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PaccMaTpMeaeTCA pacnpocrpaHeHMe 3KCMTOHOB, B3aMMOAeMCTB.Yl(XllHX C CMnbHO 
B036Y*AeHHOM M nepMOAM~eCKM B03My~eHHOM eonHOM,C MCnonb30BaHMeM o6o6~eHHOro 
KMHeTM~ecKoro ypaeHeHMA. AMnnMTyAa KOne6aHMM onMc~eaeTCA c noM~blO HenMHeMHoro 
ypaeHeHMR, COAep*a~ero ~eH, KOTOp~M MOAenMpyer nepMOAM~eCKOe B03MYllleHMe. 
YcraHaBnMeaeTCA CBR3b MelKAY RAPOM KMHeTM~eCKOro ypaeHeHMR M AMCKpeTHblM oro-
6pa111eHMeM, onMC~BaKIIIHM AMHaMMKY Kone6aHMM. 3ra CBR3b MCnonbJyeTCA AnA 06cy,t1-
aeHMA noee4eHMA AApa M pe3ynbTMpYl()Ulero 3KCMTOHHOro ABM*eHMA, cneAYl()Ulero M3 
nepMOAM~eCKMX M xaoTM~eCKMX peweHMM AMCKperHoro oro6pa*eHMA. 

Pa6ora e~nonHeHa e na6opaTOPMM reopeTM~eCKOM ~M3MKM OMRM. 
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Esser B. 
Excitation Propagation in the Presence of a Driven 
and Kicked Vibration 

El7-89-476 

The propagation of excitons interacting with a driven and kicked vibration 
is considered using the generalized master equation (GME) approach. The ampli
tude of the vibration is described by a nonlinear evolution equation with 
a kicking term modelling a periodic perturbation. The connection between the 
GME kernel (memory function) and a map describing the dynamics of the vibra
tion is established. This connection is used to discuss the behaviour of the 
~ME kernel and resulting exciton motion following from the periodic and chao
tic solutions of the map. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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I. Introduotion 

The theory of exciton propagation in the presenoe of an equilib
rium bath of phonons has been intensively developed in the past 
years /l-J/ • .Among the approaches the generalized master equation 
(GME).must be mentioned for treating such important points as the 
coherent an incohe~ent exciton ~otion from a unified point in view111• 
The properties of exciton motion can however be of oonsiderable inte
rest also in a nonequilibrium situation, where by a driving mechanism 
some vibrational states are selectively exoited. Thus, recently new 
methods/for the generation and detection of phonons have been develo
ped/4,5 and henoe it might be of oonsiderable interest to investiga
te the properties of exciton propagation rn a non-eqU1librium phonon 
field with controlled parameters. Besides that transport in the pre
senoe of non-thermal vibrations seems to be of importance for molecu
lar aggregates relevant in blological systems 161 • This paper add
resses the problem of exciton propagation in the field of a driven 
vibration described in classical terms within the GME concept. Omit
ting the details of the driving mechanism the amplitude of the vib
ration is described by a nonlinear equation as in a time dependent 
Landau theory. In a. previous paper this approach was used to consi
der the influence of noise 111. Here.the amplitude is assumed to be 
periodically kicked. As is well known ·a periodic perturbation of a 
nonlinear system can generate solutions of different types which beco
mes particularly tray-JJarent by•oonsidering discrete mappings such 
as the standard map • In the model of this paper the vibration is 
related to the dissipative standard map191 •. The vibration can dis
play periodic or chaotic solutions and correspondingly different 
behaviours of the memory function result. The connection between the 
different solutions of mapping for the vibrational phase (sine - map) 
and the memory function of the GME is considered 1n detail. Another 
point. addressed here is the averaging over vibrational states 1n the 
G~ kernel. In the case of chaotic solutions the vibration acts 

.effectively like a noise produced by a bath on the exciton motion. 
Then, by introducing an ensemble of vibrational trajectories and the 
corresponding average, an explicit expression for the decay of the 
memory function can be derived. 

[ o/i~~,7--~ 
ii t'T' . 

t. .... ,_i,'.'.. ,, 
I 



The modal is presented in section 2. In section J the connec
tion between different vibrational solutions and the memory function 
is discussed. The section 4 is devoted to the calculation of the decay 
parameter of the memory function for chaotic solutions. 

2. Formulation of the Model 

The exoitons are described b7 the following Hamiltom.an in site 
representation 

l~~xe,-= 5-: [EJt)J' + ~v ] a,+ a, ·. 
11.,wt. •v 11,IM, .llt,lNI. i;t, M 

(I) 

where 

E (t) = £ + t1 (l) 
\1, 1-'t, l;t, 

(2) 

Af (A ·) Here Q.,w, 0-.""' are creation (annihilation) operators at molecule 
nCm), ii-\.. and '{IM.are the exciton site energy and transfer matrix 
element, respectively. The shift ~~t) of the site energy represents 
a diagonal exciton - phonon coupling due to the interaction of the 
exciton with a non-equilibtium vibration excited in the phonop system 

ti Ct) = C ei%x 11_ u(t) + (c.c.) 
vt, 

(J) 

Here u(t) is the phonon amplitude and C an interaction constant·. 
The mechanism for driving the non-equilibrium vibration is not 

specified explicitly but u is subjected to the following phenomena-
logical nonlinear equation 

Cc>u 
0-l 

= - (A+ ~IUl.z,)u + Flt:), 
where A • A + iA,, and B ~B+it3 are constants and the function F(t) 

,, ,<J ,., ,l, 
describes the influence of a periodic kicking on the amplitude. In 

(4) 

the absence of kicking eq. (4) corresponds to a time dependent 
Landau theory, i.e. the complex amplitude u is treated as an order 
parameter in a second order phase transition. In particular the sign 

of A~ fixes the stationary value of! u
0
\. In what follows the driven 

state is of interest for which A11 < 0 J I
0 
= I w0\ Z = I AA I/ !3.,, , 

and for F(t) ,. O eq. (4) displays the stationary solution • uli). 
• Lloexrf-iwioi-) with the freqllenoy c.,o:: A,?;+ )3R., ro • , !rhe influen::, .' 
ce of kicking in (4) •is to push the amplitude out·of u

0
(t). Then 

different forms of time dependences of u(t) result as will be 

2 

..., 

employed below. For F(t) it is sufficient to consider the simplest 
form consisting of periodically (after T) repeated ~-pulses 

FCt.) "° 1~e;g~Jv(-l-vY) 
Y-:-1 

(5) 

Here the prefaotor was chosen in a convenient form, £ is ·a dimen
sionless parameter and -3 a phase angle. The kicking represented 
by the c\"'-pulses can be due to a periodic external source but is 
also an approximate form for the influence on u of anharmcnic 
interactions in the phonon system/9/. 

Passing to action - angle variables ) 
i0Lt 

u.(i) = ✓ IltY e (6) 

and inserting (6) into (4) one obtains by separating real and 
imagina.ry·parts 

• . r=:; ;eCt.) 
I= -It3 I(I-I) +;i~I ~ee. F(-0 

-1 0 

and • -1 ;eci:) e :c A -+- (!, I - - :f VI,\, e r Lt) J. ;i_, --IT .• r . 

(7) 

(5) 

In (7),(8) a simplification is made by linearizing the first term cf 
(7) t:\T~ ts1ro""'I A), setting I ~ Io in the second tenn of (7) and 
omitting the last terlll connected with the.kicking in (8) (a justifica
tion for the latter procedure is that the influence o~F(t) in (7) 
is proportional to I;~ whereas in (8) it is to I; Z, , 1. e, in 
the strongly driven state where I

0 
is sufficiently large the in

nuence of the kicking in (8) becomes smaller than in (7) ). This 
simplification allows one to make contact with the discrete maps 
in the next section. One obtains 

• 00 ( 

I =-i\A)(I-I) + ~Icos(e+s)i:1 Jtc-vT) 9
) 

0 0 ~=~ 

and 0 

0 =- {..) (I) , (IO) 

l.'.)(I)-= At}_+ 'r3~I. 
where 

(11) 
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Starting from the standard equation of motion for ·the one particle 
exoiton density matrix D lt), assuming nearest neighbour 

-- I.) K1M 
transfer elements V and diagonal initial conditions 

( ) .r--- l<llt,1 
J)K"-l. t.=-O ~ ul<IM. '-'t.K. one obtains for the site occupation 

\I\, Ct) the GME 
I<. 

{;)VLK _ 
left -

t 
5d_ ~at-t~,i~}t-11:-)[111:J1c)-v1,),tl]) 

0 .· 

(12) 

in which we use the second order kernel 

!]:{, Lt)~),:= Iv (ex~{; {J.e~ [~1
) - G Le?}+/c.c)clJ) 

K ~ ''"Wl , i r~t(. lM J c 
corresponding to the neglection of the non-diagonal elements of the 
form .O"Kk:±2. • In particular, the kernel (13) becomes exact for a · 
two }tte problem (kal,2), i.e. a dimer. The kernel (13) is convenient 
for the discussion of the different time dependenoes following from a 
map, because of the simple connection to the vibration via t:::,. 1<:. lt). 
In (13)'1,l is still a function of the separate time arguments, 

l<.1,1,\ 
transforming into the stationary form as a function of t- 'b after 
an appropriate ensemble average is performed. 

3. Memory Funotion for Different Vibrational Solutions 

We now establish the connection between the memory function and 
the map following from eqs. (9), (IO) for the action- angle variables 
of the vibration. Inserting eqs. (2),(3) and (6) into (13) one obtains 

(£K: t Wl.-) 

1CG Ct A..,)_ 
1
,, 

1
,z, ·, [f~l~)j l\·1::-)+Cc.c.)] 

VI,\. Vl1 ±,t ) '-- - V .• , e / )(14) •-~rA + Lc.c, 
' 

where 

f![t) ~Ce~'+xwi(e.±i~~--1) 
t .----. ; 9 U_I) 

· ~ Lt/d -= ) ett1 ✓I Lt1)' e 
t 

• 

and a is the distance between the molecules. According to (9) and 
(IO) in the time interTal between two successive kicks, y T+ 0 < 
t<(v0JT+Qthe evolution of the action and phase is given by 

4 

(15) 

(16) 

"' 

9 

· . , . -.:ZIA) (i-vT) 
Ilt:}-= I+ (I -I +£f cc~(Bt-~))e. c11) 

C y C -o 

and x ( ,1-;-<--IA1/(t-~1i) 
' ,...._ ~ 

e (_t) =- 9y + Llo ( t-vl) t-.Q~,tl (Iy~ Io+~ Ioco(ey~~~:-- 7 ' (18) 

where I)7=ItvT-o )and ,e : 0(-vT-o) refer to the values- of r[t), ect) 
immediately before the y th kick, respectively, v =l, 2, • • • 
Setting t-==()?t-'l)t'- 0 in (17),(18) one obtains the dissipatiTe 
standard map / 9;. We consider a further simplification reducing 
the d;rnamics of the two dimensional system (17),(18) to a_one 
dimensional for the phase evolution 8 • Assuming £ <'< l and the 
following relations between the parameters of the model 

I A1 \ 

8:i 
--) 

BI\ 

>> 

-1 
'£. 

-1 
T 

"'>> -1 

it follows from (9) that the action ohange due to a single kick 

(19) 

(20) 

is small compared to I
0

• Then, according to (19), action changes 
cannot accumulate because the interval between the kicks Tis large 
compared to the action relaxation time IA/4l-~ in 07), i.e. the 
action completely relaxes to its stationary value I

0 
in a time of 

order IA,i1- 1 after each kick. Then we have ·rv+1 ~Ty~ :.Lo • 
However, the influence of the action changes on the phase evolution 
is not small because of the second inequality (20), which is equi
valent to c~ 8~1,/IA,,I}>> 1 in (18). Now inserting (17), (18) into 
(16) and neglecting the action changes one obtains 

Y1.. --1 

~L\t) -=:: ~ ~\, + b,~ lli'~), <21) 

'?=Y,., 
where 

l ("7+-1)T-O 
$v::: ✓ Io I \ott,I e·, &~ti) (22) 

yl-O 
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Here the t' - integration was divided in intervals between the kicks 
and-~= ([-<c/-r] +A)T- 0 J Yz. = [-c/T]-0 with [ ] denoting the 
integer part, indicate the kick numbers at the beginning and the 
end of the (~,t) interval. Tile quantitYA$'(t/c) contains the rest 
of the integral of (16) which is not covered by the sum in (21). The 
phase evolution in the integration interval of (22) is 

r. 1 -) \:'.3 ( -ZlA,1ILt-vf)fa ~ ) 8(.-l) = o +,c..J d:-y I +E ~ ;1- e 0~9+8 (23) 
y O J,t\ ,;,· 

For t=&+,t)T -0 and the choice ,g. =· - '11/;z_ one obtains from (2J) 

G = 9 + w T + ;t,s;vi & 
Y+-,t y o 'V 

(24): 

where 

A-=£~ (A-~.21AtlT) 
-2131 • 

(25) 

The map (24) is known as the sine transfo:rmati.on 191 or in an 
extended & -scheme (dividing the 8 -line into cells 2.·:rt\1 < 9 ( 
.(' 21i(.1-rlJ -oo,:( Y < +- cO) as the climbing sine map / o/ • The choice 
.g = - 71)£ was taken ~o obtain the conneotion of $; y with this map 
the solution structure of which is well -il'.IV'estigated. Inserting (2J) 
into (22) one obtains 

where 

~ rri i 8..,, 1~ ;w0t+ ;.,t~_,(t,) _s;vl 8y 
-="'Te J-t-e y -o 

0 

. Oll-l) .,, ;t - e-.21.A,.t t 
A - e._J..\At\T 

(26) 

(27) 

Eqs. (26),(27) express the quantities Sy by the solutions of the 
map equation (24). The different forms of the solutions of (24) 
are connected with the kernel of the GME (14) via $,1 

(. t, k: ) • 
In order to discuss this oonneotion it is sufficient to consider 
'J\G

1
<1M.at the discrete times-l=-~T-O and~ ::~T-0 whereby .c,,$:'1 = 0 

in the exponential of (21). 
Tile solution structure of the map (24) is characterized by· 

periodic and ohaotio solutions /g,IO/. The two oases are discussed 
separately. 

6 
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A Periodic solutions 

Setting ;1,,sin0-1""'.2.1iL-U and assuming wc:r=.21fk in (24), m and k 
being integers, one has for all v J 0--v-= 01 = 9-\ (taking & mod 
Zf )i.e. a period l solution1). The region of stability of 

this solution is indicated in /IO/. The corre~ponding value of 
is a complex constant independent of y 

Sy ~ $
1
Cet) : Is f (28) 

Inserting (28) into (21) one obtains from (14) 

r-r.1 u - -) _ 1,.1z_YJ ilv1.Q,-'i.i)S{~), 
JJ<., lt-=-; l tic-= Y, ! - ,Q, v 1, e. e 

,l ) 1 . 
(29) 

where 

-&C:t) ~ fCt) ~'f + c.c. c.) (30) 

Eqs. (29) and (30) express tho kernel as the p:rojeotion on the real 
axis·o~ a vector rotating in the complex plane (unnecessary indices 
at "3<, are suppressed in what follows). Eaoh interval T is connec
ted with the :rotation angle ~ (q) and the total angle of rotation 

· is proportional to the number of kicks in the ('t' )-1:) interval. 
The behaviour of the kernel for a period p solution &,

0 
9- .. , 0 

of the map (24) follows from a straightforward generalization°) p 
Instead of one ;;Lin (28) one has to take account of p different 
valuesi5

1
J~

2 
... ~•I° and corresponding rotation angles ~)g~ ... !5(', 

The rotation of the vector connected with the kernel proceeds 
thro-ugh { 1) g.;2, .• , i p and is repeated after p steps •. 

B Chaotic solutions 
According to (20) the nonlinearity parameter of the map ~ ) 1 
and ;\_, increases with an increasing ratio B,2,_"B-1 in the left hand 
side of (20). Then on the 0 -line the periodic solutions of (24) ----
l) In the extended scheme this solution is referred to as a period 
l :running solution /IO/ , because the iterates 9., :run over diffe
rent a.ells. Here the :relevant quantities a.re S\t , eq. (26), -~ 
depend on trigonometric functions of €-v, i.e. the running solu
tions are automatically p:rojeoted on the :reduced scheme and 

can be taken modulo ::L:Ji • 
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can be viewed as contained in small islands surrounded by a 
"stochastic sea 11 of chaotic solutions, the region occupied by the 
chaotic solutions increasing with inoreasin~ A..., • The decay 
of the phase correlations in the chaotic solutions is given by 
the correlation fUnotion. 

i k&',7 - s e y ) 
(e., ,t, _,, ), 

e 
with the correlation t:!Jne 

; (v~-~) t-£..\1-(\lz.-Y,i )T /tc- (:n) 
;v(2_ 

,z-'- ~ -+ I tu. .IL, , 
(J2) 

where <_ ..• ) 
8 

denotes the average over a region of initial oondi tions 
in the "chaotic sea". i'he relation (Jl) is derived by repeatedly 
using the map eJ~tion (24) and applying expansions into Bessel 
funotions (see 9 ). 

The kernel is again representable as a vector rotating in the 
complex plane, however, now ~ne has an infinite sequence of s1 , 

s~,... and corresponding angles 1
1 

, ~~ •• • · • The rotations become 
uncorrelated after a few steps and considering an ensemble of 
starting positions of the rotating vector corresponding to the ini
tial conditions of the chaotic trajectories one gets a deoa;ring 
memory by averaging over different ·rotation histories. 

Swnma:rizing both oases and taking account of the general 
relatiJt,between the memory function and the character of exciton 
motion one finds that for periodic vibrational soluti~ns the 
kernel represents a non-decaying oscillating memory and corres
pondingly obherent exciton propagation results. On the other hand 
for chaotic solutions and averaging over different vibrational 
trajectories a decaying memory is obtained, i.e. in the long time 
limit incoherent exciton propagation is expected. Hence by changing 
the control parameter and/or initial conditions a transition from 
incoherent to coherent. exciton propagation is possible. It must be 
stressed, however, that at the microscopic level the kernel is 
purely oscillatin·g in both cases, i.e. a summation over many kernels 
containing chaotic vibrational trajectories is necessary to obtain 
a decaying memory. This summation is just the familiar ooarsegrain
ing procedure by which many vibrational states a.r.e attached to a 
given exciton state. 

8 

4. Decay of the Stationary Memory Function for Chaotic Solutions 

We now consider the calculation of the stationary kernel by 
averaging over. chaotic solutions with different initial phases, i.e. 
the statioDary kernel ·'Ji C-l- 1:-) is given by 

c:I{L-L-t) -e <1'<Lt, 'c) > , 
g,t 

(JJ) 

where Jll{t,,<c:) is represented by (14) and < ••. )9 denotes the ave.ra
ge oTer initial phases of chaotic trajectories. Using a standard 
expansion into Bessel functions of the exponential of the.sine in (26) 
one obtains 

cl 1- a::) ~ -== .......,, '"'-- ;j(} 
y .Li ,JJ e. y 

t-= - oo L ' 
(J4 ) 

where 

.b-l 

. T . -
~ C ' L.'.) l ,.., 

-= --/I
0 6Jte 

O --.i,Q__,/~lt)) (J5) 

and 'Jl are the expansion coefficients and the Bessel function of 1th 
order, respectively. Inserting,(J4)_into eqs. (14),(21) one finds 

µ:X) Vz 
'X l-l--'c) "'.21v1<-K'e<e"'r ii [ fl_'° t, (j 11) &/1tt'+ c,., 

+ tcd]} >e •. 
Here the meaning oft and t. is as in eq. (26), 1. e., they are taken 
at the discrete times 1: =- ~ T and t; ~ Y.z.. T , respectively. The 
variation of I\:: and t within the intervals between the kioks is 
easily seen to result in additional oscillations connected with .the 
A$; term in (21), which do, however, not contribute to the decay of 

the memory function due to kicking. In order to indicate that these 
oscillations were omitted the proportionality sign was set in (J6). 

The average in (J6) is expressed by the correlation function 
(Jl) using a cumulant expansion up to second order in (J6), i.e. 
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' [ ;e.e ~ 'j{Lt-k J /V 2rv1=z-e?<r1,- i iJ ,i: I< fC1JR>-,e,e ~(c,c)r 
. l/ .. v1 v (J7) r 1e.<e 1 •1 ,, 

• Li(_i) .&_e/l 't + ( C .c.) ) GA 1 . . 
'10 

(The contribution of the first cumulate vanishes, <e ">~~ 0 ). 
I ( I 

Passing in the vJ Y sums of J7) to the new variables Y J "''l-'V 
using (31) and assuming a sufficiently large number of kicks V -v ))1 

:l.. 1 
between'\: and l one finds 

\ -~T/1':c. 
tj<{ (.-l- t) -v ~ 1v-1 z-<2.xp l -.:2.,( ~ - \1,f )~ e. · (J8) 

• ,, [A ;.e.woJL T~ A - ;Lwo~T]] 
where 

t~~• Q_R_,i .e, + .Q..lt -e_ , 

Aw~ [f 'tl }1-o (, ,.,_ ,, + C {t~ 1r1t 1{, + !(Lilf(R:At t lJJ•l 
Now setting "V.z - v'1 = l t -1: )/T and performing the ~-sum one 
finally obtains 

dulU .. -~)A1JlVl.?.t.exp[-rC-l-k)j, 
where 

r ~ ' l A e..e.' . f . ) ] -= =::: 2,, _ _.....:,,.""'------ + Lc.C, 
1 f.1e.1 I\- e...-(1/~)+-;Qw0T 

0 

(4o) 

(41) 

The kernel (40) is of the familiar form of an exponentially decaying 
memory function, the decay being desoribed by the parameter f"1 • 
The influence of a parameter describing an exponential decay of the 
kernel on the various oharacteristics of exciton propagation is 
discussed in /l/ and need not to be repeated here, In contrast to 
the standard theory of interaction of excitons with an equilibrium 
bath of phonons, however, in the present case the "bath" is due to 
chaotic trajectories of a nonlinear vibration interacting with the 

IO 

excitons via a noise like modulation of the•site energies. The para
meter r , eq. (41), contains the characteristics of the nonlinear 
kicked vibration explicitly. 
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