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1. Introduction

The mathematical description of unusual properties of a quasi-one-dimen-
sional (qid) solid, 1l.e. a solid whose microscoplc structure consists of
well-separated parallel chalns, always begins with the }ntroduction of a
one-dimensional (1d) model Hamiltonian describing a sinéle chain. It is
introduced intuitively, there is no rigorous procedure based on exact
analysis of the electron-lon system forming the chain for deriving this
model Hamiltonian. The maln purpose qf this paper 1s to introduce a
model Hamiltonian describing the 1d system of electrons and ions which
interact through a Coulombic-type interaction.

There are two different theoretical methods of the mathematical
description of the chain. In the first method only the electron system
Is considered. For the description of the chain along which the
conductivity 1s almost metallic, the electron gas Hamiltonian with
two-body interactions is used [1,2]. On the other hand, for the
description of the nonconductive electron system the Hubbard Hamiltonian
with strong intra-atomic correlations is employed [3,4)]. The 1id electron
models are used to explain effects arising from the variety of the
electron pailring arrangements.

In the other method, the description of the chaln begins with
employing the 1d Fréhlich Hamlltonian [5 to 7] which describes the
system of conduction electrons interacting with phonons. The intrachain
electron-electron interaction 1s not included in the Hamiltonian. This
model is used to explain the lattice distortion (Pelerls phase) caused
by the electron-phonon interaction.

There are, of course, model Hamiltonians in which both the
electron-electron interaction and the electron-phonon interaction is

included. However, the strengths of these Interparticle interactions are
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not specified by a consistent procedure (from first principles). Either
their explicit forms are not stated at all or they are parameterized by
constants [8 to 12] or at least the strength of the electron-electron
interaction is supposed to have the form of the three-dimensional (3d)
Fourier transform of the Coulombic electron-electron potential energy
[13 to 15]. One of the reasons for such a procedure is certainly the
impossibility to represent the Coulombic potential energy by the 1d
Fourier series, namely, the Fourier transform of the function 1/|z| is
logarithmically singular. To avoid this difficulty, Gutfreund and Little
[2] replaced the Coulombic potential energy between the two electrons
moving in the chain by the Coulombic-like potential energy:

2 2
e e

e I )
4n|z| 4n(]z|+bee)

where e 1is the elementary charge, |z| is the distance between the two
electrons and the parameter bee corresponds to the on-site electron-
electron potential energy. In this paper, the starting point of the
treatment of the 1d electron-ion system is the assumption that the
mutual potential energy U(z) of any two particles not only of

electrons is of the following form

a,9
U(z) = — 12
4n(|z|+b12)

where q1 and q, are the effective electrical charges of the particles
and b12 is the parameter corresponding to the potential energy of the
two particles being situated at the same point of the chain. The further
treatment follows the well-known method of linvestigating the behaviour
of the 3d electron-ion system called the plasma model [16 to 18]. In
this method the investigation begins with the study of the system of

electrons and ions interacting according to the bare (unscreened)

Coulombic interaction. The normal modes of this system are the
corresponding plasma oscillations. The subsequent allowance for the

electronic screening allows to introduce ordinary (screened) phonons.

This method yields a clear-cut criterion of the lattice stability which
is formed from the requirement that the squares of the screened phonon
frequencies should not- possess negative values. This stability criterion
is used for establishing the condition of appearing or not appearing the
lattice distortion. This paper is organized as follows: the classical
Hamiltonian in the momentum representation is stated in Section 2, the
stability conditions are analysed in Section 3, and Section 4 is devoted

to the discussion.
2. The Hamiltonian

As mentioned, the plasma model describes the electron-ion system whose
total Hamiltonian H is
H=H, +H +H
i e

) m

where Hi‘ He,‘Hei are the ion part, the electron part and the electron-

ion part of the total Hamiltonian, respectively.

The ion part of the Hamiltonian is of the form

-
Ny Pi 1 NN 7 %e?
Hi o z _ZM_ ' ;Z z ane(|z -Z_|+b )=
a=1 a=1 g=1 €z, 72gl+by,
Bra
Ny Pi 1 Ny Ny 1k(2,2,)
= [ — -+ — X z Z wik) e N (2)
oM 2L
a=1 k=20 a=1 B=1
Bra

where Pa and Zu are the momentum and the position of the a-th ion

respectively, M is the ion mass, N.1 is the number of the ions in the

system, Z. is the effective valence (0 <Z‘<2), € 1is the dielectric
constant of the organic media surrounding the chain (typical values of
the relative dielectric constant are in the region 2 <er<3). L is the
length of the chain, k=2an/L is the wave vector, n is an integer. The
strength of the lon-ion interaction is

Z'Zez

wik) = 7(bii[k|),
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where 7(x) = - Ci(x) cos(x) - si(x)} sin(x)
o @
cos(t) sin(t)
Ci(x) =-‘|V—dt si{x) =—J—dt
t t
X X

The electron part of the total Hamiltonian has the form

N 2 N N 2
e p. 1 e e e
H = z —L 4 - [ Z _—
A, A (|z -z, |+b_)
J=1 Zm 2 J=1 1=1 Ane Jj ol ee
1%j
Ne p% 1 N e ik(z.—zl)
=L+ =F7 7 ¥ vwwe 77 (3)
=12 2o e 1m1
1#j

where pj and Zj are the momentum and the position of the j-th

electron, respectively, m is the electron mass, Ne is the number of the
electrons in the system and the strength of the electron-electron
interaction is

2
e

vik) = — 7(b__|k|)
2ne
The electron-ion interaction is supposed to consist of the

Coylombic-like attraction and the short range delta-function repulsion

[19}:

N. N *2
Zl ze Ze . ( )
H. = - + B 3(2 -z, =
ei . ~ a ©j
w1 j=1 4"E(|Za zJ|+bei)
1 Ni Ne ik(Zu‘Z.)
== 7 7 Juwe I, (4)
L 20 a=1 j=1

-
where 8 is the strength of the repulsion, 8(x) is the Dirac function of
the argument x and the strength of the electron-ion interaction is
-
Zz e2 -
u(k) = - — 7(beilk|) + B
2ne

The term with k=0 does not appear in the Hamiltonian because of the

electrical neutrality of the system. As the whole charge of the

L3
electrical neutral system is zero, the equation Z NizNe is valid. It is

obvious that Ni=L/a and Ne=2Lk /m,where a is the interionic spacing and

f

kf is the Fermi wave vector. The combination of the previous equations

glives

N
_

|

kf =

N
=]

»
Because w/a is the 1d Debye wave vector, the parameter 2 /2 expresses
the degree of the band filling. Like in the 3d plasma model [18], the
condition of the electrical neutrality can be represented as well as by

the relation

uz(k)
lim —_— =1
k— 0 w(k)v(k)

The function y{x) which gives the Fourier transform of the potential
energy is shown in Fig.1. In the limit x— 0, the following expansion
holds

7(x) = ~1ln(x) + ...
Hence, the Fourler transform of the potentlal energy diverges
logarithmically elther as the parameter b or the wave vector k
approaches zero. The singularity at b=0 expresses the logarithmical
singularity of the 1d Fourier transform of the Coulombic potential
energy. The singularity at k=0 1is the consequence of the long-range

nature of the interaction.

FOO

Fig.1 The plot of the function ¥(x).



In the limit x— o, the following expansion is valid

1

2
X

rix) =

P|0\
+

X
Therefore, in the limit of the large wave vector k, one gets

1 e2

vik) s — | — | +...
211b2 ekz
ee
The expression in the square brackets is the well-known form of the 3d
Fourier transform of the Coulombic electron-electron potential
energy. It 1s often substituted for the strength of the electron-

electron interaction in the 1d electron-phonon Hamiltonian [13 to 15].

3. The Stability Conditions

In the harmonic approximation [16,201, the ion part of the Hamiltonian

takes the form

1
H, = E_ + ;z [P(g)P(—g) + & ()a(g)al-g) ] i (5)
where &
*
! oo ika (a~8) z%?
E=— 1 J T wke Ny| — - ] oo ]G )
© 2L 4dnea H o2b Hon
k#0 a=1 =1 i1 G =0
n
Bea -

is the equilibrium position lon-ion potential energy, g is the wave
vector from the first Brillouin zone deflned by -m/a<gsm/a and Gn=2nn/a
is the reciprocal lattice wave vector, P(g) s the momentum
conjugate to the normal mode coordinate of the ion oscillations Q(g)
which is implicitly defined by the relation

, =m+zﬂ’—eigaa

a (MNi)l/Z
-4

The unrenormalized (unscreened) phonon frequency at the wave vector g is

2 _ 2 2 o2
@) = e+ ][ ees,)- ey | )
G _*#0 i
n t
|
5 k2w (k)
where ﬂo(k) = — ‘
a M ‘
6 |
|
]

It can easily be shown using the expansion of the function y(x) at large
values of x that the series in (6) converges
The unrenormalized phonon frequency Qpl(g) as the function of the wave

vector g is shown in Fig.2. 1ln this paper, the following numerical

* -10
values of the parameters are used: 2 =5/3, a=3.4x10 m, er=2.6 (e=eoer.
2/5
Zle
offs /
cEs
[t
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Fig 2 The unrenormalized phonon
frequency Qpl(g) as the function
of the wave vector g.
0 173 2/3 1

ge/w
where € is the dielectric constant of vacuum). It is further supposed

that bii=bee:bei:b=2‘4X1o—1o m. The numerical values of the parameters
L4

Z, a, £ b are taken from (2] where they were used for the
description of the excitonic model of a superconductor based on a
platinum compound like KCP.

At high temperatures T (kBT » thl(n/a) where kB is the Boltzmann
constant, h is the Planck constant), the effects of the anharmonic
(cubic, biquadratic, etc.) terms in the 1ion displacements may bé&come
important. As known [21], the anharmonic terms are of no lmportance as
far as the temperature satisfies the condition T«[Eo|/(N1kB). The plot
of the function co=Eo/Ni versus the parameter b ls shown in Fig.3 for
the numerical values of the parameter Z-, a, €. glven above
(2" %/ (neaky)=2. 1x10° K).

There 1is still another possible Interpretation of the lnequality

settled for the temperature, namely, as the stability criterion against

melting. According to the idea of Lindemann [22], a solid melts as the

vibrations of ions about their equilibrium positions become too large.



0 — Fig.3 The equilibrium position
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In the 3d system, the ion vibrations are considered to be large when the
mean-square amplitude of the vibrations is comparable to the square
of the interionic spacing. This criterion of the large vibrations is not
applicable to the 1d system as the 1d mean-square amplitude of the ion
vibrations as well as many other 1d fluctuation quantities yields a
divergent result for the small wave vector. The ion vibrations can also
be regarded large as far as the energy of the vibrations (i.e. NikBT at
high temperatures) is comparable with the absolute value of the
equilibrium position ion-ion interaction energy |Eo|. Hence, the melting
temperature is TM = 7MTi,where Ty is a dimensionless parameter which may

depend on the parameter b_,, and T.=|E |#(N.k,). However, the real
ii i [+] i™B

destruction of the system may happen at the temperature TD lower than

the melting temperature TM owing to the chemical decomposition of the
organic media surrounding the chain.

Proceeding along the well-known route followed for the 3d model
[16,20], one easily obtains the expression for the squared renormalized

(screened) phonon frequency at the wave vector g and the temperature T:

2 ) 2 2 _
Q@ = 9+ Z[ﬂo(g+Gn) no(cn)]

G _#0
n

2 2 2
- () - Z [ Q_(g+G )~ (G ) ] +
Gn*O

ion-ion energy per an ion Eo as

the function of the parameter b.

2 2 2
. Qa(g) . ﬂa(g+Gn) . ﬂa(Gn) e
ET(g,O) ET(g+Gn,O) eT(Gn,O) »
G_#0
n
where

5 k2 (k)

Q (k) = ———
2 abiv (k)

and eT(k,O) is the static dielectric function of the 1d electron system.
In the RPA, it is given by

ET(k,O) =1 - v(k)AT(k,O),

where AT(k,O) is the 1d static Lindhard function

2 f(k’)-f(k’+k)

L E(k’ )-E(k’ +k)

f(k) is the Fermi-Dirac distribution function and E(k)=h2k2/(2m).
At the =zero temperature, the 1d Lindhard function contains the

well-known logarithmical singularity at k=t2kf:

2m Zkf—k
2 1n

nh"k 2kf+k

Ao(k,O) =

This logarithmical singularity manifests itself as well as in a phonon
anomaly of the present model of the electron-ion system.

Neglecting the effects of the periodicity in the expression (7), one
gets the following phonon dispersion relation at the zero temperature

2
Qa(k) (8)

“ih oK) = ﬂi(k] - ﬂi(k) N
' 2mv{k) Zkf—k
1+ ———E—— 1n

nh 'k 2kf+k

Evidently, the expression (8) contains a sharp logarithmical anomaly at
2 2 2 .
=+ N
k _Zkf. If ﬂo(Zkf]<ﬂa(2kf), i.e if w(Zkf)v(Zkf)<u (2kf) it even leads to
imaginary phonon frequencies expressing the lattice instability. In
terms of the parameters of the present model, this Inequality has the

- 2 * *
following form (Z e"/ne€)y(Z nb/a)<g



As a matter of fact, the effects of the periodicity in the phonon
dlspersion relatlon can be neglected only as far as the wave vector k is
small: k(GI=2kf. Hence, one has to used the dispersion relation (7)
while examining the Zkf-phonon anomaly. Fig.4 shows the plot of the
squared renormalized phonon spectrum at the zero temperature calculated
with the use of the dispersion relation (7} for the numerical values of

* *
the parameters 2, a, €. b given above and B =0. There is a giant

anomaly in the phonon spectrum at the wave vector k such that k+Gn=2kf.

1410 Fig.4 The squared renormalized
'3,".\__7]‘5' phonon frequency at the zero
2\Els
= 2
£ temperature as the
?}le i Dh, 08
o function of the wave vector g
=410
e 73 23 1
ge/w

It is so giant that the squares of the renormalized phonon frequencies
posses negative values. This violation of the criterion of the lattice
stability indicates the tendency of the system to undergo the transition
to the state with the periodic lattice distortion. Several equi-(squared
renormalized phonon) frequency lines are shown in Fig.5 for the wave
vector 2kf whereby the squared frequency unit is (Z'm/M)(hnkf)z/(am)2

The area bordered by the dotted lines defines the numerical values of
the parameters b and B' describing the 1d electron-ion system with the

»* -
parameters Z =5/3, a=3.4x10 10 m, er=2.6 that 1s stable against the

lattice distortion.
With increasing the temperature, the logarithmical singularity of
A0(2kf,0) 1s smoothed out by smearing of the Fermi-Dirac distribution

function. This results only in a sharp peak of AT(Zkf,O) which

10

k: vector 2kf.

Z'e
TE

b/e

progressively weakens with increasing the temperature. Consequently, the
phonon anomaly becomes less giant and above some temperature TP (the
transition temperature), the squares of the renormalized phonon
frequencies do not posses negative values any more. Hence, the cruclal
point of the calculation of the transition temperature which is given by

the solution of the equation

Qph,TP(Zkf) =0 (9)

is the determination of the dependence of AT(Zkf,O) on the temperature.

Unfortunately, there exists only a very rough estimate of AT(Zkf,OL

namely [6}:
m 7h2kf
A(2k_,0) = - ln{——— (10)
Tt w2k kT |’
T ke B
where 1ny=C=0.5772... 1is the Euler constant. With the help of the

expression (10), the equation (9) can be rewritten as

2,2
¥h l(f

exp -l/hT (11)

+
nka P

where the dimensionless electron-phonon interaction parameter of the 1d

electron-ion system at the temperature T is given by

11

Fig.5 The equi-(squared renormalized

phonon) frequency lines at the wave
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—-—"t 1. 92(21({) QZerf) ) [92(2k «G) - 22(6) ] -
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T £ G_%0
n
2 2 2,
9 (2k,) - ) [ﬂa(zkf+Gn) - 96 ) ] +
G =0
n
2 2 -1
0 (2k 4G ) Qo (G.)
. a f 'n _ a n
€r(2k4G ,0) € (G ,0)
G =0
n

As the dielectric function at the wave vector k=#2k, slightly varies

f
with the temperature, AT in the equation (11) can be replaced by AO' the
electron-phonon interaction parameter at the zero temperature:
mv (2K ) a2 (2,)
_ f ph, 0 f
AO = - 2 > > (12)
nh kf ﬂa(Zkf) + nph,O(ZKf)

To obtain a more reliable value of the transition temperature, one
should refer to the equation (9) and solve it by numerical methods. It
will be still only a ﬁean—field value of the transition temperature,
i.e. a value calculated without taking into account fluctuations which
shift the phase transition of any 1d system to the zero temperature.
However, it 1is known [23,24] that a small degree of the interchain
coupling is sufficient to bring the actual transition temperature close
to its mean-field value.

Evidently, 1if the transition temperature T is greater than the

P

temperature TD' the system is in the state with the perlodic lattice

distortion as far as the temperature is lower than TD and at TD it is

destroyed by melting or the chemical decomposition. In the opposite

case, 1if TP 1s lower than TD' the system is in the metalic state as far

as the temperature is greater than T, and lower than T, and at T_ the

P D P
lattice is periodically distorted.

12

4. Discussion

Models used to Interpret experimental data do not involve all complex
processes that occur in real qld solids. Though they are very
simplified, their solutions give some guidance about what is going on.
The plasma model presented in this paper also describes the 1d
electron-ion system in the simplified way. In general, the interaction
between ions is not well represented by a potential when the coupling
between closed-shell electrons on different lons plays an important
role. In the expression for the electron-ion interaction energy, the
fact that 1lons posses a structure (core electrons) has again been
neglected. As soon as the Pauli principle becomes important 1in the
interaction between the conduction electrons and the core electrons, the
interaction cannot be represented by a potential as well. The
electron-ion interaction has also been assumed not to be affected by the
ion displacement (the rigid-ion approximation). However, the restriction
to the interparticle interactions represented by the Coulombic-like
potential brings along a compensating possibility of obtaining the
Hamiltonian which 1is explicitly defined. On the other hand, this turns
to be the main advantage of the present model over others which resides
in the explicitly stated dependence of the strengths of all the
interparticle interactions on the wave vector. In the same consistent
way, the model can be extended to describe a qld system by includlng the
interchain Coulombic interaction in the Hamlltonlan.

Comparing with the other models of the 1d electron-ion system, one
also finds out that the present model ylelds another view on the role of
the interparticle interactions and the perliodicity of the system (the
Umklapp processes) in arising the lattice instability. Within the
framework of the Frdhlich model, the lattice instability arises at any
values of the strength of the electron-phonon interaction [5 to 7]. The
present model whose Hamiltonian includes both the electron-ion
interaction and the electron-electron interaction ylelds a fully

different result. Without taking into account the effects of the

13



periodicity, the lattice instability appears if the squared strength of
the electron-ion interaction is gregter than the product of the
strengths of the 1ion-ion interaction and the electron-electron
interaction taken at the wave vector k=2kf. A model of the 1d
electron-ion system fulfilling the criterion of the lattice instability
in this form was studied e.g. by Nakane and Takada [15}.

However, it follows from the present treatment of the 1d system that
the effects of the periodicity significantly make for the lattlce
instability. From the phonon dispersion relation which neglects the
effects of the periodicity one finds out that the lattice of the
system described by the present model should be stable as far as
B'<(Z'e2/ne)'a’(2‘ub/a). This inequality defines incorrect values of the
parameters b and B‘ for which the lattice is stable. The real values
calculated from the phonon dispersion relation taking into account the
effects of the periodicity can be obtained from Fig. 5. Evidently, they
are fully different from those defined by the above-given inequality.
Hence, one can also conclude that the effects of the periodicity (the
Umklapp processes) tend to strengthen the transition to the state with
the lattice distortion. This conc_1usion is in the opposition with that
of Gasser [14] who asserted that the Umklapp processes tend to suppress
the lattice instability. It is also necessary to remark that a better
approximation for the dielectric function which goes beyond the RPA may
give a little different region of the values of the parameters b and B.
for which the lattice is stable. Evidently, the appreciation of the
influence of various effects (the Umklapp processes, the self-energy and
exchange contributions to the dielectric function, etc.) on the lattice
instability is possible only within the framework of such a model in
which the strengths of all the interparticle interactions are explicitly
stated.

In dependence on the values of the parameters, the Hamiltonian
stated in this paper describes the 1d electron-ion system in which the

periodic lattice distortion either appears or does not. The lattice

14

distortion is generally connected with the formation of a
charge-density-wave. On the other hand, the system which is stable
agalnst the lattice distortion can exhibit various effects originating
in miscellaneous electron pairing arrangements. Thus the plasma model
allows to study all primary phenomena exhibiting in the 1d electron-ion
system by the application of only one Hamiltonian. It 1s hope that
further study will lead to the description of other 1d phenomena

within the framework of the plasma model.
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fIneTrxka H. E17-89-611

OgHoMepHas MIIa3MeHHas MoOelb

[IpeplioxeH raMujiibTOHHAH OOHOMEPHOHM 3JIEKTPOH—-HOHHOH CHCTe-
Mbl, PerileBaAHTHbIE CHIbI, NOCPEOCTBOM KOTOPbIX B3aHMOOEHC TBYIOT
3JIEKTPOHBl M HOHbI, — KYJIOHOBCKOIO THmna.Kpome TOro,B 3JIeK-—
TPOH—HOHHOE B3aHMOLeHCTBHE BKIJIOYEH OTTAJIKUBAWIHI NcCeBOono—
TeHuHasn B Buae G6—-byHKuHHM. Hccnemyercs yCTOHUHBOCTB CHCTEMBI
OTHOCHTEJIbHO HCKaXeHHsA pemeTKH. [lokaszaHo, 4TO 3dbeKTbl mnepH-
OOHYHOCTH yCyryOIIAWNT Nepexon CHCTeMbl B COCTOAHHE C HCcKaxe-
HHEeM pemeTKH., YCTaHOBIIeHA o6JlacTh 3HAa4YeHHl NnapaMeTpPoB, OIH-
ChIBAWIUX CHCTEMY,yCTOHUHBYI® OTHOCHTEJIEHO HMCKAXEHHS DemeTKH.

PaGora BbmonHeHa B JlaGopaTopHH TeopeTHUYECKOH GH3HKH
OHAHU,

Mpenpuur O6BeaMHEHHOr0 MHCTUTYTAa RJIePHbIX HccnenoBaHuit. ly6ua 1989

Yanetka I.
The One-Dimensional Plasma Model

E17-89-611

The Hamiltonian of the one—-dimensional electron-ion sys-
tem is proposed. The relevant forces, electrons and ions
interact via, are of the Coulombic-type. Besides, the re-
pulsive pseudopotential in the form of the delta-function
is included in the electron-ion interaction. The stability
of the system against the lattice distortion is examined.
The effects of the periodicity appear to strengthen the
transition to the state with lattice distortion. It is de-
fined the region of the values of the parameters describing
the system stable against the lattice distortion.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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