracy. 

To solve the two-dimensional Ising model. Suzuki et a1./9'10/ used 

one-dimensional strips with a single-site mean field at the boundaries. 

From the point of view of that paper our method may be considered as a one 

reducing the two-dimensional problem to a strip with multi-site mean fields 

now applied only to a one boundary. 

The method is formulated in Sec. I1 and the example of Ising model in 

Sec.111 is used to illustrate it. The accuracy of the approximate values of 

the critical temperature is within 0.1% for comparatively low 

approximations, what is a better result than 

We shall develop an approximate method for calculation of the 

correlation functions and the free energy of two-dimensional lattice models 

with discontinuous site variables described by the Hamiltonian 

where i numbers lattice sites, n are site variables at sites in a finite 
k 

size area around the site i. n = 0,l. . . . . ,  N (in the illustrative 

calculations below for the Ising model, we put N = 1). If the interaction 

constants K.'s are of finite range the site Hamiltonians H. may be written 

explicitly in the following form 

where j is the number of the lattice sites in the cluster around the site 

i. Its diameter is given by the largest interaction range; ( 2 )  is the most 

general form of a classical Hamiltonian with finite range interactions. 

For calculation of the partition function Z = l exp(H(ni)) 
t" ,  1 

(the factor -l/kBT is absorbed in the interaction constants), it is useful 

to introduce a transfer matrix Ti defined by the relation 
n 

exp(H(nlI) = 1 Tl(Nl.Nl+l,. . . , N ~ + k )  ; 

1=1 

i numbers the rows of the lattice and M-rn is the number of the rows in the 

whole lattice; NJ = inJ,*} is the set of the lattice site variables in the 

j-th row, and k is at least as large as the range of interactions 

perpendicular to the rows. For homogeneous lattices we take all T in the J 
same form. The above definition of T-matrix is not unambiguous and yields a 

lot of freedom how to choose it. We impose only two limitations on the 

choice of the T-matrix: the T-matrix (together with the Hamiltonian) should 

be invariant with respect to transformations corresponding to the symmetry 

which we expect to be broken for some values of interaction parameters, and 

for the sake of simplicity, it should be as small as possible. The T-matrix 

can obviously be written in the exponential form, as well 

Tl(Nl,Nl+I,....NI+k) = exp(Gl(tK1};Nl,Nl+ i...,Nl+kI)r 

where 1 Gl = H. 

As is well known, the free energy of the system and the correlation 

functions are directly related to the largest eigenvalue and to the 

corresponding eigenvector of the equation 

1 l l l + l . l + k * l l + l . . l + k I  = l l N l . . . N I + k - l I .  (3) 

N 
l+k 

Generally, it is not possible to solve this equation exactly as the 

T-matrix as well as the eigenvector are infinite along the rows. Usually. 

this problem is treated by solving the problem for a strip of a finite width 

with appropriate boundary conditions. Then, the problem turns out to be 

effectively one - dimensional and no phase transitions nor spontaneous 

symmetry breaking appears. In our approach we leave both T-matrix and the 

eigenvectorinfinite,but we approximate the eigenvector by a finite number 

of parameters Ll and J 

Substituting (3) into (2 )  we get 



We assume that both g and h can be written in the same way as (21, i.e. 

all the constants L and J are of a short range character. This assumption 
1 

represents the only approximation in our method. If we put h = 0 we obtain 

a generalized mean field approximation. Instead of a single side mean 

field, as usually, a set of many-body fields on many-body interactions is 

included in g which is added to the row Hamiltinian G.. The exact 

expression for * would contain an infinite number of interaction constants 

L .  and it would exactly represent the influence of one of the half lattices 

on the other. The many-body interactions generated by g in the rows 

i+l, . . . . ,  i+k are in fact indirect interactions induced by the lattice 

variables in the rows n>i+k over which we have already summed up. As the 

exponentials at the left hand-side of (41 are positive, we see that (4) is 

valid only for the eigenvector corresponding to the largest eigenvalue. 

In our approximate expression gI, there are no long range interactions 

that the exact solution does contain. To some extent. they can be simulated 

by a "mean" lattice represented by the rows i+k+l, . . . ,  i+k+l included in 

that does not occur in the T-matrix. Nevertheless, the effect of the 

few extra rows cannot be equivalent to that of the whole infinite half 

lattice. Really, the decay of pair correlations at the left hand side of 

eq.(5) is always smaller than the decay of those at its right hand side. 

A similar effect as the extra rows added to the left-hand side of the 

eigenvector is obtained if the rows are added to the right-hand side of 

both the T-matrix and the eigenvector. In this case, (5) remains unchanged. 

only hl is equal to zero and k Is larger than the minimum allowed value. 

Both these modifications improve the results. namely the values of the 

critical interaction constants. 

The vector equation (5) represents an infinite number of nonlinear 

equations for a finite number of parameters. To obtain the equal number of 

equations and interaction constants in WI, we sum up over most of the site 

variables leaving only such a number of equation as is the number of 

parameters. It is an easy task to perform the summation because the 

exponents at both sites of (5) can be considered as (unnormalized) 

configuration probabilities of infinite one - dimensional strips. 

Performing the summation (e.g by the T-matrix method). we get what are the 

configuration probabilities of a flnite cluster for the corresponding 

one-dimensional statistical system. The size of the cluster is given by the 

requirement that the number of its configurations is equal to the number of 

parameters L and Jl. Then, we have to solve the following equations 

for all configurations of the lattice variables n, of the cluster. Pk are 

the configuration probabilities of the given cluster for the k-row 

statistical system described by the Hamiltonian Hk= 1 (GI + gl + hI 1,  
I 

while P k-1 are the same probabilities for a (k-1)-row system with the 

Hamiltonian H = (gl + hI ) .  Both probabilities are normalized to 

unity. If we sum up over all variables at both sides of (5) we get an 

expression for A1 i.e. for the free energy 

where 2 and 2 are the partition functions of k-row and (k-1)-row k-1 
systems. 

The order of the approximation is given by the number of parameters L 

and J . i.e. by the number of sites in the cluster. 
The probabilities Pk and P k-1 are not the configuration probabilities of 

our problem described by the Hamiltonian H. These can also be calculated 

from one-dimensional strips but using the Hamiltonians 



A convenient way how to solve (7)  is to use the iteration method which 

reminds the power method for solving the matrix eigenvalue problem. With 

the values of interaction constants Ll and J1, we calculate the right-hand 

side of the equation by the T- matrix method and then the interaction 

constants of the next iteration step from its left-hand side. The latter 

problem is generally not a simple one, but in some cases it can be solved 

by straightforward calculations. If hl is equal to zero and gl has the 

following explicit form: 

the free energy of the (k-])-row strip Is the following: 

The meaning of notation in the expression for g is analogous to that in 
1,J 

( 2 ) .  P's are the probabilities of cluster configurations in a (k-1)-row 

strip and the probabilities in the last row of ( 8 )  are obtained from them 

by summation over the first column; s characterizes the range of the 

induced interactions J along the i-th row. Minimizing the free energy with 

respect to P's, we get the formula for calculation of interaction constants 

from configuration probabilities 

There is no such a simple formula for calculatlon of the constants JI 

and Ll when hl is nonzero, because of long range interactions introduced by 

summation over the rows i+k+l,..,i+k+l. To avoid this difficulty, we try to 

solve a larger set of equations instead of (51 

Now, if we reduce by summation the whole strip to a cluster of the same 

width as that of the strip i.e.(k+l-I), we can repeat the whole above 

described procedure. 

From computational reasons, it is convenient, solving eq.(6), to use 

compact clusters of the width of the strip at the left-hand side of eq.(3). 

But in principle, the cluster in (6) may be chosen arbitrary even with 

sites far apart from each other. In such a way we can change the type of 

approximation. 

An important area of application of the presented method is calculation 

of phase diagrams in systems with superstructures appearing in various 

two-dimensional systems, e.g.. surface adsorbate and CuO layers in high 



temperature superconductors. Now, the symmetry breaking In the problem with 

a homogeneous Hamlltonlan again naturally appears causing all the 

parameters L1. J1 site dependent. They would be periodic functions of the 

posltlon with a perlod equal to the perlod of the superstructure. 

Then.applylng the iteratlon method to (6) and the power method to the 

one-dlmenslonal strips, ue have to expect the repetltion of the iteratlon 

procedure only after the number of steps which is equal to the period of 

the superstructure. As we impose no restriction on the periodicity of the 

structure in the direction perpendicular to the strips, the method is a 

powerful tool for studying incommensurate structures. 

111. RESULTS FOR THE ISINC MODEL 

To compare the results of our approximate method with exact solutions, 

we calculate the critical temperature and magnetlzatlon of the 

two-dimensional Ising model, or two-dimensional lattice gas model on the 

square lattlce with nearest neighbour interactions descrlbed by the site 

Hamlltonlan 

we have calculated the free energy, the correlation functions, and the 

critical temperature for different approximations according to the 

following choices of the functions G =I G l , J . g l = ~ g l , J p a n d h = I h  . 
J 1 )  1.J' 

i) G I.J - - K/2 (nl,j+nl+l,j+l)(nl+l, jtn1, )+I) + 

+ p/4 (n +n +n +n 
1 , J  i+l,J 1,J.l l+l,J+l 1 

gltJ=L1/3(n +n +n ) + L 2 / 2 n  (n +n ) +  
1.J 1,J+l l,J+2 l , J + l  1 , J  l,J+2 

+ L 3 n  n 
1.1 1.1'2 + L 4 n  I,J n l,J+1 n I.J+Z 

hl,J = O ,  

which is a three-site approximation. 

ii) G and h are the same as in (i), and 
1 . J  1 , J  

gl, = ~ ~ / 4  (n I, J  +n I ,  J + I  +n I ,  j+2 +n i,J+3 + L2/3(nl, J+l(nl, )+nl, J+2)+ 

• ' + L3/2 ("1, jnl, J+Z + " 1 ,  J + l n l ,  ~ f 3  l,J+2 l.J+3 
+ 

+ 
" I , J ~ I , J + ~  

+ L5/2 n n (n +n ) + 
I , J + l  1.J.Z 1 . J  l.J+3 

I ,  J l , J + 1  l,J+2 l,J+3 

i.e. (ii) is a four-site approximation. 

In the case when h = 0, the T-matrix for calculation along the strip 
1. J  

t = exp(G1, + gk+l, ) is the same as for a single chain except two 
1-j 

sites In the second row originating from G I.J' 
iii) GI,) is the same as in i) and 

h = O  
1,J 

gl,, is equal to the same expression as g + h in (iii). 
1, J 1. J 

The concrete choice of the chemical potential at the edges and in the 

middle of the strip in (iv) is due to the requirement of invariance of 

T =exp(G ) with respect to particle - hole symmetry when p=-2K (i.e. 

magnetic field is equal to zero for the corresponding Ising model). 

The values of critical temperature (critical pair interaction K = 

J/k T ) for the approximations (i-iv) together with the exact value are 
B c 

given in Tab. 1 .  

TABLE I 



We see that even the lowest approximations give the values of K very close 

to the exact value and the approximations using extra rows (iii.iv) yield 

better results than (i) and (ii). In our method, working with infinite 

T-matrices, for p=-2K and K>Kc the coverage <n> is different from 1/2 

(magnetization is nonzero). As our method is of mean field type with the 

critical exponent of magnetization f3=1/2 instead of the real value 1/8, we 

cannot expect good coincidence of our coverage curves with the exact one 

near the phase transition point. The coverage calculated from the 

approximations (iil and (iv) and the exact coverage curve is shown in 

Fig. 1. The values of coverage for the approximation (iii) lie between the 

curve 2 and 3. From Fig.l we see that, if shifted to the exact value of K , 

the approximation (ii) yields better values for coverage than (ivl. The 

method makes it possible to calculate all correlation functions, but again 

near the phase transition point, we have to expect the decay of long range 

correlatlons to be too fast. 

- - -  a p p r o x  iv 
a p p r o x  22 

- -. . . . . . . e x a c t  

Fig.1 Coverage as a function of the nearest-neighbour interaction K for 

p=-2K; 1- exact result, 2- approximation (iv), 3- approximation (ii). The 

coverage for the approximation (iii) lies between the curves 2 and 3. 

In conclusion, ue have developed an approximate method for calculation 

of thermodynamical properties of a wide class of lattice models of 

statistical mechanics. The approximation is an extension of the cluster 

variation methods and the transfer-matrix method. As is shown for the Ising 

model, the results of the method are very close to the results of the exact 

solution even in the low order approximations.  he order of approximation 
can be systematically improved in a straightforward way. The symmetry of 

the results may be lower than the symmetry of the Hamiltonian. The method 

is a mean-field type approximation but the finite-size scaling and the 

coherent anomaly method may be applied to it easily. The three-dimensional 

problems are solved by reducing the dimension of the system at first to 

two, and in the next step to one dimension. 
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