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1. Introduction 

The mathematical description of unusual properties of a quasl-one-dlmen- 

sional (qld) solid, 1.e. a solld whose microscoplc structure consists of 

well-separated parallel chains, always begins with the lntroduction of a 

one-dlmenslonal (Id) model Hamiltonian describing a single chain. It is 

introduced intuitively, there is no rigorous procedure based on exact 

analysis of the electron-ion system forming the chain for derlving this 

model Hamlltonlan. The main purpose of this paper Is to Introduce a 

model Hamlltonlan describing the Id system of electrons and ions which 

interact through a Coulombic-type interaction. 

There are two different theoretlcal methods of the mathematical 

description of the chain. In the first method only the electron system 

Is considered. For the descrlptlon of the chain along which the 

conductlvlty Is almost metallic, the electron gas Hamiltonian with 

two-body Interactions is used [1,21. On the other hand. for the 

description qf the nonconductive electron system the Hubbard Hamiltonian 

wlth strong intra-atomic correlations is employed 13.41. The Id electron 

models are used to explaln effects arising from the variety of the 

electron palrlng arrangements. 

In the other method, the description of the chaln begins with 

employlng the Id Frohllch Hamlltonian [ 5  to 71 whlch describes the 

system of conductlon electrons interacting wlth phonons. The intrachain 

electron-electron interaction is not included in the Hamiltonian. This 

model Is used to explaln the lattice dlstortion (Pelerls phase) caused 

by the electron-phonon interaction 

There are, of course, model Hamiltonians in which both the 

electron-electron interaction and the electron-phonon Interaction is 

Included. However, the strengths of these Interparticle Interactions are 



not specified by a consistent procedure (from first principles). Either 

their explicit forms are not stated at all or they are parameterized by 

constants [ 8  to 121 or at least the strength of the electron-electron 

interaction is supposed to have the form of the three-dimensional (3d) 

Fourier transform of the Coulombic electron-electron potential energy 

113 to 151. One of the reasons for such a procedure is certainly the 

impossibility to represent the Coulombic potential energy by the Id 

Fourier series, namely, the Fourier transform of the function 1/1z1 is 

logarithmically singular. To avoid this difficulty. Gutfreund and Little 

[21 replaced the Coulombic potential energy between the two electrons 

moving in the chain by the Coulombic-like potential energy: 

where e is the elementary charge, lzl is the distance between the two 

electrons and the parameter b corresponds to the on-site electron- 
ee 

electron potential energy. In this paper, the starting point of the 

treatment of the Id electron-ion system is the assumption that the 

mutual potential energy U(z) of any two particles not only of 

electrons is of the following form 

where ql and q2 are the effective electrical charges of the particles 

and b12 is the parameter corresponding to the potential energy of the 

two particles being situated at the same point of the chain. The further 

treatment follows the well-known method of investigating the behaviour 

of the 3d electron-ion system called the plasma model (16 to 181. In 

this method the investigation begins with the study of the system of 

electrons and ions interacting according to the bare (unscreened) 

Coulombic interaction. The normal modes of this system are the 

corresponding plasma oscillations. The subsequent allowance for the 

This method yields a clear-cut criterion of the lattice stability which 

is formed from the requirement that the squares of the screened phonon 

frequencies should not-possess negative values. This stability criterion 

is used for establishing the condition of appearing or not appearing the 

lattice distortion. This paper is organized as follows: the classical 

Hamiltonian in the momentum representation is stated in Section 2, the 

stability conditions are analysed in Section 3, and Section 4 is devoted 

to the discussion. 

2. The Hamiltonian 

As mentioned, the plasma model describes the electron-ion system whose 

total Hamiltonian H is 

H = H .  1 + H  e C H e i ,  ( 1 )  

where Hi, He, 'Hei are the ion part, the electron part and the electron- 

ion part of the total Hamiltonian, respectively. 

The ion part of the Hamiltonian is of the form 

where Pa and Z are the momentum and the position of the a-th ion. 

respectively. M is the ion mass. N. is the number of the ions in the . 
system. Z is the effective valence (0 <Z < 2 ) .  E is the dielectric 

constant of the organic media surrounding the chain (typical values of 

the relative dielectric constant are in the region 2 <€ <3). L is the 

length of the chain, k=2nn/L is the wave vector, n is an integer. The 

strength of the lon-ion interaction is 

electronic screening allows to introduce ordinary (screened) phonons, 



where 

The electron part of the total Hamiltonian has the form 

ltj 

where pj and z .  are the momentum and the position of the j-th 
J 

electron, respectively, m is the electron mass, N is the number of the 

electrons in the system and the strength of the electron-electron 

The electron-ion interaction is supposed to consist of the 

Coqlombic-iike attraction and the short range delta-function repulsion 

where B is the strength of the repulsion. 6(x) is the Dirac function of 

the argument x and the strength of the electron-ion interaction is 

The term with k=O does not appear in the Hamiltonian because of the 

electrical neutrality of the system. As the whole charge of the 

electrical neutral system is zero, the equation Z N.=N is valid. It is 
1 e 

obvlous that N.=L/a and Ne=2Lk /n.where a is the interionic spacing and 
f 

k is the Fermi wave vector. The combination of the previous equations 
f 

gives 

. 
Because n/a is the Id Debye wave vector, the parameter Z /2 expresses 

the degree of the band filling. Like in the 3d plasma model [IS], the 

condition of the electrical neutrality can be represented as well as by 

the relation 

U2(k) 
- 1 lim - - 

k+ 0 w(k)v(k) 

The function r(x) which gives the Fourier transform of the potential 

energy is shown in Fig. 1. In the limit x+ 0, the following expansion 

holds 

Hence, the Fourier transform of the potential energy diverges 

logarithmically either as the parameter b or the wave vector k 

approaches zero. The singularity at b=O expresses the logarithmical 

singularity of the Id Fourier transform of the Coulombic potential 

energy. The singularity at k=O is the consequence of the long-range 

nature of the interaction. 

Fig. 1 The plot of the function ~(x). 
I 



In the limit x-+ m, the following expansion is valid 

Therefore. in the limlt of the large wave vector k, one gets 

The expression in the square brackets 1s the well-known form of the 3d 

Fourier transform of the Coulombic electron-electron potential 

energy. It 1s often substituted for the strength of the electron- 

electron interaction in the Id electron-phonon Hamiltonian 113 to 151. 

3. The Stability Conditions 

In the harmonlc approximation [16.201, the ion part of the Hamiltonian 

takes the form 

1 
2 

H 1 = Eo + - 1 [ P(g)P(-g) + npl(g)Q(g)Q(-gl , I (5) 
2 

where g 

is the equilibrium position ion-ion potential energy, g is the wave 

vector from the first Brillouin zone defined by -n/a<gSn/a and G =2nn/a 

is the reciprocal lattice wave vector, P(g) is the momentum 

conjugate to the normal mode coordinate of the ion oscillations Q(g) 

which is implicitly defined by the relation 

Q'g) igaa 

g 

The unrenormalized (unscreened) phonon frequency at the wave vector g is 

where 

It can easily be shown using the expansion of the function ~ ( x )  at large 

values of x that the series in (6) converges. 

The unrenormalized phonon frequency Rpl(gl as the function of the wave 

vector g is shown in Fig.2. In this paper, the following numerlcal 

values of the parameters are used: Z0=5/3, a = 3 . 4 ~ 1 0 - ~ ~  m. ~~'2.6 (E=E o E r' 

1 

Fig 2 The unrenormalized phonon 

frequency R pl(g) as the functlon 

of the wave vector g. 

g e / n  

where E is the dielectric constant of vacuum). It is further supposed 

tbat b..=b =b .=b=2.4~10-~~ m. The numerical values of the parameters 
11 ee el 

Z , a, E ~ ,  b are taken from [21 where they were used for the 

description of the excitonic model of a superconductor based on a 

platinum compound like KCP. 

At high temperatures T (k T B hRpl(n/a) where kB 1s the Boltzmann 
B 

constant. h is the Planck constant), the effects of the anharmonic 

(cubic, biquadratic, etc.) terms In the ion dlsplacements may become 

important. As known [211, the anharmonic terms are of no importance as 

far as the temperature satisfles the condition TuIEol/lNikB). The plot 

of the function E =E /N. versus the parameter b 1s shown in Flg.3 for 
0 0 1  

1 

I 
the numerical values of the parameter Z ,  a. Er given above 

(~"e~/(nEak )=2.1x105 K). 
B 

There is still another possible interpretation of the lnequallty 

settled for the temperature. namely, as the stability criterion agalnst 

melting. According to the idea of Lindemann [221, a solid melts as the 

vibratlons of ions about thelr equilibrium posltions become too large. 



O r- Fig.3 The equilibrium position 

where 

In the 3d system. the ion vibrations are considered to be large when the 

mean-square amplitude of the vibrations is comparable to the square 

of the interionic spacing. This criterion of the large vibrations is not 

applicable to the Id system as the Id mean-square amplitude of the ion 

vibrations as well as many other Id fluctuatlon quantities yields a 

divergent result for the small wave vector. The ion vibrations can also 

bv regarded large as far as the energy of the vibrations (i. e. NikBT at 

high temperatures) is comparable with the absolute value of the 

equilibrium position ion-ion interaction energy (E I .  Hence, the melting 
temperature is T = I T ,where T~ is a dimensionless parameter which may 

M M i  

depend on the parameter bii and Ti=lEol/(NikB) However, the real 

destruction of the system may happen at the temperature TD lower than 

the melting temperature TM owing to the chemical decomposition of the 

organic media surrounding the chain. 

Proceeding along the well-known route followed for the 3d model 

[16,201, one easily obtains the expression for the squared renormalized 

(screened) phonon frequency at the wave vector g and the temperature T: 

k2u2 (k 
n:(k) = - 

aPiv(k) 

and E (k,O) is the static dielectric function of the Id electron system. 
T 

In the RPA, it is given by 

E (k,O) = 1 - v(k)AT(k,O), T 

where AT(k,O) is the Id static Lindhard function 

2 2 
f(kl is the Fermi-Girac distribution function and E(k)=h k /(2m). 

At the zero temperature, the Id Lindhard function contains the 

well-known logarithmical singularity at k=f2k . f' 

Thls logarithmical singularity manifests ltself as well as In a phonon 

anomaly of the present model of the electron-ion system. 

Neglecting the effects of the periodlclty in the expression (7). one 

gets the following phonon dispersion relatlon at the zero temperature 

Evidently. the expression (81 contains a sharp logarithmlcal anomaly at 

k=52kf. If n:(2kfl<nt(2kf). i.e if w(2k )v(2k )<u2(2k it even leads to 
f f f 

imaginary phonon frequencies expresslng the lattice instability. In 

terms of the parameters of the present model. this lnequallty has the 

following form (~*e~/lrc);T(~*nb/a)<p*. 



lattice distortion. 

Ulth increasing the temperature, the logarithmlcal singularlty of 

A0(2kf.0) is smoothed out by smearing of the Ferml-Dirac distrlbutlon 

Fig.5 The equi-(squared renormalized 

phonon) frequency lines at the wave 

vector 2kf. 

progressively weakens with increasing the temperature. Consequently, the 

phonon anomaly becomes less giant and above some temperature Tp (the 

transition temperature), the squares of the renormallzed phonon 

frequencies do not posses negative values any more. Hence, the crucial 

point of the calculation of the transition temperature which is glven by 

the solution of the equation 

is the determination of the dependence of AT(2kf,0) on the temperature. 

Unfortunately, there exists only a very rough estimate of AT(2kf.0). 

namely 161: 

where ln~=C=0.5772.. . is the Euler constant. With the help of the 

expression (10). the equation (9) can be rewritten as 

nmk 
B 

where the dimensionless electron-phonon interaction parameter of the Id 

electron-ion system at the temperature T is given by 

function. This results only in a sharp peak of AT(2kf.0) whlch 



As the dielectric function at the wave vector ktt2kf slightly varies 

with the temperature, AT in the equation (11) can be replaced by Ao. the 

electron-phonon interaction parameter at the zero temperature: 

To obtain a more reliable value of the transition temperature, one 

should refer to the equation (9) and solve it by numerical methods. It 

will be still only a mean-field value of the transition temperature, 

i.e. a value calculated without taking into account fluctuations which 

shift the phase transition of any Id system to the zero temperature. 

However. it is known 123.241 that a small degree of the interchain 

coupling is sufficient to bring the actual transition temperature close 

to its mean-field value. 

Evidently, if the transition temperature Tp is greater than the 

temperature TD. the system is in the state with the periodic lattice 

distortion as far as the temperature is lower than TD and at TD it is 

destroyed by melting or the chemical decomposition. In the opposite 

case. If Tp is lower than TD. the system is in the metalic state as far 

as the temperature is greater than Tp and lower than TD and at Tp the 

lattice is periodically distorted. 

4. Discussion 

Models used to inte-rpret experimental data do not involve all complex 

processes that occur in real qld solids. Though they are very 

slmplified, their solutions give some guidance about what is going on. 

The plasma model presented in this paper also describes the Id 

electron-ion system in the simplified way. In general, the interaction 

between ions is not well represented by a potential when the coupling 

between closed-shell electrons on different ions plays an Important 

role. In the expression for the electron-ion interaction energy, the 

fact that ions posses a structure (core electrons) has again been 

neglected. As soon as the Paul1 principle becomes important In the 

interactlon between the conduction electrons and the core electrons, the 

interaction cannot be represented by a potential as well. The 

electron-ion interaction has also been assumed not to be affected by the 

ion displacement (the rigid-ion approximation). However. the restriction 

to the interparticle interactions represented by the Coulombic-like 

potential brings along a compensating possibility of obtqining the 

Hamiltonlan which is explicitly defined. On the other hand, this turns 

to be the main advantage of the present model over others which resides 

in the explicitIy stated dependence of the strengths of all the 

lnterpartlcle interactions on the wave vector. In the same consistent 

way, the model can be extended to describe a qld system by including the 

interchain Coulombic interaction in the Hamlltonian. 

Comparing with the other models of the Id electron-ion system, one 

also finds out that the present mqdel yields another view on the role of 

the interparticle interactions and the periodicity of the system (the 

Umklapp processes] in arising the lattice instability. Withln the 

framework of the Frohlich model, the lattice instability arises at any 

values of the strength of the electron-phonon interaction 15 to 71. The 

present model whose Hamiltonian includes both the electron-Ion 

interactlon and the electron-electron interaction yields a fully 

different result. Without taking into account the effects of the 



periodicity, the lattice instability appears if the squared strength of 

the electron-ion interaction is greater than the product of the 

strengths of the Ion-ion interaction and the electron-electron 

interaction taken at the wave vector k=2kf. A model of the Id 

electron-ion system fulfilling the criterion of the lattice instability 

in this form was studied e.g. by Nakane and Takada [IS]. 

However, it follows from the present treatment of the Id system that 

the effects of the periodicity significantly make for the lattlce 

instability. From the phonon dispersion relation whlch neglects the 

effects of the periodicity one finds out that the lattice of the 

system described by the present model should be stable as far as 

13.c (Z!.e2/ne)T (Z!.nb/a). This inequality defines incorrect values of the 

parameters b and 0 for which the lattice is stable. The real values 

calculated from the phonon dispersion relation taking into account the 

effects of the periodicity can be obtained from Fig.5. Evidently, they 

are fully different from those defined by the above-given inequality. 

Hence, one can also conclude that the effects of the periodicity (the 

Umklapp processes) tend to strengthen the transitlon to the state with 

the lattice distortion. Thls conclusion is in the opposition with that 

of Gasser [I41 who asserted that the Umklapp processes tend to suppress 

the lattice instability. It is also necessary to remark that a better 

approxlmation for the dielectric'function which goes beyond the RPA may 

give a little different region of the values of the parameters b and 0 t 

for which the lattice is stable. Evidently, the appreciation of the 

influence of various effects (the Umklapp processes, the self-energy and 

exchange contributions to the dielectric function, etc.) on the lattice 

instability is possible only wlthln the framework of such a model in 

which the strengths of all the interparticle Interactions are explicitly 

stated. 

In dependence on the values of the parameters, the Hamiltonian 

stated in this paper describes the Id electron-ion system in which the 

periodic lattice distortion either appears or does not. The lattice 

distortion is generally connected with the formation of a 

charge-density-wave. On the other hand, the system which is stable 

against the lattice distortion can exhibit various effects originating 

in miscellaneous electron pairing arrangements. Thus the plasma model 

allows to study all primary phenomena exhibiting in the Id electron-ion 

system by the application of only one Hamiltonian. It Is hope that 

further study will lead to the description of other Id phenomena 

within the framework of the plasma model. 
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Y a n e t k a  I. E 1 7 - 8 9 - 6 1 1  
T h e  O n e - D i m e n s i o n a l  Plasma M o d e l  

The H a m i l t o n i a n  of t h e  o n e - d i m e n s i o n a l ,  e lec t ron- ion  sys -  
t e m  i s  proposed. The relevant forces,  electrons and ions  
in te rac t  v i a ,  are of t h e  C o u l o m b i c - t y p e .  B e s i d e s ,  t h e  re- 
p u l s i v e  pseudopoten t ia l  i n  t h e  f o r m  of t h e  de l t a - func t ion  
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