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1. INTRODUCTION

We consider the superconductivity model Hamiltonian as fol-

lows’1: &/

~ M , A ;

H= % T,(a%a, + a* a ~A s coarara a . ‘ '
joq AR AL an) - g 1gh g ATH TR . (1.1)

As usual’?®/, we rewrite eq. (1.1) in the form

~ M -

H= % 2T (§_+l_g )__E_ I ocy0i0; - (1.2)
i=1 Do, j<M ,

Here af =¢g.. + io i o are the Pau11 matrices. The operator

of the numger of gartlcles is given by

Mo
.% 2-—(1&021). (1.3)
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- In this wirk n always denotes the number of pairs in our sys-
tem, so that the solution ¢ of the Schrodinger equation .

(H-E) ¢=0 | ’ (1.4)

satisfies the condition

(N -2n)=0. : (1.5)

Up to now there exists one method of analysing Hamlltonlans of
the type (1.1), (1.2) for n » =, the Bogolubov method /2,4,5/,
This method is exact in the thermodynamical sense. In this
paper we construct exact (if n'+ =) eigenfunctions and eigen-
~values of the Schrddinger equation if the kinetic energy is a
. step-like function of the momentum and c¢;; =1 (cf.(1.1)).

Our method consists in substituting for large n the finite

- difference equation deduced from the Schrodlnger equation by -
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the corresponding differential equation. The article is or-
ganized as follows. In sec. 2 we study the exactly solvable
double Racah model (see’®:7/ ). The parameters in (1.2) are

chosen as follows:

M=2n

T 0, 1<ig<nm _
i={1. n+1l<i<2n (1.6)

1, it 1<i,j<n orif n+1<i, j<2n,
o] |

0, otherwise,

This model is the simplest one which has a "new" branch of
the excitation spectrum which is not given by the Bogolubov
. u-v transformation method.
In sec. 3 we consider the nontrivial model with the parame-
ters

(1.7)

in eq. (1.2). For this case and a large number of pairs(n-e)
we construct the wave functions and eigenvalues of the Hamil-
tonian which are exact if the condition (3.16) is satisfied.

In sec. 4 we discuss the general case where the interaction
coefficient function is a constant and the kinetic energy is .
a step-like function of the momentum. The parameters in
eq.(1.2) are chosen as follows:

M=n..q_,

b .
T, =L,, if —E—(k—l)<i$};—.k, k=12,..,4d, (1.8)
Cyj =1,

Here the numbers d, b, /b are integers, d> b . Since every
continuous function can be approximated by a step-like func-
tion as exact as necessary the only ‘assumption of our method
is “Cyj =1,

2

S,

even so that all numbers Ep

One can prove that in the limit, where the kinetic energy
becomes a continuous function, the new excitation spectrum
branches (with the frequences Wgs a=1, 2,...d-1cf.(4.34))
will be confluent with the old ones (with the frequences r ,

=1, 2,...d cf.(4.12)). Note that our method may be gene-
ralized to the case of an interaction function of the form

Cyj = E 8aCia Cja -

In sec. 5 we compare our results with some results of the
u-v transformation method. Our exact(asymptotically exact)
equations for the spectrum lead to new branches besides those
branches of the spectrum which are given by the u-v transfor-
mation method (see the dependence on the parameters m,k,

k, in equation (2.8), (3.15), (4.41), respectively).

It is necessary to remark that these new branches of the

spectrum do not contribute essentially to the statistical sum

S Lq : ,
z(0,m,M) =3 <B,njle ? |B,n> (1.9)
B

(the summation runes over all states with n pairs, M is the
number of vacancies in eq.(1.2)) in the sense that they do
not contribute to the quantity
lim 1nz(6, n, M) /n. (1.10)
N—»o0

M=yn

The reason is that the multiplicity of the state with quantum
numbers {,, ky,, k=1,2,...,4, a=/1,2,..., d-1, k,=

=1,2,3,... does not depend on k,
d
P(gl,..-,ed, kl,u., kd—l) = p(el,...,ed)= p[llf(ep)’ (1.11)
v n’!(n;-2q +1) 0 n’
) = o= - (1.12)

Here n’ = %. is the number of added spins; it is supposed to be

are integer. Since the multipli-
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city (1.11) 1s independent of k,, the summation over k,
a=1,2,...,d=1 gives us some factor in eq.(1.9), weakly de-
pendent on n .

This work is related in a way with refs. devoted to
the problem of error of the u-v transformation method.

/8-10/

2. TRIVIAL EXAMPLE

Here we study the Schrédinger equation (1.4) with the Ha-
miltonian (1.2), (1.6). Let us introduce spin-vectors

k=1, 2 £’
15008, LY 5 @
¢ 4! ! 2 et 2’

Spin gk is described by the quantum numbers fk, m,

by < n/2, m,{ <f,. (2.2)
Now the Hamiltonian (1.2), (1.6) looks like

H-n+325, -%(s’{s,ls;sg) . ' (2.3)
where

(E'm” (S, [Em) =mby,, &,

(Cm st gm) -\ ErmD-mby.5,,, o (2.4)

ST =" *.

Equation (2.4) implies that the Hamiltonian (2.3) is dlagonal.
The condition (1.5) assumes the form

(Sz1+szz) Y =0

and gives

m, =-m,=m, (2.5)

Thus, the eigenvalues of the Hamiltonian are
A 2

4

(2.6)

Let us denote

My = - -
0 oA’
. ) (2.7)
n ' S
by =5 -Pyg . k=12,
Then eq. (2.6) turns into
' : 2.2 '
A 2 _PhtPe 2.8
: n
OSPk .<.§_v k=lv2v
where
A-n 1,2 ' ‘
E, =~ 2" (1-=)°-A. (2.9)
0 2 ( X

If A >1=Ag then |mg}<n/2 (see egs. (2.7), (2.2)) and E,
is the ground state energy. On the other hand, if A <1, to
the ground state there corresponds ll~l =n/2 =-m; then
the ground state energy is (-A).

3. THE SIMPLEST NONTRIVIAL HAHILTONIAN

Here we consider the Hamiltonian (1.2), (1.7) in the nota- -
tion of sec. 2

H =n+2s22-§(s’]+s’;)(s;+s;), : - (3.1)

Later on, the number n will be considered to be large; the
numbers £, m, £tm will be supposed to be of an order of mag-
nitude n; correspondingly, we substitute y {“-m* for the ra-
dical in eq. (2.4). Taking into account (2.5) the Schrédinger
equation (1.4) has the form

' A2 _ =0, (3.2)
V(‘m) d’fm _,?(e m2) {¢fm+l +¢lm—l 2¢£m } ) .
V(m) =n+2m -4A((%-m?/n -E, : A (3.3)

S



here we have taken | =, ={

(cf sec. 2) for simplicity. Like
in sec. 2 we represent V(m) as :

V) A+ 2 -mg)? (3.4)
n “

= - — 3.5
mO i 4N " ( )
Suppose
4A > n/g, 2A>1, A =1/2, (3.6)
so that |myl <€ (cf. eq. (2.2)). We have

4A

A-n-28p2 B2 g o, (3.7)

The crucial point of this and of the next section is the trans-
formation of ‘the difference equation (3.2) into a differential’
equation for large n (as n+ «). We have

ey, (& 1 a” (3.8)
lﬁgm+1+ Yo -1~ 2 = ( dmé-+ = dm4+... )y, ’
The substitution
m-mg;= yvn (3.9);‘{?

in eqs. (3.2), (3.3), (3.4) leads to

a2 1 a¢

F —_ - - v ] =0’
[_(y.n) &% " o ay ]Q(y)
where
F(y,n) = = (@°y _2c)(1—-E—-+...), (3.11)
A(B+cy/\/n_+y2/n) - \/B— . .
6

w?=4/B, 2 =-A/(A-B), ‘

’ (3.12) .
B = (Ez-mg)/nz. ¢ =-2my/n.
So, for large n, eq. (3.10) reduces to the quantum hadronic

oscillator equation. Cobsequently, the eigenfunctions and ei-
genvalues are -

O @) =expl- 02 yEIH, (VG- 9) + e, (3-13)
G = (K + Ho +en (3.14)
Using eqs. (3.12), (3.7) we get'
2 Ve »
4A > n : ﬂ —(n/4A)
E =n - Z22¢° - o e kY ————— 3.15
n n ) ir +4A Vv -3 ( )
Note that eq. (3.14) is valid only in a certain region
k<g:.n<<n, (3.16)

If the difference 2A - 1, 2A > 1, tends to zero, the number g
also tends to zero.

4. THE HAMILTONIAN WITH A STEP-LIKE KINETIC ENERGY

4.1. Let us study the Schrédinger equation (1.4) with the’
Hamiltonian (1.2), (1.8). Using the notation of sec. 2 we have

d

~ d .
+ -
H = kE1Lk(n/b + 28 ) -(A/n)k'pz=1 SkSp

(4.1)

(this time S,= -152 (;i, n(k -1)/b <i < nk/b) ) and the Schr'd—}
dinger equation assumes the form '
{Vim,,my, e, my) -

C(4.2)

1 . . . . 2
< - =0,
RyR,o(/am, - 9/0m )"+ 1o

- (A/n) p 0 0
1<k, p<d gmyebgmg

where



Rk=\/£E-—m2, (4.3)
d 2
V(m e my) = k§1Lk (n/b +2m,) -Af*/n -E , (4.4)
d
{ =
kEIRk (4.5)

(cf. eqs. (3.2), (3.8)).
The numbers L, and b will be supposed to be fixed and as

in sec. 3 we suppose further n/b to be large. Remark that the

numbers My, k=1, 2,...,d are connected by the condition

(1.5)

q
2 (n/@b) +m ) =n, (4.6)
k=1 k

4.2. To calculate the minimum of the function (4.4) under
condition (4.6) we consider the equations for the absolute
extremum of the function V -2a3¥m ‘

k
av , -
—— - 23 =0 o (4.7)
om m=m
k
where a is a constant.
Denoting by
a, =Lk -a
(4.8)
A ={.A/n
we rewrite eq. (4.7) as
a, +Amg/RS= 0. (4.9)
Then, we have
mi=-a, b, /ry (4.10)
. RO _
Rk =AL /T, (cf. eq. (4.3)) (4.11)
Ty =\/a.2k+A2 . (4.12)

8
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From eqs. (4.5), (4.8) and (4.11) it follows

i

d
A=-ad s LI . (4.13)
and eq. (4.6) givés
d n ’
kfl(ﬂ)——ak'gk/rk)=n' (4.14)

In principle, equations (4.13) and (4.14) are sufficient to
determine both the parameters A and a .

Thus, the point m,=m? , k = 1,2,...,d is the conditio-
nal minimum of the function (4.4). Now, using the Taylor ex-
pansion and eqs. (4.4) and (4.10) we have in the neighbour-
hood of the minimum

. 3 )
Vvear A s (Zk (no-n0)® 2 - (4.15)
n ok, p Azﬂk '
- ...A_z_(mk_mi)(mp—m;) + 0((m -m 91,
' a t
A -39l (D _ kKky _ AZ.g/A-E.
2 k (35 - ) n/ (4.16)

Let us study the term with derivatives in eq. (4.2),"T2 . Sub-
stituting there R (see eq. (4.11)) for Ry, one gets

R 2 g o2 2
T, --20 3 Gy (02 9% ) (4.17)
D kp Rty om% Am dm

4.3, In the following, we use the standard procedure: for -
the simultaneous diagonalization of two quadratic forms (4.17)
and (4.15). Denote

(4.18)

Zk =(mk—m§$ \/rk/ﬂk/A.



denote further

D2_ S b (4.19)

Ty

and introduce vectors h ,ha with the components

2 _ 4,20

h =ve/r, /D, EhZ=1, (4.20)
i 4.21
=28y by | ( )

Thén,keq. (4.17) transforms into

. ' 2
T, = Ap2rnd?os 2, : (4.22)
n 0% %2

With the notation (4.18) and (4.20) we rewrite conditions
(1.5), (4.6) in the form

(h, Z) = 0. o | (4.23)
If

@(Z) = ¢, (Z)8,((h,2)), o ({;.’24)
then

Tp B(Z) = Oy ((h,2)) Te® 1 (2). | - (4.25)
Taking | |

@, ((h, 2)) = 5((h, 2)) o | (4.26)

we ensure eq. (4.23) to be fulfilled.

4.4. Now let us consider the quadratic form Vp eq. (4.15).
In veriables Z, compare (4.18), it looks as‘follows

A e 2 2, 2 '
o = T DT l-(m,2)" + Zryz 1. : (4.27)

We have to check the extremum of the expression in the brac-
kets under additional conditions (4.23) and

\

2z%-1. (4.28)

10

Let us substract from the expression in the brackets the func-
tion 2(h, Z2)6 +m2ZZ§- In this way we derive our conditions
- .

of the extremum of the expression (4.27)

(r?

t -0z, -h,(h ,Z) -h 5=0. (4.29)

Whence it foliows that

Zy=(y v + b8/ -0?), | (4.30)

where

y=(g,2) =L MZy +h,h 8/ -a?). (4.31)
. K .

Cobdition (4.23) implies,

S (hgehyy +hp8)/@f-0?)=0. | (4.32)
k .

The system of equations (4.31), (4.32) has a nontrivial solu-
tion (y, 8§) if its determinant is equal to zero. This means

2 o
h,h 2 h? h . '
€ K2\ s E_(z 2k = -1. (4.33)
Suppose the numbers re» k=1,2,...,d are different 'in pairs.
Then, one can reduce eq. (4.22) to the following form:

0. 4 S
> “2“ — -0, | v (4.34)
kor, p-o®) :

£ a : '
=3 —— . (4.35)
P rp(ak+ap)

We rearrange the numbers r. into a monotonously increasing se-
quence 1, » P (r), pp, () >p (). If all the numbers ¢, have
the same sign (we did not succeed in proving this conjecture),
equation (4.34) has just one root @, in-between every-two num-
bers py(D, Px+{r) and (d-1) roots altogether.

4.5. Our system has (4 - 1)-degrees of ‘ffeedom ( cf.
eqs. (4.6) and (4.23)); thus, it is quite natural that it has

11



(@ - 1) modes. In a usual way, (with eq:. (4.23)), one can pro-
ve that the eigenvectors Z(a) =(Z,(a)),, k =1,2,...,d, a=
=1,2,..., d -1 form the orthogonal basis ’

(Z(a), Z(B)) = 8,8 e B=12,.,d-1. (4.36)

Instead of variables Z, we introduce now new variables y_,

Z,= % Z (y . | (4.37)

With this notation the quadrat1c forms (4.27) and (4.22) 1look
like

_ Azt |
Yy N D Z_lw y ’ ‘ e ' (4'38).
- d-1 .2 v _
T, --Ap?'s 9 (4.39)
a=1 aya2 N : ,

Using the condition llDz— 1 (cf eqs. (4.13) and (4.19)) and
eqs. (4.15), (4.27), Uy, 38), (4.17) and (4.39) for A> Ay (cf.
eq. (4.43)), the Schrodinger equation may be transformed into
the equation

1, 97t 52
—( 2 (- ————+w2y2) + A+ .00 =0. (4.40)
2' a=1 - ayaz' a‘a

This is the equation of the system of quantum hadronic oscil-
lators weakly perturbed. Thus, we get the eigenfunctions as
some products of functions (3.13) in every variable y,, and
_the admissible values of the energy

d-1

a

¢ | :
l Z 2L (-——— " LI ) I n——-—l+2 E kaw Foeee . ' (4.41)
=1 i

Ty

Here, the values of the parameters k, are restricted analogo-_
“usly to eq. (3.16). _

. Note if ¢, ~n/Rb for all k, k =1,2,..., d, then the
.transformatioh (4.18), (4.37) is similar to transformation

12

(3 9). Regarding to.parameters fk, k=1,2,...,d, the r.h.s.
of eq. (4.41) is exaxt only for large values of these parame-
ters.

Note further that it is impossible td compare egs. (3.15)
and (4.41) because in eq. (3.15) we have taken b=1, d =2,
L; =0, Lg=1 and then eqs. (4.13), (4.14) give a = 1/2,
I;=1Iy 3 ON the contrary, when der1v1ng eq. (4.41) we have
proposed that all numbers P, k=1,2, ,d are different.
Denote by B(ﬁ) PEREE Ed) the express1on in braces in
eq. (4.41). One can prove that
B(E k 1,fk—l, Zk+1,...,ﬂd)—

(4.42)

SBE e by .

k-1’ K® " =2l'k+ 0(1/“).

a)
One has to take into account the variation of the parameters
A and a in eq. (4.41) indiced by variation of the parameters
ls, s=1,2,..., d in eq. (4.42) (all these parameters are
connected by eqs. (4.13), (4.14)).

The critical value of the parameter A, A=Ay as mentio-
ned begore is determined by the condition

Ag ¢
—_3 k

1, A=0 (4.43)
nooy iLy-a|

(see eq. (4.13)) and by eq. (4.14). If A<Agy, then A=0; if
A>Ag, then A = A(ly, {,, s L g5 A) >0, DzA/n = 1. Consider
formally the limit where the kinetic energy becomes a conti-
nuous function of the momentum. From eq. (4.43) it follows
that .

Ag{ n/(2D) ,u, n/(2b) ) = O
if d,b s e

and ]L - 0.

kl1
5. CONCLUSION

Here we shall compare our formulas for the allowed energy
values (eq. (2.8), (2.9), (4.41), (4.42)) with analogous for-
mulas of the Bogolubov method.

For the ground state energy the latter method gives

13



4 E (5.1)

The excitation spectrum, when the term of the fourth power of
the creation and annihilation operators a*, a are neglected,
is determined by the operator

M

H’ = X Q (a*a_+a*_a ), . : (5.2)
2 » i -i -

where (we have taken cy =1)

s . e i s

e,..__..T._a\’ (5.3)
1 1

so that A, a, u, v are defimed by

M _; M )
A-ad s ot s vPan, (5.4)
2n - ] 1 . _
) j=1 1 .
u8=(1+e;/0;), Z=(l-e/0). - (5.5)

At first, let us consider the formulae in the fourth section.
Similarly to eq. (1.8) we transform in eq. (4.8) the quanti-
ties e; into a, . We are convinced of the fact that eq. (5.4)
agrees to eqs. (4.13), (4.14) if only all numbers f,, k = -
=1,2,...,d are equal or close to the maximum {y = n/(mﬁ
This result together with eqs. (4.41) and (4.42) shows the
£y -dependence of eq. (4.41), k=1,2,...,d, to coincide,
if (n/(@b)) =€ << n/b, with the excitation spectrum wrich is
~given by the u-v transformation method. '
On the contrary, the k, - dependent part of eq. (4.41)
=1,2,..., d-1 represents new branches of spectrum which
are not given by the u-v transformation method. The dependen-
ce on the parameters p,, k = 1,2, in eq.(2.8), if py<<n,
coincides with the excitation spectrum (5.2). The m-dependen-
ce in eq. (2.8) can also be given by the method of u-v trans-
formations; one has to apply this method separately to both
.the independent Hamiltonians which constitute the Hamiltonian
(2.3). Finally we should like to remark that our method and
the Bogolubov method give an n-independent ground state
energy difference.
We shall conclude by the remark that our work gives the
implementation of the idea by Anderson /11 , §3.
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