
Y 9-- ~f ~ 

" 

AZ9 

0 ti b e Jl M H e H H bl M 
MHCTMTYT 
HAB PHblX 

MCCn8Jl083HMM 

AYtiHa 

E17-89-514 

V. L.Aksenov, E. I. Kornilov, S.A.Sergeenkov 

THERMODYNAMICS OF DIPOLE SUPERCONDUCTIVE 

GLASS MODEL 

Submitted to journal 11 Superconductivity: 
Physics, ChemistrY,Techniqu~• 

1989 



1. INTRODUCTION 

With the discovery of superconducting oxide ceramics an 

interest in granular media has noticeably increased. The 

possibility of a glass-like behaviour in the presence of an 

externally applied magnetic field is widely discussed in 

particular. The mechanism that ensures the appearance of the 

so-called superconducting glass consists in frustration of the 

order parameter phase1 • 2 . However, as mentioned in reference 3, in 

granular systems another mechanism of 

possible, which is not connected with 

magnetic field but with frozen-in 

induced by closed current loops in a 

glass behaviour may appear 

the action of an external 

randomly oriented moments 

network of weak Josephson 

junctions. The present work suggests a model of this mechanism and 

discusses the possibility Of its realization in superconductive 

oxide ceramics. 

2. THE MODEL 

Let us consider a Josephson medium which is a composite of 

disordered superconducting grains coupled through Josephson tunnel 

junctions (Fig.l). Below Tc, the transition temperature to a 

superconductive state, the i-th grain is characterized by a complex 

d t • 
i.¢. 

or er parame er i=pie ~ 

between grains i and j 

. At sufficiently thin insulating 

there arise Josephson currents 

Iij= I 0 sin (¢C¢j) (1) 

host 

where (¢i-¢j) is the phase difference ar~s~ng on transition 

through the barrier and a maximum superconducting current I 0 for 

two identical superconductors (pi= pj= p) has the form 

I
0 

= 2 K p / h (2) 

where K(T) is a constant of coupling between two superconductors 

which depends on specific features of tunneling. Ini:he absence of 

an external magnetic field the magnitude and direction of current 

in each link are random. In a macroscopic sample in a system of 

random currents there are formed closed loops which can be 

ascribed magnetic dipole moments p . 

So we have a certain dipole moment p (Fig.!) .It is in a local 

field ~ , generated by other dipoles. The classical Hamiltonian 

of the dipole-dipole interaction has the form 

(3) 
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where n01~=r01~jra~ , r01~ is the distance between dipoles a and ~ . 
Note that due to the fact that closed loops are randomly 

distributed in a Josephson medium both 
values. In the mean-field approximation 
presented in thg form 

E 

where 

r01~ and na(J have 
Hamil toni an ( 3) 

random 

may be 

(4) 

(5) 

and m~= <p~>T is the mean thermodynamic value for the moment p~. 
As the dipole-dipole interaction potential changes its sign and 
the dipoles are randomly distributed in space, local fieldS-IH

01 
have various directions on each dipole, and, therefore, in the 
absence of an external field at low temperatures these dipoles 
can be frozen-in randomly oriented. This freezing is characterized 
by the appearance of the order parameter which is determined in 
analogy to that for spin-glasses as follows 

M = [< I Pa I >T]c, 
where [ .•• ]c denotes averaging over configurations of loops. 
This low temperature state of randomly oriented in internal 
fields dipole moments we shall call the dipole superconducting 
glass state. 

3. THERMODYNAMICS OF THE MODEL 
Systems with dipole-dipole interaction are well studied in 

the theory of ferroelectric systems4 . To calculate mean values for 
thermodynamic quantities we used the method described in reference 
5. Let be known the expression for the thermodynamic quantity Q1 
in a fixed (internal or external) magnetic field IH, Q1 (1H,(J). Then 
by averaging over local fields (5) one can obtain Q1 (~) for a 
dipole. Under assumption of a small concentration of dipole 
moments Nd we have the following expression for the whole system 

(6) 

where P(IH) is the distribution function of local fields of 
-1 disordered dipoles,(J=(k8T) , T is the absolute t~mperature, k 

the Boltzmann's constant. The value of Q
1 (1H,(J) is usually obtained 

from the expression for the partition function of a dipole 

Z(~.rl=E e rpiH 
p 

2 

(7) 



where summation is made over all allowed values of p The 

averaging over random fields in (6) takes the place of the 

Therefore in the averaging over random configurations of loops. 

further we shall abandon indices in Greek 

introduced the dependence on local fields ~ • For 

letter~ having 

the distribution 

function P(~) there was obtained in reference 5 a self­

consistent system of equations 

p=JP(IH)m(IH,(1)diH , 

P(~) 

ln Z(~.~ll 

(8) 

(9) 

(10) 

In these equations ~ is a certain width of the distribution 

function In the case of Josephson induced magnetic moments it is 

natural to suppose that the value of the moment is proportional to 

the magnetic flux I through a loop 

p =. ·g· 
where 8 is a certain geometrical characteristic of the loop 

g 2 
( 8g ~ S/L ,where S ~ R ,L is the loop inductance) and 

I = nz I 0 
, ( 11) 

Here t 0 
is the magnetic flux quantum, nz is an integer. By 

taking the z-axis in the direction of the local magnetic field one 

can write down the condition of magnetic moment quantization for 

its z-component as follows 

pz = P:.,,. nz / n (12) 

where n is the maximum value for nz , the value of nz varies 

from -n to n , and the quantity pz = t 0 8 is a natural limit 
max g 

imposed on the value of the magnetic moment by the existence 

of a critical current (2) destroying the conductivity between the 

grains. 

The summation extended to all nz in (7) leads to the known 

expression for the partition function of a magnetic dipole in the 

field IH 

z n+ 1 

p~~ ) j sh( (13) -
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where we have accepted a simplified notation for p~p:0 ~. By 

assuming that all the configurations are characterized by one and 
the same maximum number of magnetic flux quanta n we may 

calculate the exact value for rn(~,~) in the system of equations 

(8-10). Then the equation for the order parameter~= [<p~ jp>T]c 
takes the form 

4 
00 "" 

" " f H2dH 
(l!.2~2+H2)2 

Bn(PP:~) ' 0 
(14) 

where 

2n+l 2n+l 1 1 
Bn(a) ...,-;:;-- cth( ...,-;:;-- o) - 2n cth(""""2rl o) (15) 

is the Brillouin function and a= p~H . 

The specific heat of a dipole in a local field ~ is 

According to (6) the specific heat of a system of dipoles has the 
form 

C(~) 
2n 2n+l 

2 
{[---- sh(---- p~~>]- -2n+l 2n 

0 

(17) 

where ~ is found from (14). 

By averaging in an analogous manner over "single-particle" 
susceptibility 

2 

the magnetic susceptibility of a system may be calculate. Figure 2 
presents the results of the numerical calculation of the tempera­
ture dependence of susceptibility per dipole, as well as of the 
order parameter (14) and specific heat. The behaviour of these 
thermodynamic quantities is analogous to that observed in dipole 
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dielectric glasses4 This fact allows speaking about a transition 

to a dipole superconducting glass phase in the frame of model (3). 

4. DISCUSSION 

The calculation of the thermodynamic characteristics of model 

(3) establishes the fact that in it a glass-like state arises at a 

certain temperature Tg • Let us note that the simple approximation 

used allow the qualitative estimation of the situation in a three­

dimensional system, while earlier investigations of a 

superconducting glass state in granular superconductors were 

performed for the two-dimensional lattice. In order to estimate 

the interval this state exists in we shall consider the mean 

energy of the dipole-dipole interaction Udd=<Hdip>T for the 

of oxide ceramics. It is convenient to express characteristic 

case 

linear dimensions of a system of currents through the average 

a closed 

Kf (Fig.l). 
dimension of a 

loop be 

grain f • Let the linear dimensions of 

, and the distance between dipoles r~ 

FIG.l. Schematic representation 

of the Josephson medium. 

j 

For a typica16 Josephson current density of j 0~ 430 A/cm2 and a 

grain dimension of f- 5 pm one obtains an estimate of 

4 -3 
Udd- 33 N K (Kelvin). It is seen that the dimensions of 

loops and their relative orientation play an role 

in the numerical estimation of the interaction 

important 

energy. The 

critical temperature of magnetic dipole ordering in various 

samples may vary in a wide range from about 10 K to few mK. 

At present of all the calculated quantities only specific 

heat permits the comparison with the experiment. The data on heat 

capacities of yttrium and lanthanum compounds are reviewed in 

reference 7. These data are evidence of the fact that the behaviour 

of specific heat in the low temperature range is far from being 

clear. A number of worksS-lO report the observation of a 

peculiarity of the Schottky type with the maximum in the vicinity 

of 0.9 K. This peculiarity behaves very much like that connected 

with the phase transition in model (3) and shown in Fig.2. 
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FIG.2. Temperature dependence of the order parameter 

~ (---), susceptibility x (-.-) and specific heat C (---) in 
the model. The thermodynamic functions are given in arbitrary 
units. 

More detailed information on the peculiarities 
transition to a glass phase can be derived from the 

of the 

dynamic 
consideration of the model as done in reference 11 for the case of 
superconducting glasses. 
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