





I, Introduotion

The theory of exciton propagation in the presence of an equilib-
rium bath of phonons has been intensively developed in the past
years 1-3 « &mong the approaches the generélized master equation
(G¥E) must be mentioned for treating such important points as the
coherent an incoherent exciton motion from a unified point in view/l/.
The properties of excitén'motion oan however be of oonsiderable inte-
rest also in a nonequilibrium situation, where by a driving mechanism
some vibrational states are selectively exoited. Thus, recently new
methods for the generation and detection of phonons have been develo-
ped/4’5 and hence it might be of oonsiderable interest to investiga-
te the properties of exciton propagation iIn & non—equilibrium phonon
field with controlled perameters. Besides that transport in the pre-'
senoe of non-thermal vibrations seems to be of importance for moleou-—
lar aggregates relevant in Wological systems 6 . This paper add-
resses the problem of exciton propagation in the field of a driven
vibration described in classical terms within the GME ooncept. Omit-
ting ‘the detalls of the driving mechanism the amplitude of the vib-
ration 15 described by a nonlinear equation as in a time dependent
Landau theory. In a previous paper this approaoh was used to consi-
der the influence of noise 7/ . Hereathe amplitude is assumed to be
periodically kicked. As 1s well known a periodic perturbation of a
nonlinear system can generate solutions of different types which beoo—
mes particularly trﬁﬁ;?arent by -oconsidering disorete mappings suoh
as the standard map « In the model of this paper the vibration is
related to the dissipative standard map 3 + .The vibration can dis-—
play periodio. or chaotio solutions and ocorrespondingly different
behaviours of the memory funotion result. The conneotion between the
different soclutions of mapping for the vibrational phase (sine - map)
and the memory funotion of the GME is oonsidered in detail. Another
-point. addressed here is the averaging over vibrational states in the
GME kernel. In the oase of ochaotic soluticns the vibration acts
.effeotively like a noise produced by a bath on the exolton motion.
Then, by introducing an ensemble of vibrational trajeotories and the
oorresponding average, an expliclt expression for the deocay of the
memory funotion can be derived.
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The model is presented in section 2. In section 3 the oonnec-
tion between different vibrational solutions and the memory function
is disoussed, The seotion 4 is devoted to the caloulation of the decay
parameter of the memory function for chaotic solutions,

_ 2. Formulation of the Model
The exoltons are desoribed by the following Hamiltonian in site
repre sentation R S el
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Here Q‘+n(8"m) are oreation (annihilation) operators at moleoule
a(m), Sw and "V are the exciton site energy and transfer matrix

element, respectively. The shift An,(t) of the site energy represents
a diagonal exoiton - phonon ooupling due to the interaotion of the
exoiton with a non-equilibtium vibration excited in the phonon system

8,6) = CeFult) + (ce) . o

Here u(t) 1s the phonon amplitude and C an interaotion coxiéuf"a;;xt'.' .' o

The mechanism for driving the non-squilibrium vibration is _not‘
speolfied explioitly dut u 1s subjeoted to the following phenomeno-
logloal nonlinear equation : : :

where 4 = A + 14, and B =B +i8,are constants and the funotion F(t)
desoribes the influenoe of & periodio kioking on the amplitude. In
the absence of kioking eq. (4) corresponds to a time dependent
Landau theory, 1.e. the oomplex amplitude u is treated as an order

" parameter in.a seoond order phase transition. In partioular the sign

of A4 fixes the stationary value of | uol + In what follows the driven o

state 1s of interest for which A, ¢ ( , I = ]udlz = 1AL/ R, ©
and for F(t) = 0 eq. (4) displays the stationary solution Cul/ =

= UOQXP(‘;&D&E) with the frequemoy (9, = A, + '}3-2/I, . The influen—"

oe of kicking in (4) is to push the amplitude out-of uy(t). Then
different forms of time dependences of u(t) result as will be
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employed below. For F(t) 1t 1s suffiolent to consider the simplest
form consisting of perlodically (after T ) repeated d*epulses

F) = 5T, e;g;ci”&wT) . )

Here the prefaotor was chosen in a convenlent form, & ;ls ‘a dimen-
slonless parameter and £ a phase angle. The kicking rapresented
by the d\’-pulses can be due to a perlodic external souroe but 1s
alsc an approximate form for the influenoce on u of anharmonlo
interactions in the phonon system/Q/.
Pe.séing to actlon — angle variables
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ult) = VI e o) (6)

and inserting (6) into (4) one obtains by separating real and
imaginary parts
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In (7),(8) a simplification is made by linearigsing the first temm of
n 811:2' B,,Ifoz‘AAI, sotting L < Io in the second term of (7) and

omitting the last term conmected with the kicking in (8) (a justifioa-
tion for the latter procedure is that the influence of F(t) in (7)

is proportional to Io 2 ghereas in (8) 1t is to Io 2 ', 1.e. in
the strongly driven state where ID i1s suffiolently large the 1ln-
fluence of the kioking in (8) beoomes smaller than in (7) ). Tis
simplifioation allows one to make oontaot with the disorete maps

in tho next section. One obtains
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Starting from the standard equation of motion for the one particle
exolton denaity._{afrix \PKw(t)’ assuming nearest neighbour
transfer elements \/KMt and diagonal initial conditions

KM({‘PO) = d\!;w, M.K A one obtains for the site occupation
V\,K(t) the GME

B - 3w, ol o],

in which we use the second order kernel
= |7 2 : ¢ t | . ! ] j
Tl 0) =1V TexpdiSaele (4) - € )+ (e

corresponding to the negleotion of the non-diagonal elements of the
form Wit . In particular, the kernel (13) beoomes exact for a
two slte prodlem (k=1,2), i.e. a dimer. The kernel (13) is oonvenient
for the discussion of the different time dependences followlng from a
map, because of the simple conneotion to the vibration via A (),
In (13)%““ is still a funetion of the separate time arguments,
transforming into the stationary form as a function of t-4 after
an appropriate ensemble average 1s performed.
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3. Memory Funotion for Different Vibratiomal Solutions

We now establish the connection between the memory functlion and
the map following from egs. (9), (I0) for the aotion- angle variables

of the vibration. Inserting eqs. (2),(3) and (6) into (13) one obtains
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and a 1s the distanoe between the moleoules. Acgording to (9) and
(I0) in the time interval between two successive Xioks, VT—P O<
{-_((\;M)T.Q-Othe evolution of the aotlon and phase 18 given by

N 1A (VT
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vhere IV=I67T-O)and O = O(WI-0 ) refer to the values of L(t), 6Ct)
immedlately hefore the Yy th kick, respectively, V 21,2, ¢s
Setting t =<»+4)T~0 1n (17),(18) one obtains the dissipative
standard map 8/ . We consider a further simplification reducing
the dynamics of the two dimensional system (17),(18) to a one
dimensional for the phase evolution e . Assuming € <« 1 and the
following relations between the parameters of the model

4 :
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it follows from {(9) that the action ohange due to a single kick

is small oompared to I . Then, acoording to (19), actilon ohanges
cannot aocumulate beocauss the interval between the kiocks T is large
compared to the aotion relaxation time IA4I'4 in (7), 1.e, the
aotion completely relaxes to its stationary value I in a time of
order \A,|\\’l after each kiok. Then we ha.ve'IV+4 > Iy = Io .
However, the influence of the aotion changes on the phase evolution
18 not small beoause of the second inequality (20), which is equi-
valent to (= BLIO/IAA)» 1 in (18). Now inserting (17), (18) into
(16) and neglecting the aotion ohanges one obtains
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Here the t — integration was divided in intervals between the kicks
and v = ([e/T]+4)T -0 ,v, =[*/T]-0 mitn [ ] denoting tne
:Lnteger part, indioate the kick numbers at the beginning and the

end of the (¥,t) interval. The quantityag(t "') contains the rest

of the integral of (16) which is not covered by the sum in (21) The
phase evolution in the integration interval of (22) 1s

i min P
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For t=67+A)T-O and the choice % :‘—1/2_, one obtains from (23)
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The map (24) is known as the sine transformation 19/ or in an

extended 9 ~scheme (dividing the G -1ine into cel%s LIV <G <

L ATV A —00l Y < +£00) as the climbing sine map / . The choice
=~ U/4 was taken te obtain the connection of with this map

the solution structure of whioh is well investigated. Inserting (23)

into (22) one obtains

T
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Egs. (26), (27) express the quantitiess by the solutions of the
map equation (24), The different forms of the solutions of (24)
are connected with the kernel of the GME (14) via S L't ).
In order to discuss thls oonneotion it is sufficient to oonsider
W . ..at the discrete times‘{:ﬂ?!-o and 4 = YT-O whereby AS 0]
in the exponential of (21).

The solution structure of the map (24) 1s characterized by -
rerlodic and ohaotio solutions s . The two oases are discussed
separately.

oyt + A (£) 5By
€ (26)
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A Periodic solutions

Setting Asin, =2Twl and assuming co, T=2TI< 1n (24), m and x
being integers, one has for all \7 Qy 8 ‘9(2 (taking G mod
2T Ji.e. a period 1 solutionl) . The region of stability of

this solution is indicated in o The corresponding value of

is a complex constant independent of Y’
i
IS‘y = ‘SCG'G) = \Slg * , (28)
Inserting (28) into (21) one obtains from (14)
_ (v - 86e)
W=7 £=y,T) = 2IVI*Re e‘C“" R, @
where |
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Eqs. (29) and (30) express the kernel as the projeotion on the real
axis of a veotor rotating in the oomplex plane (unneoasssary indices
at I are suppressed in what follows). Eaoh interval T is connec-
ted with the rotation angle X (q) and the total angle of rotation

-1s proportional to the number of kioks in the (’t’ +) interval.

The behaviour of the kernel for a period p solution 6} e ...6
of the map (24) follows from a stra.ightforwa.rd generalization:z‘
Instead of one S in (28) one has to take acoount of p different
values 1 ... . and corresponding rotation angles {;,-g_z... gp'
The rotation of the veotor oonneoted with the kernel prooeeds
through KUSQ,,, gp and is repeated after p steps.,

B Chaotlo solutions

Aooording to (20), the nonlinearity parameter of the map /L > 1
and 7\, increases with an inoreasing ratio B,/B_ in the left hand
side of (20). Then on the § -line the periodic solutions of (24)

— — gttt St W

Y In the extended scheme this solution is referred to as a period
1 running solution /20/ s beoause the iterates ey run over diffe-
rent cells., Here the relevant quantities are Sy » eq. (26), and
depend on trigonometrio functions of GV sy 1.8, the running solu-
tions are automatically projeoted on the reduoed scheme and

can be taken modulo L1 .
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oan be viewed as contalned 1in small islands surrounded by a
"stochastioc sea" of chaotlic solutions, the regilon oocupied by the
chaotic solutions inoreasing with increasing ;LJ « The decay
of the phase oorrelations in the chaotic solutions is given by
the correlation funotion-

< e/I ({,evib- S 9\;4) > . ) (VL’\&)_ “"LOOT~ CVa“V,‘)T//&o (31)

with the correlation,timé

% < T/,

where <~-\ denotes the average over a region ¢f initial conditions
in the "ohaotic sea". The relation (31) is derived by repeatedly
using the map e}uation (24) and appljing expansions into Bessel
funotions (see 9/ Do -

The kernel 1s again representable as a vector rotating in the
complex plane, however, now one has an infinite sequence of 54,

S yees and corresponding angles &1)9 e "+ The rotations become
uncorrelated after a few steps and oonsidering an ensemble of
starting positions of the rotating vector oorresponding to the ini~
tial oonditions of the chaotic trajectpries one gets a deoaying
memory by averaging over different rotation histories.

Summarizing both oases and taking account of the general
relati7g/between the memory functlion and the oharacter of exciton
motion ™ one finds that for periodic vibrational solutions the
kernel represents a non-decaying osoillating memory and oorres~
pondingly onherent exciton propagation results., On the other hand
for chaotic solutions and averaging over different vibrational
trajeotories a decaying memory is obtained, i.e. in the long‘time
1imit incoheérent exclton propagation is expected. Hence by changing
the oontrol parameter and/or initial conditions a transition from
incoherent to ocherent . exciton propagation is possidble. It must be
stressed, however, that at the microscopio level the kernel is
purely oscillating in both oases, l.e. a summation over many kernels
containing chaotic vidbrational trajeotorles is necessary to obtain
a decaying memory. This summation is Just the familiar coarsegrain-~
ing procedure by whioh many vibrational states are attaohed to a
given exciton state. I

(32)

4. Decay of the Stationary Memory Function for Chaotic Solutions

We now consider the calculation of the stationary kernel by
averaging over chaotic solutions with different initial phases, i,e.
the stationary kernelfﬁﬁéi‘“t’)is given by

G <<t¢<(£,t)>9 : S ER

wherefﬁ¢[t/%) is represented by (14) and <...)9 denotes the avera-
ge over initial phases of chaotic trajectories. Uslng a standarad

expansion into Bessel functions of the exponential of the sine in (26)
one obtains

(34 )
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Where
v . T . —
B . ILOO(,{ (35 )
b, < NI, éou e 3, Outt)

and':rc are the expansion coefficients and the Bessel function of 1th
order, respectively, Inserting.(34)_1nto eqs. (14),(21) ore finds

w 2
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+ (¢ c.))}} >e4 _
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Here the meaning of ¢ and t 1s as in eq. (26), 1.e., they are taken
at the discrete times "szaT a.ndt:v_LT » respectively, The
variation of A<~ and {; within the intervals between the kiocks is
easlily seen to result in additional oscillations connected with the
£>S‘term in (21), which do, however, not ocontribute to the deca& of
the memory function due to kicking. In order to indicate that these
oscillations were omitted the proportionality sign was set in (36).

: The average in (36) 1is expressed by the correlation funotion
(31) using a cumulant expansion up te second order in (36), i.e.
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. (The contribution of the first cumulate vanishes, <f9 =0 )
Passing in the V v' sums of (37) to the new veriables v, VLﬁV

using (31) and assuming a sufficiently large number of kicks Yz v ))4
between = and L one finds

-'aet/‘r

DL -4) ~ “h/lz*exp{ v,V )2 2 © e
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o
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Now setting Vaz—V,, = Ui ~ >/T and performing the 2€-~sum one
finally obtains

TL -4 ) Q\Vlzfexp[’r'&‘”%ﬂ ’ (40_)

where

N A o (41)
ST 20! _ 4 (c.c))
¢,¢' 4_&-@/&%&%(

The kernel (40) is of the familiar form of an exponentially decaying
memory function, the decey being desoribed by the parameter'[j .
The influence of a parameter describing an exponential decay of the
xernel on the various oharacteristics of exciton propagation is
discussed in and need not to be repeated here., In oontrast to
the standard theory of interaction of excitons with an'equilibrium
bath of phonons, however, in the present case the “bath" 1s due to
chaotic trajeotories of a nonlinear vibration interaoting with the

M-
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excltons via a noise like modulation of the *site energles. Thevpara-
meter [! 9 €Q. (41), contains the characteristics of the nonlinear
kicked vibration éxplicitly.
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