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1. INTRODUCTION 

The study of regularities of spreading electromagnetic emis- 
sion in mediums with nonlinear properties attracts nowadays 
a great number of investigators. So, for instance, the sprea- 
ding of electromagnetic waves in mediums whose dielectric pene- 
trabilit depends on the electric vector has been considered 
in refs. A-51 . In ref.'" the system of the Maxwell nonlinear 
equations for conjugate domains (cubes with a common centre, 
coaxis cylinders, concentric spheres) has been solved. In par- 
ticular, this system of equations was solved for the following 
dependence of dielectric penetrability on the field 

where o is the frequency of a wave, ai is a parameter charac- 
terizing nonlinear properties of medium (ai > O  corresponds 
to the case of a ray self-focusing; a < 0, to defocusjng), in- 
dex "1" refers to the inner cube, cylinder or sphere; and in- 
dex "2", to the corresponding outer figures. The classes of 
solutions satisfying conjugate conditions on the border line, 
for which a squgired electric vector is a constant quantity, 
have been got: E = oi/lai I , a if 0. 1nf6/ (and in a more gene- 
ral form inl7/) possible restrictions on the problem parame- 
ters (first of all on the frequency o) concerning the obtai- 
ned solutions were also discussed. 

On the basis of the solutions /6*7/ it is possible to get 
expressions for the densities of heat flows given off in the 
volumes of domains considered. Really, for the densities of 
heat flows, as it is known from /26/, it can be written 

where € 7  is an imaginary part of dielectric penetrability. 
Supposing that the electric induction vector is connected 

with the electric tension vector according to 



(see p.531 in ), one can show that the mentioned classes 
of solutions with allowance for (3) satisfy appro~imately (and , 
in some cases precisely) the gauge conditions V . D i  = 0 ,  if 
the inequalities I 

are fulfilled, where R i  are characteristic dl;mens+ions in the 
s st'ns cgns'dered The perturbed solutions E = E y+g i, & = H P + H ;  in"27' have been used in the problem of elect- 
romagnetic wave dispersion on a spherical particle with no:- 
linear properties. It is worth mentioning that for ei and H i  
it led to a linear problem with dielectric penetrability Toi = 
=-2c oi and the absorption coefficient g i  = - (8noi/o). 

On the basis of expressions (1)-(3) and taking account of 
constant values 3 let us find that the densities of heat 
flows are equal to 

where cli. Re(€ ) In particular, if the inequality cii >> c; 
holds, formula '(5) transforms into 

Further, for brevity we shall call the densities of heat 
streams q i  (T i) the heat sources. 

The intensive investigations of heat processes taking place 
in mediums, whose properties (heat conductivity coefficient 
and some other) and a heat source depend on the temperature, 
are carried out nowadays. So, for instance, in refs. 18* 9/ the 
regularities of warming up and vaporization of transparent 
dielectrics in general conditions and laser emission field 
have been investigated. A great number of references(see/ll-l3? 
devoted to the questions of getting infinite temperatures in 
limited domains during the final time and the questions of 
heat localization are summed up in a fundamental mo- 
nograph/lO/ . A nonstationary heat emission equation with heat 
emission coefficient, density and heat source depending on the 

temperature (in the form of powers, as a rule) is used as a 
basis of this investigation. 

The peculiarities of heat transmission in conjugate mediums 
on the basis of the corresponding heat conductivity equations 
with heat sources of the type (6), essentially depending on 
temperature, are studied in this paper. It is supposed that 
on the division surface of two mediums, in the general case, 
there can exist a supplementary heat source. In particular, 
a division surface can be a surface of phase transition so 
that its position could change in the course of time. The 
examples of those systems can be crystalline systems, systems 
"plasma (gas) - solid cover", liquid-crystalline systems with 
a travelling boundary surface, a transition surface of one 
liquid-crystalline phase to another. 

2. GENERAL STATEMENT OF THE PROBLEM 
IN A QUASISTATIONARY APPROXIMATION. 
A POWER DEPENDENCE OF THE HEAT CONDUCTIVITY 
COEFFICIENT AND HEAT SOURCE ON THE TEMPERATURE 

A quasistationary heat transmission in the considered conju- 
gate systems (cubes with a common centre, co-axis cylinders, 
concentric spheres) can be described on the basis of heat con- 
ductivity equation (7) according to the existing edge condi- 
t ions 

where x '=  X .  1 x oi' x i  is the heat conductivity coefficient, i 
are mediums, xOi is the meaning of xi at some fixed tempera- 
ture, Ti is the temperature,S 1 is the surface limiting the 
inner domain,S  is the surface limiting the outer domain, Ta 
is the surface temperature Sl, Ta=T1(S1). Condition (9) is 
the condition of heat balance on the boundary surface of the 
mediums. By c the surface density of heat flow is denoted 
which, in particular, can be conditioned by a phase transi- 
tion on the surface Sl which in its turn can be travelling: 
S:=Sl(t) , t - time. 



2.1. Let us consider the spreading of heat in the system 
I 

"cube in the cube" supposing that it is homogeneous in y and z -  
In this case, the edge problem (7)-(9) will be written as fol- 
lows (a calculation diagram is given in figure 1): 

X 

Fig.1. A calculation diagram. 

where e l  is the edge of the inner cube; t 2 ,  of the outer cube. 
By changing d4i= x;(Ti) dT , equation (10) is transformed 

into equation: 

Equation (12) is integrated in quadratures/l4/ so that coming 
back to Ti it can be written as 

where Too is some fixed temperature,ci are constant values 
defined while solving the boundary problem, the sign "plus" 
or "minus" before the integral is chosen so (if there is such 
a necessity) that the function Ti(x - x,) is even. 

Let us place equation (13) in the boundary conditions and 
get the following system for c l, c2, T, : 

where p denotes the signs "plus" or "minus" chosen properly. 
It follows from (16) that the value G must be even with res- 

t 1 e pect to its second argument, C(T, ,-) = G(T,, - -21 From expres- 
2 2 

sion (15) we can find C2, then from (14), written for i=2, we 
can find a constant T,. We shall conditionally call this cal- 
culation diagram for defining constants diagram c2T,c l. The 
heat balance condition (16) is the condition on the problem 
parameters, for example, on the outer cube dimension e2. 

From the condition 
dT1 e -1 2 -A=o we can get these dimen- 

- X I  & 2 
sions el, for which an adiabatic condition on the boundary 
surface will be fulfilled. As it follows from (16) this condi- 
tion looks like 



From (17) we can get one, several, a great number of or no 
values or el, according to the adiabatic surfaces. In this ca- 
se, the value g 2  is gound from the following condition: 

~,(e~,e,) 
2 

2 (C ( e  ) - -  
' 0 .2  2 2 

f q2(T2) x;(T2) dTp) = G 2 ( f p v e  I) (18) 

'oe TOO 

(n) tn) 
Thus, for special sets ! & I , & 1 a heat insulation con- 

dition for the inner domain will hold (here n is the number 
of the adiabatic surface). tn) 

Let us consider the movement of the bol~ndary near e l  
supposing that it does not change essentially the geometry of 
the considered system ( A ~ /  ) < 1, = 1 - )  . By the 
law of conservation of energy one can write 

d l  - -  G --, 
dt p1e1 

where .pl is density, dA is a specific work performed in shif- 
ting the border. At the same time, the work of the polytropic 

C P ~  process is equal to d ~ =  d T ,  where C is the thermal heat 
y 1 

8 P 1 
capacity under constant pressure, yl is a polytropy degree. 
Accordingly, the change of the temperature T, with time is de- 
fined by the formula 

where T(,~)=T, (e in) ). If the upper limit of the integral is 
equal to infinity or some critical value of temperature T:, 
t en t = t(T,*) may be considered as the time of sharpening 
( ) for this process. 

1 2.2. Let us suppose, following that = q i T l  , 
q i  = q,. Tri . Indeed, a power dependence of a heat conductivi- 
ty coeificient is characteristic of gases, plasma, crystalli-t 

ne substances at rather high temperatures. Power dependence 
of a heat source can be considered in some range of tempera- 
tures. 

In this case, from (12) we get 

where a constant 

and in other cases it will be defined later. The integral (13) 
in this case is a differential binomial expressed in elementa- 
ry functions if 

are whole numbers. 

Here are the examples of these solutions. 

a, +l 
2.2.1. Let be a whole number. It is interesting B i  +0i + 1 

dq 1 to consider the heat source for which - >O. This is possib- 
dT 1 

le if the equation 

is fulfilled. At k = 1, we have the following solution: 

where 



( a i + l ) / 3  --lai 2  + I \  
6a i T  Q o i  l a i  +ll 

z = 1  + --y,, , a ,  = -(-- 1 c i & O .  
loi  + 11 i X o i  Ti 

We find the constants c l ,  c 2 ,  T, from the boundary condi- 
tions (according to the diagram c2Tscl) which becomes 

where 

As a result, we get the dependences T = T , ( e  ,, b! ), c  2 = 

= c 2 ( P  2) , c = c ,. k? 1 ) . We find the edge e 2  from heat balan- 
ce conditions taking c i  # 0 as 

The same solutions can be obtained for other values of k, 
being greater than one (~heb~shev*s/~~/ second substitution 
is used in integrating),and in writing the functions F ( z i )  hi- 
gher degrees of z i  appear. 

It follows from (21) that the adiabatic conditions c,an be 
fulfilled only if 

Here, as it follows from (20) el =0 for i=l.It means that 
this condition holds only at the point. In particular, we can 

2  consider the case T, + W  for which c 1 = 0, c z  = G2 (-,o) / X  o2 . 
If G(w.0) = 0, then c 2 =  0 and for 4 we get 

oi - B i + l  
2.2.2. Let be a whole number with a i  + 1  f Bi. 

2(B i + ~ i + l )  

For the value Q i  to increase with temperature it is necessa- 
ry to impose the condition 

In this case a < 0, 

(Zk- 1) /(2k + I )  
q o i  la1 + 1 l 

a .  =--- - 
1 . . 

Xoi V i  

We give the solution for k = 1 

where 

We find the constants cl, c2, T according to the digram 
c2, .O l, T, (as it has been done before). The heat balance con- 
dition becomes 

The boundary surface will be adiabatic if 



As follows from (23), this is possible only at the point el=O; 
in the case of T,+m the final value of e2  is found only if 
~2f0. As c2=(G(m,0)/x 02 )" , one should require G(m,O)f 0. 

2.2.3. Particularly, consider the case when the condition 
u i  + l = B i  is fulfilled. As we are interested in the condition 
pi > 0, then o + 1 > 0. The dependencqs Ti (x) are 

As Ti, T , 2 0  in considering arbitrary diiaensions of t and 
values of ai it is necessary to put some restrictions on the 
power degrees : 

On the boundary line we have the following condition which 
can be used for defining e2 or To 

- 
From (26) we find the dimensions of P(;) = 2nn/da , n=0,1,2,. . . 
for which the heat flux from domain "1" to domain "2" is equal 
to zero. If G = 0, then from (26) we find ey)= 2 ~ k  /& , 
k = 0,1,2, ... hence, it follows that in this case the condi- 
tion " -=- k D  must be hold. Any deflection of el from the adia- ' 

al n2 

batic surface leads to the decrease of cos(al e1/2) in the de- 
nominator of (25) thus increasing the temperature. In particu- 
lar, if &P = R (2n + I ) ,  then the temperature T 1 + m . The 
value of the removed heat flow also tends to infinity. There- 
fore, the case where o2 >ol , f = ~(2n+l)/da, e 1 = n(2k + l)/dG 
T ,= 0 is interesting for us. In this case TI+ - and the loca- 

lization of heat in the inner cube are realized simultaneous- 
ly. The greater is ai- l/la i [ , the greater is the value oftl, 
as d a i .  

2.3. In this section the systems consisting of two coaxis 
cylinders and two concentric spheres will be considered (see 
the calculation diagram in fig.2). Spherical geometry, in par- 
ticular, is the most convenient in considering the processes 
occurring in liquid and liquid-crystalline heterogeneous two- 
component particles. 

Supposing that the temperature Ti depends only on the ra- 
dius, we simplify the boundary problem (7)-(9) for the system 
considered 

where N = 1 in the cylindric coordinate system, N =  2 in the 
spherical system; boundary surface temperature Tg is defined 
in the process of solving the problem (as it has been done 
before). 

In considering the power dependences X. = r )  T ~ ~ ,  q i  = q  T Bi 
1 i i  io i we get the equation 

instead of (27), where ai is 
defined in the same way as in 
(19). In the spherical coordi- 
nate system at Bi ki(ui + 1). 
k = 0,1,2, ..., (29) is the 
Emden equation. If pi = o + 1 ,  
then (29) is the Bassel equa- 
tion, both at N = l and N = 2. 
Now we write down the solutions 
of the last case. In the cylind 
ric coordinate system we get: 

Fig.2. A calculation diagram. 



u 2 +  1 1/(u2+ 1) 
- 1/ (02 + 1) 

Yo ( d < r ) l  (YO ( d G ~ 2 ) )  
+ To 

t 

where 

By J ,  (x) , Y,(x) we denote n the order Bessel functions of 
the first and second rank, respectively. The temperature T, 
is determined from the following transcendental equation that 
has been derived with the help of the heat balance condition 

In the spherical coordinate system the solutions are 

s i n ( d T l - t ) R l  l / ( u l + l )  
T, = T, (-------- ) t 

sin ( ~ Y R  l) r 

where 
u2+ 1 u2+  1 - 1 

a ,  = ( P  R 2cos (,,/T2~ - T , R cos ( d a i ~ ~  s i n  (d;-2(~ 2- R 1) ) ) . 

Here (just as in section 2.2.3) the restrictions on u i  or the 
domain dimensions must be put. The temperature T, is determi- 
ned from the equation 

where 

dT1 Radii R(:) for which the adiabatic condition - --I = O  
dt R1 

holds can be found from the equations 

The former is used for the cylindric coordinate system and the 
latter for the spherical coordinate system. If one of the con- 
ditions from (36) is fulfilled, the temperature T,can be 
found, respectively, from the following equations: 

where R 1  is equal to any of the set of values 1 .  From 
(36) it follows (due to a - 1 / 1 a l l  ) that the greater is the 



value of the parameter al, the larger is the domain . . 
The movement of the boundary surface near R(;) is supposed 
to be quasiadiabatic; thus (as it has been done in section 
2.1) it can be written for the time 

From expressions (30) and (33) it follows that in the pro- 
cess of movement Rl(t) or at a certain setting of R 1, the de- # 

nominators of the formulae turn to zero and T1 + m .  These 
values of R(;) are found from the expressions 

Boundary transition time from the adiabatic surface to the nea- 
rest surface Rlf is determined (as in 2.1) according to the 
energy conservation law 

and plays the role of the time of sharpening. 
Let us also consider the case when m i =  5, N = 2 for which 

the analytic solution of ~mden's"~' equation can be got 2 

where 

On the boundary line R 1  the quasiadiabatic condition will be 
fulfilled if 

where W is a small value of energy required according to the 
physical statement of the problem. The quantity T, is determi- 
ned from the condition 

In this case, when the 
movement is R 1  the con- 
dition ( 4 3 )  is fulfilled 
continuously up to a cer- 

0 tain movement R within 
one and the same error 
W. This condition can 
easily be extended over \ I 
the above-considered 
classes of solutions 
(2.2.1)-(2.2.2) .And for 
the stationary boundary 
lines, we get a family 
l?, (W) or R of these 
quasiadiabatic boundary 
for which the heat flow 

Fig. 3. Dependences 6 l(r) . The 
numeration of the culves cor- 
responds to the following va- 
lues of the parameters 1 



dTl dT1 < W .  
When Qoi, Qli, Q 2i, X oi are given, inequality (46) can be con- - ---- < w or - X ---- I 

1 dx ' f ~ ~ / e  - dr R1 - sidered as some restriction on c i .  Further, we suppose-that 
Tli> Tzi > TSi . Instead of (44) we can write: 

Note that (as it has been shown in /lo/) for m i >  5 the solu- 
tions will also be strictly positive in R 3 .  

(i) x =pdiF(+ 7 ki) 9 (47) 
The diagrams of the solutions of 4 l(r) (r 5 Rl) obtained 

by integrating eq.(29)'for different values of the parameters where 

B ,/(ol+l)and a are given on Fig. 3 as examples. 

3. QUADRATIC DEPENDENCES OF THE q i  
SOURCE ON THE TEMPERATURE 

is the Legendre elliptical integral of the first 

In some temperature range we approximate the dependence by 
a quadratic trinomial, q i(Ti ) = Q oi+ QliT + Q ~ ~ T :  . 

For simplicity we suppose that xi=x . and this will help 
us to get a solution in the form of cnolPdal waves. Approxima- 
ting the heat conductivity coefficient xi by a quadratic tri- 
nomial, we can get a solution in the form of a linear combina- 
tion of the Legendre's elliptical integrals of the first, se- 
cond and third rank. 

3.1. Taking the dependence qi(Ti) as a quadratic trinomial 
(we'll consider a more interesting case Qzi>O) from (13) we 
get 

where T l i ,  TZi , T3i are the roots of the cubic equation 

rank. 
Transforming (47), we get an explicit expression for Ti in 

the cnoidal form 

Using (48) let us write the heat balance condition on the 
boundary line 

where snz, cnz, dnz are the Jacobi elliptical functions. From 
(49) it follows that the adiabatic conditions on the boundary 
surface are 

ci are the constants determined by the boundary conditions 
e 1 e 1 Cn --- = 0  , an -- = 0. 

I 
(50 

(11). For the roots (45) to be real it is necessary to fulfil 2dl 2 d ~  

the following conditions: 
We have taken into account here that dnz > 0 /16/. From (50) we 

3 
27Qoi 9 ~ ! i ~ o i  3 g$~oi 23 ~ f i  9 2 2 find the dimensions ------ + -- ------- + --- ------- - -- ---- + --ci x oi + 
CI 2i 4 Q& 16 gii 6 4  Q:, 4 e l  (n) =2d ~ ( k  ) ,  n=0, 1, 2 ,..., (51) 

where K(k is a full elliptical integral of the first rank, 
g (k = F (R/2, k ) . As in this case the boundary surface move- 



ment can be quasiadiabatic in the interval from one adiabatic 
surface to another. The temperature T1 changes from TlZ to T I  

In the case when k i  = 1 and snz = thz, a soliton solution 
appears 

Ti = T 2 X 2i + (TI, - T,,) sech ---. 
di 

(52 )  

The adiabatic condition in this case holds at the point e l  = 0, 
the heat flow removed from the surface S1 increases with e l .  
At the same time, it follows from (52) that the temperature 
T increases, il-,t_h_e general case, from Tzl to T . As 6rzi - 
- l/jaiJ, d i  = dlid la 1 1  it follows from (52) that if it is neces- 
sary to get a high temperature in the domain "1" then the ful- 
fillment of the inequality la l 1 >> !:/4d l i  is more preferable. 

3.2. Let find an approximate solution for the considered 
quadratic dependence q i  (T i )  in the spherical coordinate system 
for the outer domain. To do this, we use the method developed 
in /r7'. In ref. /I7/ equations of the form 

are considered and the conditions are found allowing us to get 
the functions V(q,t) for which it is possible to get the 

I first integral of the original equation (53). 
The equation for the temperature T 2(r) , we are interested 

in, is 

where the following notation is introduced 

Using the standard transformation ~ = u / Y  we get the following 
equation of the form (53): 

In particular, in /I7' the following equation has been con- 
sidered 
. . 2 2 q + o (t) q + ao(t) + a&t) Q = 0 .  (56) 

(Hereafter, we shall use the notation of the original paper). 

It has also been shown that the first integral (56) can be 
obtained if we suppose 

where c 0 is a constant. 
In this case the first integral is 

We apply this method to eq.(55) and find out that disregar- 
ding the value 0,0816/A2y (and this can be done treating the 
outer sphere containing no point r = 0) and having conditions 
of the coefficients A ~ = A ~ / ~ A  , we have 

Correspondingly, the first integral has the form 

where 

0 0 2  Aly v = u - --+--, 
A2y 4A2 

Let *s further replace y 3/5 v '= w and instead of (57) we get 

From (58) we find 



The radicand has one real and two complex roots. We rewri- 
te (59) with the help of the Legendre elliptical integral of 
the first rank: 

P y 7 I 5  = - --F(d, k) , 
a 2  

where 

Hence, for W we get 

if 2K(1 + 2n) / ac2<  1 .  The quantity K  in this case is equal 
to 2.7681. Equating the right-hand side of expression (62) 
(when r = R  to zero, it is possible also to find R  1 such that 
T , =  0. The radii of the adiabatic surface can be found from 
the expression 

where 

From (62) it follows that if we have the condition 

2 6/5 - 2  - 1  - cn(d) 
6C2R2 ( 1 - , / 3 -  

1 4 d 3  c p s n  (d) dn(d) --- ) .+ ----- + 
5Rl1/5 1 1  + cn(d) 5 ~ 4 ;  '5 R  (1 + cn(d)) 

Correspondingly, the temperature in the outer sphere is equal 
to 

The constant c 2  is determined from the transcendental equa- 
tion 

then the temperature T2 can tend to infinity. The radius R l  is 
determined by the formula 

The solutions considered in the second and third sections 
can be generalized by treating the dependences q  i(T i )  , x i(Ti ) 
of different types in the inner and outer domains. Moreover, 
as has been shown, for instance, in ref. / l a /  , the dielectrics 
with anomalously high dielectric penetrability can be obtained 
by adding some metal ingradients. In these cases, as fol- 
lows from formulae (5)-(6), the value of the heat source will 
be great (in these mediums c,'di is not equal to zero due to 
added inpadients) .. Considerable overheatings appearing in 
these cases can be described on the basis of the heat conduc- 
tivity equations with a constant heat source (in formulas (10) 
or (27) q  i  = const) for any dependence x i ( T i )  thanks to the 
replacement dQ = x dT . 

4. ARBITRARY DEPENDENCES x (T i )  , qi (T i )  

From expression (6) it follows that the greater is the 
warming-up in the cases considered, the greater is the growth 
of r i i  and c:i with the temperature. Moreover, it is known 
that in the case when dci i  /dTi  > 0 the effect of the ray self- 
focusing / ' e2 /  appears. Therefore, it is interesting to con- 
sider the segnetoelectrics specified by a rapid growth of / 19 /  
c i i  (Ti ) according to the Curie-Weiss law <&(Ti) = B i / ( T ,  - Ti) , 
where TViis the Curie-Weiss temperature. In a more general 
form we can write cOi = B i / ( T v i -  T i  )n i  . Liquid-crystalline 



systems, namely chiral smectic liquid crystalls of the phase 
C /20/can also possess segnetoelectric properties. The quanti- 
ty czi(Ti) influences essentially the change of a heat source 
with the temperature. The change of c'di(Ti) usually proceeds 
according to the exponential law (though in some ranges of tem- 
peratures 0' may be considered to be constant or changing 
with So for dielectrics and wide-range semiconductors - 
the following dependence can be written: ' = 

- mi -E i/Ti /21,22/ 
- ' ooi T €I . Heat conductivity coefficien can 
change according to the power law for gases and plasma/23,24/. 
Two types of dependences can be considered for crystalls: a po- 
wer dependence at high temperatures and a dependence x; = 

~ 7 .  -ui /T 
= T ' e  at relatively low temperatures /25! A linear com- 
bination of these dependences may also occur. The quantityai 
can also change with temperature, for example, according to 

Xi the law D i/(T vi -Ti ) (for segnetoelectric materials). So 
the integrand in expression (13) will be a linear combination 
of the following integrals: 

where 

Using only two or three ter_ms of the expansion of the inte- 
grand in powers of Bi and B i  =l-Bi we get after the integra- 
tion of (13) the Legendre elliptical integrals of the first- 
third rank. As an example we give a solution thus obtained for 
the constants s i =  -0.5, v i  = 1. This solution coicides in 
structure with the solution (48) in which it is necessary to 
suppose 

being greater than Pi > 0. The temperatures T li, Tzi , T3i are 
the roots of the equation 

Correspondingly, all the conclusions of section 3.1 can be 
used here. In (64) and in Pi it can be formally supposed that 
A i < O  considering, for example, metallic impurities. We also 
give the solution taking place at Pi <O 

where Tji are the roots of the same equation (64) and the pa- 
2 rameter ki = (T2i-T3i ) /(TliT3i ) so that soliton solutions in 

contrast with the previous cases for Tzi=Tli appear in this 
one. As for the adiabatic surfaces, they are calculated by 
formula (51) as in the previous case. 

5. SOME ASPECTS OF NONSTATIONARY 
HEAT TRANSMISSION 

5.1. Fundamental solutions. In investigating the possibili- 
ties of getting high temperatures in the restricted volumes, 
fundamental solutions equating the diffusion term in the trans- 
mission equation/12/ to zero are very important. Due to the 
fact. that the moving of the boundary R l(t) is of great impor- 
tance in the obtained solutions, let us consider at N = 1 and 
N = 2 the following nonstationary boundary problem: 

where pi is the density and ci is the thermal heat capacity. 
For fundamental solutions the conditions 



must be fulfilled. Integrating (69) we have 

where 

Substituting (70) into (66) we find the dependence 

where 

It is supposed here that from eq.(72) one can get in an expli- 
cit form only the dependence on ~ ~ ( t )  ,and the dependence on r 
disappears in the process of multiplication of the functions 
p i $ q l  

From the initial and boundary conditions (67)-(68) we get 

N 
XO1 K l(t) = X02K2 (t) - G(t) R 1 9 

~ r & m  the system of equations (73) one can get some conditions 
on the problem parameters at fixed R1 or the conditions on the 
problem parameters and the law of boundary movement Rl(t). 
So at fixed K l(t) - K~ (t) should hold. 

pi 5.2. Let q be equal to qoi[ iT Qi (r) , and pi be equal 
"i 

to poi p i  Ti p i  (r) , where li , p are constants having the di- 

mensions grad-p and gradb ', respectively. The dependence of 

the heat sources, determined by one of the formulas (4)-(6), 
on the radius can be conditioned by the dependence of the ref- 
ractive index n i(r). Let-s write the fundamental solutions 
for each domain in this case /I2/: 

where 

For pi > ui + 1 the quantity tri < 0 and It ri 1 has the meaning 
of the sharpening time. If the density pi(Ti) decreases with 
temperature not faster than l / T i ,  then pi:+O. As it follows 
from formula (6) the growth of the heat source qi(Ti) can be 
connected, for example, with the growth of the dielectric pe- 
netrability cf with the temperature. In this case, there is 
a certain correlation between the self-focusing effect and the 
existence of the sharpening time. For (14) to be correct it is 
necessary to fulfil the condition 

From the conditions T1(R t) = T2(R1, t) and (68) we get rather 
strict restrictions on the problem parameters in case of R1 = 
= const, that is 61-p1=82-p2,al =o2,TO1=To2, t f l =  tf2, 
~ ~ ~ q ~ = ~ ~ ~ q ~ ,  G =  0. If R1=Rl(t), then we get the following 
expressions for determining this dependence and the dependence 
G(t) as well 

where 



where 

From (75) it follows that at a12 > 0 the inner domain cont- 
rasts at a point: R I-+ 0 as t -, I tfl ( , and on the contrary, it 
expands as R1-t m(N = 2)  or Rl+ R2 (N = 1) at t -+ I tf2 I . For 
o < 0 opposite effects take place. As sharpening times in 

1 2. 
this case can be different the inequality (tfll c 1 t 121 can be 
fulfilled. Here, in the inner domain an infinite temperature 
is reached, while in the outer domain the temperature is li- 
mited. The mentioned inequality can be obtained, for example, 
if l a l (  < la2 1. The analysis carried out shows also that at 
It 11 ( < I t f2 I and at o12 > 0 the sharpening conditions LS are 
realized (however, at the point R 1 =  0 the removed heat stream 
tends to infinity as TI -+ m , i.e. at the jnoment of time 
t + I t  n 1 ), ,:$,at u12 < 0 the sharpening conditions HS are 
realized ( 

The boundary problem (66)-(68) can be satisfied also by the 
fundamental solutions of the following form: 

The condition Igl=Si-o i must also hold, i.e. in this case 
the mediums for which ui <O are to be considered whereas the 
conditions with sharpening appear a t o i <  -1. On the surfaces 
the radii of which are determined from the equation 

[ + (r ] = t / 1 t fi 1 an infinite temperature is reached. At 
a R condition t fl = t f2 must take place. In the opposi- 

te case, supposing that ~l(R1)=~/t, C=z1l3;(Rl)it, we find 

the constants z,zl from the boundary conditions which take 
the form: 

From the solutions (78) only negative y have a physical mea- 
ning because ~'(R1) > 0. For y < -1 the radius R l decreases and 
for Y > -1 it increases. The surface rO1 remain inside R1 in 
this case. 

Fig.4. A diagram of a graphic determinative of the roots of equation 
(78),r> 1, P > I ,  <I. 

5.3. It is interesting to consider homothermal solutions of 
(66) with the corresponding original conditions for arbitrary 
dependences on temperature. These solutions depend only on 
time and do not depend on hotothermal parameters of a system. 
Hence, these solutions allow us to consider different, not 
equal to each other times of sharpening 1 t fl 1 and It f2 1 . So, 



- 
dium), chi =Bi/(Ti-Tvi), then no conditions with sharpenning 
occur. Indeed, the solution in this case is 

if la 1 << 1 a2( , then Itrl 1 << 1 t r2 1 is fulfilled, thus leading 
to the appearance of high temperatures in the inner domain 
during much shorter time than in the outer one. 

Let us first write eq.(66) in the dimensionless form suppo- 
sing that Ci(Ti)=Coi C;('Ii), pi('Ii)=poipi(Ti ) ,Ti=ToiTi , 
q = q ,iq'i ('I i) , t = r'R1, t = t'tO(tO is some time characteristic of 
the process), 

where a characteristic diffusion time t Di = COT poi R:/~ and 
a characteristic action of heat sources t qi = Coi poi Toi /Iqoi. 
If the condition max lt q l  , t g? 1 << min It Dl , t D2 1 is fulfilled, 
then it is possible to consider homothermal solutions in the 
inner and outer domains. Times of sharpening, if they do exist, 
are found by the formula 

From (83) a monotonous increasing in temperature with time fol- 
lows (because t ri <0) ,and Ti 4- as t+ m .In particular,when the 
conditions Tol= T ,, , Tv2<ToZ<Tvl, tll << min(tD1 , t ~ ~  1 are 
fulfilled, it is possible to realize, within a homothermal mo- 
del, the conditions with a sharpening in the inner domain of 
the heterogeneous system considered. 

where Tr is equal to infinity or to some critical temperature 
for the physical process considered. Let us consider the fol- 
lowing two examples of homothermal solutions supposing that 

1 the heat source qi depends on the temperature through the pa- 
rameters of formula (6). 

5.3.1. Let us consider the substances with segnetoelectric 
properties supposing that c bi = B /(Tvi- Ti) . We neglect the 
dependences of other parameters on Ti. Then we get 

! 

5.3.2. Let us find a homothermal solution of the problem 
-E~/T~ 

supposing that the exponential dependence c:i = df' e is 

the most significant one in changing the heat source with tem- 
perature. Let us suppose also that pi =A i/T, , c ,i =df Ti. Then, 
we get the following homothermal solution: 

where 

where 

From expression (82) it follows that as t + t fi some critical 
temperature is reached, the Curie-Weiss temperature. 

In this case dcbi /dTi > 0, so that the medium is selffocu- 
sing. If we consider the temperatures higher than the Curie- 
-Weiss temperature for which dctOi / dTi < 0 (a defocusing me- 

From formula (84) it follows that as 

the temperature Ti increases without restrictions. 
Summing up, we may say that the analysis carried out points 

out nontrivial effects accompanying heat transmission in non- 
linear conjugate mediums, that is the appearance of adiabatic 
surfaces, the emergence of soliton solutions, the occurrence 
of the conditions with sharpening in self-focusing mediums. 
All the considered effects are essentially defined by: the va- 
lues of ni nonlinear parameters, the character of ci(Ti) de- 
pendences, the character of the boundary line movement. 
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