

сообщвиия
объединенного
института ядерных
исследований
дубна

E 80

E17-89-476
B. Esser

EXCITATION PROPAGATION
IN THE PRESENCE OF A DRIVEN
AND KICKED VIBRATION

Зссер 5.

Распространение возбуждений в присутствии сильно возбужденной и периодически возмущенной волны

Рассматриваетіся распространение экситонов, взаимодействующих с сильно возбужденной и периодически возмущенной вопной, с испопьзованием обобщенного кинетического уравнения. Амплитуда колебаний описывается с помощыю нелинейного уравнения, содержащего член, который моделирует периодическое возмущение. устанавпивается связь мешау яаром кинетического уравнения и аискретным отображением, описывающим динамику колебаний. Эта связь испопьзуется аля обсуждения поведения ядра и результируоцего экситонного движения, спедуоцего из периодических и хаотических решений дискретного отображения.

Работа выпопнена в Паборатории теоретической физики оияи.

Сообщение Объединенного института ядерных исследований. Дубна 1989

Esser B.

E17-89-476
Excitation Propagation in the Presence of a Oriven and Kicked Vibration

The propagation of excitons interacting with a driven and kicked vibration is considered using the generalized master equation (GME) approach. The amplitude of the vibration is described by a nonlinear evolution equation with a kicking term modelling a periodic perturbation. The connection between the GME kernel (memory function) and a map describing the dynamics of the vibration is established. This connection is used to discuss the behaviour of the GME kernel and resulting exciton motion following from the periodic and chaotic solutions of the map.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

I. Introduotion

The theory of exciton propagation in the presenoe of an equilibrium bath of phonons has been intensively developed in the past years $/ 1-3 /$. Among the approaches the generalized master equation (GME) must be mentioned for treating such important points as the coherent an incoherent exciton motion from a unified point in view/1/. The properties of exciton motion oan however be of oonsiderable interest also in a nonequilibrium situation, where by a driving mechanism some vibrational states are selectively exoited. Thus, recently new methods for the generation and detection of phonons have been developed $/ 4,5 /$ and hence it might be of oonsiderable interest to infestigate the properties of exciton propagation in a non-equilibrium phonon field with controlled parameters. Besides that transport in the prem senoe of non-thermal vibrations seems to be of importance for moleoular aggregates relevant in tological systems $/ 6 /$. This paper addresses the problem of excition propagation in the field of a driven vibration described in classical terms within the GME ooncopt. Omitting the details of the driving meohanism the amplitude of the vibration is described by a nonlinear equation as in a time dependent Landau theory. In a previous paper this approaoh was used to consider the influence of noise $/ 7 /$. Eere the amplitude is assumed to be periodically kicked. As is well known a periodio perturbation of a nonlinear system can generate solutions of different types which beoomes particularly transparent by oonsidering disorete mappings suoh as the standard map ${ }^{18 /}$. In the model of this paper the vibration is related to the dissipative standard map $/ 9 /$. The vibration can display periodio or cheotio solutions and oorrespondingly different behaviours of the memory funotion result. The conneotion between the different solutions of mapping for the vibrational phase (sine - map) and the memory funotion of the GME is considered in detail. Another point addressed here is the averaging over vibrational states in the GME kernel. In the case of ohaotio solutions the vibration aots effeotively like a noise produoed by a bath on the exoiton motion. Then, by introduoing an ensemble of vibrational trajeotories and the corresponding average, an explicit expression for the deoay of the memory funotion oan be derived.

The model is presented in section 2. In section 3 the oonnection between different V ibrational solutions and the memory function is disoussed. The seotion 4 is devoted to the caloulation of the decay parameter of the memory funotion for chaotic solutions.

2. Formulation of the Model

The exoitons are desoribed by the following Hadiltonian in site representation

$$
\begin{equation*}
\hat{H}_{e x c}=\sum_{n, m}\left[\epsilon_{n}(t) \int_{n m}+V_{n m}\right] \hat{a}_{n}^{+\hat{a}_{w}} \tag{I}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon_{n}(t)=\varepsilon_{n}+\Delta_{n}(t) \tag{2}
\end{equation*}
$$

Here $\hat{a}_{n}^{+}\left(\hat{a}_{m}\right)$ are oreation (annihilation) operators at moleoule $n(m), \varepsilon_{n}$ and $V_{n m}$ are the exciton site energy and tranefer matrix element, respectively. The shift $\Delta_{h}(t)$ of the site energy represents a diagonal exoiton - phonon ooupling due to the interaotion of the exalton with a non-equilibtium vibration excited in the phonon system

$$
\begin{equation*}
\Delta_{n}(t)=C e^{i q x_{n}} u(t)+(c \cdot C) \tag{3}
\end{equation*}
$$

Here $u(t)$ is the phonon amplitude and C an interaotion constant.
The mechanism for driving the non-equilibrium vibration is not speoified explioitly but u is subjeoted to the following phenomenologioal nonlinear equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\left(A+B|u|^{2}\right) u+F(t) \tag{4}
\end{equation*}
$$

Where $A=A_{1}+1 A_{2}$ and $B=B_{1}+i B_{2}$ are constents and the funotion $F(t)$ desoribes the infiuence of a periodio kioking on the amplitude. In the absenoe of kioking eq. (4) corresponds to a time dependent Landau theory, i.e. the oomplex amplitude u is treated as an order parameter in a seoond order phase transition. In partioular the sign of A_{1} fixes the stationary value of $\left|u_{0}\right|$. In what follows the driven state 18 of 1 nterest for whioh. $A_{1}<0, I_{0} \equiv\left|\omega_{0}\right| 2=\left|A_{1}\right| / B_{1}$ and for $F(t)=0$ eq. (4) displass the stationary solution $u_{0}(t)=$
$=U_{0} \exp \left(-i \omega_{0} t\right)$ With the frequenos $\omega_{0}=A_{2}+B_{2} I_{0}$. The tnfiuenof of kicking in (4) is to push the amplitude out of $u_{0}(t)$. Then different forms of time dependenoes of $u(t)$ result as will be
employed below. For $F(t)$ it is suffioient to consider the simplest form consisting of periodically (after I) repeated $\delta^{2}-$ pulses

$$
\begin{equation*}
F(t)=\frac{\varepsilon}{2} \sqrt{I_{0}} e^{i s} \sum_{\nu=1}^{\infty} \delta(t \sim v T) \tag{5}
\end{equation*}
$$

Here the prefaotor was ohosen in a oonvenient form, ε is a dimensionless parameter and $\&$ a phase angle. The kloking represented by the δ°-pulses can be due to a periodic external souroe but is also an approximate form for the influenoe on u of anharmonio interactions in the phonon system/9/.

Passing to action - angle variables

$$
\begin{equation*}
U(t)=\sqrt{I(t)} e^{i \theta(t)} \tag{6}
\end{equation*}
$$

and inserting (6) into (4) one obtains by separating real and imaginary parts

$$
\begin{align*}
& \dot{I}=-2 B_{1} I\left(I-I_{0}\right)+2 \sqrt{I} R e e^{i \theta(t)} F(t) \\
& \dot{\theta}=A_{2}+B_{2} I-\frac{1}{\sqrt{I}} \operatorname{Im} e^{i \theta(t)} F(t) \tag{8}
\end{align*}
$$

and

In (7), (8) a simplification is made by linearizing the firat term of (7) $B_{1} I \cong B_{1} I_{0}=\left|A_{1}\right|$, sotting $I \cong I_{0}$ in the seoond term of (7) and omitting the last term connected with the kicking in (8) (a justifioation for the latter procadure is that the influence of $P(t)$ in (7) is proportional to $I_{0}^{1 / 2}$ whereas in (8) it is to $I_{0}^{-1 / 2}$, i.e. in the strongly driven state where I_{0} is suffioiently large the influence of the kioking in (8) beoomes smaller than in (7)). This simplifioation allows one to make oontaot with the disorete maps in the next section. One obtains

$$
\begin{equation*}
\dot{I}=-2\left|A_{1}\right|\left(I-I_{0}\right)+\varepsilon I_{0} \cos (\theta+\rho) \sum_{\gamma=1}^{\infty} \delta(t-\nu T) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\theta}=\omega(I) \tag{IO}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega(I)=A_{2}+B_{2} I \tag{11}
\end{equation*}
$$

Starting from the standard equation of motion for the one partiole exoiton density matrix $\rho_{k m}(t)$, assuming nearest neighbour transfer elements V and diagonal initial conditions $\rho_{k m}(t=0)=\delta_{k M e} k_{k}$ one obtains for the site occupation $n_{K}(t)$ the GME

$$
\begin{equation*}
\left.\frac{\partial n_{k}}{\partial t}=\sum_{m} \int_{0}^{t} d r \jmath_{k m}(t, r)\left[n_{m}(r)-n_{k}(\varepsilon)\right]\right) \tag{12}
\end{equation*}
$$

in which we use the second order kernel

$$
\exists_{k m}(t, r)=\left|V_{k m}\right|^{2} \exp \left\{i \int_{\varepsilon}^{t} d t^{\prime}\left[E_{k}\left(t^{\prime}\right)-\epsilon_{m}\left(t^{\prime}\right)\right]\right\}+(c . c .)(13)
$$

corrasponding to the negleotion of the non-diagonal elements of the form $\rho_{K K \pm 2}$. In particular, the kernel (13) beoomes exact for a two site problem ($k=1,2$), 1.e. a dimer. The kernel (13) is oonvenient for the disoussion of the different time dependenoes following from a map, because of the simple conneotion to the ribration via $\Delta_{k}(t)$. In (13) ${ }^{-} \alpha_{\mathrm{km}}$ is still a funotion of the separate time arguments, transforming into the stationary form as a function of t - \mathcal{F} after an appropriate ensemble average is performed.

3. Memory Function for Different Vibrational Solutions

We now establish the connection between the memory function and the map following from eqs. (9), (IO) for the aotion- angle variables of the vibration. Inserting eqs. (2), (3) and (6) into (13) one obtains $\left(\varepsilon_{k}=\varepsilon_{m}\right)$

$$
\left.J \alpha_{m m \pm 1}(t, r)=\left|V_{m m \pm 1}\right|^{2} e^{i\left[f_{m}^{f}(q) S(t, r)+(c . c .)\right]}+(c . c)^{(14)}\right)
$$

where

$$
\begin{align*}
& f_{m}^{ \pm}(q)=C e^{i q \times m}\left(e^{ \pm i q^{a}}-1\right) \tag{15}\\
& S^{t}(t, q)=\int_{\tau}^{t} d t^{\prime} \sqrt{I\left(t^{\prime}\right)} e^{i \theta\left(t^{\prime}\right)} \tag{16}
\end{align*}
$$

and a is the distenoe between the moleoules. According to (9) and (IO) in the time interral between two suocessive kioks, $\gamma T+0<$ $t<(v+1) T+O$ the erolution of the aotion and phase is given by

$$
\begin{equation*}
I(t)=I_{0}+\left(I_{\nu}-I_{0}+\varepsilon I_{0} \cos (\theta+s)\right) e^{-2\left|A_{1}\right|(t-\nu T)} \tag{17}
\end{equation*}
$$

$$
\theta(t)=\theta_{\gamma}+\omega_{0}(t-\gamma T)+\frac{B_{2}}{2\left|A_{1}\right|}\left(I_{\nu}-I_{0}+\varepsilon I_{0} \cos \left(\theta_{y}+\rho\right)\right) \times \bar{x},\left(1-e^{-2\left|A_{1}\right|(t-\nu \mid}\right.
$$

where $I_{\nu}=I(\nu T-0)$ and $\theta=\theta(\nu T-0)$ refer to the values of $I(t), \theta(t)$ immediately before the γ th kick, respectively, $\nu=1,2, \ldots$. Setting $t=(\gamma+1) T-0$ in (17), (18) one obtains the dissipative standard map /9/. We consider a further simplification reducing the dynamics of the two dimensional system (17), (18) to a one dimensional for the phase evolution θ. Assuming $\varepsilon \lll 1$ and the following relations between the parameters of the model

$$
\begin{align*}
& \left|A_{1}\right|>\frac{1}{T} \tag{19}\\
& \frac{B_{2}}{B_{1}}>\frac{1}{\varepsilon}>1 \tag{20}
\end{align*}
$$

it follows from (9) that the action ohange due to a single kick is small oompared to I_{0}. Then, aooording to (19), aotion ohanges oannot aocumulate because the interval between the kioks T is large oompared to the aotion relaxation time $\left|A_{1}\right|^{-1}$ in (17), 1.e. the action oompletely relaxes to its stationary value I_{0} in a time of order $\left|A_{1}\right|^{-1}$ after each kiok. Then we have $I_{\nu+1} \cong I_{\nu} \cong I_{0}$. However, the influence of the aotion changes on the phese evolution is not small beoause of the second inequality (20), whioh is equivalent to $\left(\varepsilon B_{2} I_{0} /\left|A_{1}\right|\right) \gg 1$ in (18). Now inserting (17), (18) into (16) and neglecting the aotion ohanges one obtains
where

$$
\begin{equation*}
S(t, r)=\sum_{\nu=\gamma_{1}}^{\nu_{2}} S_{\gamma}^{\prime}+\Delta_{S}^{S}(t, r), \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
S_{\nu}=\sqrt{I_{0}} \int_{\gamma T-0}^{(\nu+1) T-0} d t^{\prime} e^{i \theta\left(t^{\prime}\right)} \tag{22}
\end{equation*}
$$

Here the t^{\prime} - integration was divided in intervals between the kicks and $\nu_{1}=([\tau / T]+1) T-0, \nu_{2}=[t / T]-0$ with [] denoting the integer part, indioate the kick numbers at the beginning and the ond of the (τ, t) interval. The quantity $\Delta S(t, \tau)$ contains the rest of the integral of (16) which is not covered by the sum in (21). The phase evolution in the integration interval of (22) is

$$
\theta(t)=\theta_{\gamma}+\omega_{0}(t-\nu T)+\varepsilon \frac{B_{2}}{2 \beta_{1}}\left(1-e^{-2\left|A_{1}\right|(t-\nu T)}\right) \cos \left(\theta_{\gamma}+\rho\right)(23)
$$

For $t=(\gamma+1) T-0$ and the choice $\mathcal{S}=-T / 2$ one obtains from (23)

$$
\begin{equation*}
\theta_{\gamma+1}=\theta_{\gamma}+\omega_{0} T+\lambda \sin \theta_{\nu}, \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\varepsilon \frac{B_{2}}{2 B_{1}}\left(1-e^{-2\left|A_{1}\right| T}\right) \tag{25}
\end{equation*}
$$

The map (24) is known as the sine transformation $/ 9 /$ or in an extended θ-soheme (dividing the θ-line into cells $2 J \geqslant<\theta<$ $\langle 2 \pi(\gamma+1),-\infty<\nu<+\infty)$ as the climbing sine map $/ 10 /$. The choice $S=-\pi / 2$ was taken to obtain the connection of S_{ν} with this map the solution structure of whioh is well investigated. Inserting (23) Into (22) one obtains

$$
\begin{equation*}
S_{\gamma}=\sqrt{I_{0}} e^{i \theta_{\nu}} \int_{0}^{T} d t e^{i \omega_{0} t+i \lambda \alpha(t) \sin \theta_{\nu}} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(t)=\frac{1-e^{-2\left|A_{1}\right| t}}{1-e^{-2\left|A_{1}\right| T}} \tag{27}
\end{equation*}
$$

E_{q}. (26), (27) express the quantities S_{γ} by the solutions of the map equation (24). The different forms of the solutions of (24) are connected with the kernel of the GME (14) via $S^{\prime}(t, r)$. In order to discuss this oonneotion it is sufficient to oonsider $T \alpha_{1<m}$ at the discrete times $t=\nu_{1} T-0$ and $r=\nu_{2} T-0$ whereby $\Delta S=0$ in the exponential of (21).

The solution structure of the map (24) is characterized by periodic and ohaotio solutions $/ 9$, Io/ The two oeses are discussed separately.

A Periodic solutions
Setting $\lambda \sin \theta_{1}=2 \pi m$ and assuming $\omega_{0} T=2 \pi k$ in (24), m and k being integers, one has for all $\nu, \theta_{v}=\theta_{1}=\theta_{f}$ (taking θ mod 2π)i.e. a period 1 solution ${ }^{1}$). The region of stability of this solution is indicated in $/ 10 \%$. The corresponding value of is a complex constant independent of ν

$$
\begin{equation*}
S_{\nu}=S\left(\theta_{f}\right)=S_{f} \tag{28}
\end{equation*}
$$

Inserting (28) into (21) one obtains from (14)

$$
\begin{equation*}
J \alpha\left(t=\nu_{2} T, r=\nu_{1} T\right)=2|V|^{2} R e e^{i\left(\nu_{2}-\nu_{1}\right) \rho(q)} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
s(q)=f(q) S_{f}^{\prime}+\left(c_{1} c_{1}\right) \tag{30}
\end{equation*}
$$

Eqs. (29) and (30) express the kernel as the projeotion on the real axis of a veotor rotating in the oomplex plane (unneoessary indices at $I \alpha$ are suppressed in what follows). Eaoh interval T is conneoted with the rotation angle $\rho(q)$ and the total angle of rotation is proportional to the number of kioks in the (τ, t) interval.

The behaviour of the kernel for a period p solution $\theta_{1}, \theta_{2} \ldots \theta_{p}$ of the map (24) follows from a straightforward generalization! Instead of one S_{f} in (28) one has to take acoount of p different values $S_{1} S_{2} \ldots f_{p}$ and corresponding rotation angles $\mathcal{S}_{1}, S_{2} \ldots S_{p}$. The rotation of the veotor oonneoted with the kernel prooeeds through $\zeta_{1}, \rho_{2} \ldots S_{p}$ and is repeated after p steps.
B Chaotio solutions
Aooording to (20) the nonlinearity parameter of the map $\lambda>1$ and λ increases w th an inoreasing ratio $\mathrm{B}_{2} / \mathrm{B}_{1}$ in the left hand side of (20). Then on the θ-line the periodic solutions of (24)

1) In the extended goneme this solution is reforred to as a period 1 running solution $/ \bar{I} /$, beoause the iterates θ_{γ} run over different cells. Here the relevant quantities are S_{γ}, eq. (26), and depend on trigonometrio functions of θ_{ν}, i.e. the running solutions are automatically projeoted on the reduoed scheme and can be taken modulo $2 \sqrt{1}$.
oan be viewed as contained in small islands surrounded by a "stochastic sea" of chaotic solutions, the region oocupied by the chaotic solutions inoreasing with increasing λ. The decay of the phase oorrelations in the chaotic solutions is given by the correlation funotion.

$$
\left\langle e^{i\left(r \theta_{\nu_{2}}-s \theta_{v_{1}}\right)}\right\rangle_{\theta} \sim e^{i\left(\nu_{2}-\nu_{1}\right) v \omega_{0} T-\left(\nu_{2}-\nu_{1}\right) T / \tau_{c}}
$$

With the correlation time

$$
\varepsilon_{c}=T / \ln \lambda
$$

where $\langle\ldots\rangle_{\theta}$ denotes the average over a region of initial conditions in the "ohaotic sea". The relation (31) is derived by repeatedly using the map equation (24) and applying expansions into Bessel funotions (see 19/).

The kernel is again representable as a vector rotating in the complex plane, however, now one has an infinite sequence of S_{1}, S_{2}, \ldots and corresponding angles $S_{1}, \rho_{2} \ldots$. The rotations become uncorrelated after a few steps and considering an ensemble of starting positions of the rotating vector oorresponding to the inttial oonditions of the chaotic trajectories one gets a deoaying memory by averaging over different rotation histories.

Summarizing both oases and taking account of the general relation between the memory function and the oharacter of exciton motion one finds that for periodic vibrational solutions the kernel represents a non-decaying osoillating memory and oorrespondingly onherent exciton propagation results. On the other hand for chaotic solutions and averaging over aifferent vibrational trajeotories a deoaying memory is obtained, i.e. in the long time limit incoherent exciton propagation is expected. Hence by changing the oontrol parameter and/or initial conditions a transition from incoherent to ooherent exciton propagation is possible. It must be stressed, however, that at the microscopio level the kernel is purely oscillating in both oases, 1.e. a summation over many kernels containing chaotic ribrational trajeotories is necessary to obtain a decaying memory. This summation is just the familiar coarsegraining procedure by whioh many vibrational states are attaohed to a given exciton state.
4. Decay of the Stationary Memory Function for Chaotic Solutions

We now consider the calculation of the stationary kernel by averaging over chaotic solutions with different initial phases, i.e. the stationary kernel $\mathfrak{J}(t-\imath)$ is given by

$$
\begin{equation*}
\mathcal{J} \alpha(t-\tau)=\langle\mathcal{J} \alpha(t, \tau)\rangle_{\theta_{1}}, \tag{33}
\end{equation*}
$$

where $J K(t, \mathcal{K})$ is represented by (14) and $\langle\ldots\rangle_{\theta \text {, }}$ denotes the average over initial phases of chaotic trajectories. Using a standard expansion into Bessel functions of the exponential of the sine in (26) one obtains

$$
\begin{equation*}
S_{y}=\sum_{l=-\infty}^{+\infty} \theta_{\ell} e^{i \ell \theta_{v}} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{l}=\sqrt{I_{0}} \int_{0}^{T} d t e^{i \omega_{0}^{T} J_{l-1}}(\lambda \alpha(t)) \tag{35}
\end{equation*}
$$

and \mathcal{J}_{e} are the expansion coefficients and the Bessel function of 1 th order, respectively. Inserting, (34) into eqs. (14), (21) one finds

$$
\begin{aligned}
& J \alpha(t-\mu) \sim 2|v|^{2} \operatorname{Re}\left\langle\operatorname { e x p } \left\{i \left[\sum _ { l = - \infty } ^ { + \infty } \sum _ { v = v _ { 1 } } ^ { v _ { 2 } } \left(f(q) b_{l} e^{i l \theta_{v}}+(36)\right.\right.\right.\right. \\
&+(c . c .))]\}\rangle_{\theta_{1}}
\end{aligned}
$$

Here the meaning of τ and t is as in eq. (26), 1.e., they are taken at the discrete times $r=\nu_{1} T$ and $t=\nu_{2} T$, respectively. The variation of t and t within the intervals between the kioks is easily seen to result in additional oscillations connected with the ΔS term in (21), which do, however, not oontribute to the decay of the memory function due to kicking. In order to indicate that these oscillations were ollitted the proportionality sign was set in (36).

The average in (36) is expressed by the correlation funotion (31) using a cumulant expansion up to second order in (36), i.e.
(The contribution of the first cumulate vanishes, $\left\langle e^{i \theta_{\nu}}\right\rangle_{\theta_{\nu}}=0$), Passing in the ν, ν sums of (37) to the nev variables $\nu, B e \nu-\nu$ using (31) and assuming a sufficiently large number of kicks $\nu_{2}-\nu_{1} \gg 1$ between r and t one finds

where

$$
\left.\cdot \sum_{\ell, l^{\prime}}\left[A_{l l^{\prime}} e^{i \ell \omega_{0} x T}+A_{\ell l} e^{-i \ell \omega_{0} x T}\right]\right\}
$$

$$
A_{e l^{\prime}}=[f(q)]^{2} b_{l^{\prime}} b_{-e^{\prime}}+\left[f^{*}(q)\right]^{2} l_{-l^{*}} b_{l^{\prime}}^{*}+|f(q)|^{2}\left(l_{l} b_{l^{\prime}}^{*}+b_{-l}^{*} b_{-e^{\prime}}^{*}\right)(39)
$$

Now setting $\nu_{2}-\nu_{1}=(t-\tau) / T$ and performing the $\mathcal{X}-\mathrm{sum}$ one flnally obtains

$$
\begin{equation*}
J x(t-r) \sim \Omega|V|^{2} \exp [-\Gamma(t-r)] \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma=\frac{2}{T} \sum_{\ell, \ell^{\prime}}\left[\frac{A_{\ell \ell^{\prime}}}{1-e^{-\left(T / \varepsilon_{c}\right)+i l \omega_{0} T}}+\left(c, c_{1}\right)\right] \tag{41}
\end{equation*}
$$

The kernel (40) is of the familiar form of an exponentially decaying memory function, the decay being desoribed by the parameter Γ. The influence of a parameter describing an exponential decay of the kernel on the various oharacteristics of exciton propagation is discussed in $/ 1 /$ and need not to be repeated here. In oontrast to the standard theory of interaction of excitons with an equilibrium bath of phonons, however, in the present case the "bath" is due to chaotic trajeotories of a nonlinear vibration interaoting with the

$$
\begin{align*}
& J \alpha(t-r) \sim 2|V|^{2} \exp \left\{-\frac{1}{2} \sum_{2, l^{\prime}, v^{\prime}}^{\sum_{i}}<\left[f(q) b_{\ell} e^{i l \theta}+\left(c_{1} c_{1}\right)\right]\right. \text {. } \tag{37}\\
& \text { - } \left.\left[\frac{r}{r}(q) b_{i^{i}} e^{i 2^{\prime} \theta_{\gamma^{\prime}}}+(c . c .)\right]>\theta_{1}\right\}^{b} \text {. }
\end{align*}
$$

excitons ria a noise like modulation of the site energies. The parameter Γ, eq. (41), contains the characteristics of the nonlinear kicked vibration explicitly.

Acknowleđgement

The author would like to thank Prof. B. V. Chirikor for a stimulating disoussion.

Referenoes

1. V.M. Kenkre. In: Exciton Dynamics in Molecular Crystals and Aggregates, Springer-Verlag, 1982.
2. P. Reineker, ibid.
3. V. Capek, Z. Phys. B 60, IOI (1985).
4. W. E. Bron (Ed.), Nonequilibrium Fhonon Dynamics, Plenum Press, 1985.
5. K. F. Renk. In: Proc. Intern. Sohool of Physics "Enrioo Fermin, ed. by U.M.Grassani and N.Terzi, North-Holland Publ.1987.
6. A. Stöckli and A. Furrer, Revue Phys. appl. 19, 751 (1984).
7. F.Marlow and B. Esser, phys, stat. sol. (b) 148, 619 (1988).
8. B. V.Chirikov, Phys. Reports 52, 263 (1979).
9. G.M. Zaslarsky, Stochastioity of Dynemical Systems, Nauka, Mosoow 1984 (in Russian).
Io.M.Schell, S.Fraser and R. Kapral, Phys. Rev. A26, 504 (1982).

Received by Publishing Department
on June 28,1989 . on June 28, 1989.

