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1. INTRCDUCTION

With the discovery of superconducting oxide ceramics an
interest in granular media has noticeably increased. The
possibility of a glass-like behaviour in the presence of an
externally applied magnetic field is widely discussed in
particular. The mechanism that ensures the appearance of the
so-called superconducting glass consists in frustration of the
order parameter phasel’z. However, as mentioned in reference 3 ,in
granular systems ancther mechanism of glass behaviour may appear
possible, which is not connected with the action of an external
magnetic field but with frozen-in randomly oriented moments
induced by closed current loops in a network of weak Josephson
junctions. The present work suggests a model of this mechanism and
discusses the possibility of its realization in superconductive
oxide ceramics.

2. THE MODEL

Let us consider a Josephson medium which is a composite of
disordered superconducting grains c¢oupled through Josephson tunnel
junctions (Fig.1l). Below T_, the transition temperature to a
superconductive state,the i-th grain is characterized by a complex

order parameter Wiﬂpie‘¢i . At sufficiently thin insulating host
between grains 1 and j there arise Josephson currents

Iij= IO sin (¢l_¢j) . (1

where (¢i—¢j) is the phase difference arising on transition
through the barrier and a maximum superconducting current Io for

two identical superconductors (pi= pj= p) has the form

I°=2Kp/‘h . (2)
where K(T) is a constant of coupling between two superconductors
which depends on specific features of tunneling. In the absence of
an external magnetic field the magnitude and direction of current
in each 1link are random. In a macroscopic sample in a system of
random currents there are formed c¢losed loops which can be
ascribed magnetic dipole moments Pp

So we have a certain dipole moment p (Fig.l).It is in a local
field H , generated by other dipoles. The classical Hamiltonian
of the dipole-dipole interaction has the form

- _ -3
Eyip™ Eﬁ{ P Pp=3(P, R} (Bpl,e) IT.p (3)



where n“p= uﬁ/rﬂﬂ . rap is the distance between dipoles « and 2
Note that due to the fact that closed loops are randomly

distributed in a Josephson medium both Yop and B.p have random
values. In the mean-field approximation Hamiltonian (3) may be

presented in the form

Raip™ I By o (4

where

M, = E (Mg~ 3 m; (my nqp))r;g , (5)
and nﬁ= <pp>T is the mean thermodynamic value for the moment Pp'
As the dipole-dipole interaction potential changes its sign and
the dipoles are randomly distributed in space, local fields'ma
have various directions on each dipole, and, therefore, in the
absence of an external field at low temperatures these dipoles
can be frozen-in randomly oriented. This freezing is characterized
by the appearance of the order parameter which is determined in
analogy fo that for spin-glasses as follows

M=(<| p, [ >ple
where [...]c denotes averaging over configurations of loops.
This low temperature state of randomly oriented in internal

fields dipole moments we shall call the dipole superconducting
glass state.

3. THERMODYNAMICS OF THE MODEL

Systems with dipole-dipole interaction are well studied in
the theory of ferroelectric systems4. To ¢alculate mean values for
thermodynamic guantities we used the method described in reference
5. Let be known the expression for the thermodynamic quantity Ql
in a fixed (internal or externa)) magnetic field H, Ql(w,ﬁ). Then
by averaging over local fields (5) one can cobtain Q, () for a
dipole. Under assumption of a small concentration of dipole
moments N, we have the following expression for the whole system

QB = Nd[Ql(W,B) I, = Na [ P(H) Q,(MH,p) aH (&)
where P(H) is the distribution function of local fields of
disordered dipoles,ﬁ=(kBT)-1, T is the absolute temperature, k

the Boltzmann's constant. The value of Ql(m,ﬁ) is usually obtained
from the expression for the partition function of a dipole

z(M,m)=f e PP | (7)
P
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where summation is made over all allowed values of p . The

averaging over random fields in (6) takes the place of the
averaging over random configurations of loops. Therefore in the
further we shall abandon indices in Greek letters  having
introduced the dependence on local fields H . For the distribution

function P(H) there was cbtained in reference & a self-
consistent system of equations

p=fP(H}m(H, AraH (8)
-2 4 p .
PH) =rm "o 7 7 @

= ApH f1pH qd
m(H,B)=| L pe / Le | =l 37wy 1n 2(H,B) . (10)
L p la@m !

In these equations & is a certain width of the distribution
function . Inm the case of Josephson induced magnetic moments it is
natural to suppose that the value of the moment is proportional to
the magnetic flux ¥ through a loop

p=¢%38,
where sg jis a certain geometrical characteristic of the loop
( sg ~ 8/L ,where § ~ r? ,L is the lcoop inductance) and

# =n, &,, (11}
Hexe #, is the magnetic flux gquantum, n, is an integer. By

taking the z-axis in the direction of the local magnetic field one
can write down the condition of magnetic moment gquantization for
its z-component as follows

p-p,,, n/n (12)
where n is the maximum value for n, . the value of nz varies

from -n to n , and the guantity p:ux= @0 eg is a natural limit
imposed on the value of the magnetic moment by the existence
of a critical current (2) destroying the conductivity between the
grains.

The summation extended to all n, in (7) leads to the known
expression for the partition function of a magnetic dipole in the
field H

ZI+1 1

peH ) / sh( ;5 pAM ], {13y -

z (W,#)= sh( —%



where we have accepted a simplified notation for p=p By

assuming that all the configurations are characterized by one and

z
max

the same maximum number of magnetic flux guanta n we nay
calculate the exact value for m(H,F) in the system of eguations

(8-10) . Then the equation for the order parameter p = [<p’/p>T]c
takes the form

a [ Dy
2
p == { H°GH B_{ppH) , . (14)
w2 (52#2+H2)2 n
where
2n+1 2n+1 1 1
Bn(u) 5 cth( T a) - > Cth(ﬁ a) {15)

is the Brillouin function and «= pgH
The specific heat of a dipole in a local field M is

2 dBn(a)

CplfH) = kga"—gm . (16)

According to (6) the specific heat of a system of dipoles has the
form

4
4k p £ A p o HAH 2n 2n+1

-2
C(F) = Ny = f (02u2em2) 2 {[2n+l sh{—=g pﬁm)] -

- [ 2n sh(—E% ppM)]'z} . (17)

where g is found from (14).
By averaging in an analogous manner over "single-particle"
susceptibility
2
3 1n Z(F,H}

x(# H)=p 3
2 (pH)

the magnetic susceptibility of a system may be calculate. Figure 2
presents the results of the numerical calculation of the tempera-
ture dependence of susceptibility per dipole, as well as of the

order parameter (14) and specific heat. The behaviour of these
thermodynamic gquantities is analogous to that observed in dipole
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dielectric glasses4. This fact allows speaking about a transition
to a dipole supercenducting glass phase in the frame of model (3).

4.DISCUSSION ‘

The calculation of the thermodynamic characteristics of model
{3) establishes the fact that in it a glass—like state arises at a
certain temperature T_ . Let us note that the simple approximation
used allow the qualitative estimation of the situation in a three-
dimensional system, while earlier investigations of a
superconducting glass state in granular superconductors were
performed for the two-dimensional lattice. In order to estimate
the interval this state exists in we shall consider the mean

energy of the dipole-dipole interaction Udd=<Hdip>T for the case
of oxide ceramics. It is convenient to express characteristic
linear dimensions of a system of currents through the average
dimension of a grain f . Let the linear dimensions of a closed
loop be R-Nf , and the distance between dipoles r- Kf (Fig.1).

%3 FIG.1. Schematic representation

of the Josephson medium.

For a typical6 Josephson current density of j0~ 430 A/cm2 and a

grain dimension of £~ 5 ym one obtains an estimate of

U~ 33 NKT3

ad (Kelvin). It is seen that +the dimensions of
loops and their relative orientation play an important role
in the numerical estimation of the interaction energy. The
critical temperature of magnetic dipole ordering in various
samples may vary in a wide range from about 10 K to few mK:

At present of all the calculated guantities only specific
heat permits the comparison with the experiment. The data on heat
capacities of yttrium and lanthanum compounds are reviewed in
reference 7. These data are evidence of the fact that the behaviour
of specific heat in the low temperature range is far from being
clear. A number of worksa_lo report the observation of a
peculiarity of the Schottky type with the maximum in the vicinity
of 0.9 K. This peculiarity behaves very much like that connected

with the phase transition in medel (3) and shown in Fig.2z.
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FIG.2. Temperature dependence of the order parameter

u (===}, susceptibility x (-.-) and specific heat ¢ (~—) in
the model. The thermodynamic functions are given in arbitrary
units.

More detailed information on the peculiarities of the
transition to a glass phase can be derived from the dynanmic
consideration of the model as done in reference 11 for the case of
superconducting glasses.
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