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1 . INTRODUCTION 

We consider the superconductivity model Hamiltonian as fol
lows 11• ~/ 

M 
H = 2 T 1 (a *1 a 

1 
+ a*. a 

1 
) 

i = 1 -l -

A. . 
2 cija.*a*. a .a. 

n 1:$1, J;S;M 1 -1 -J 

As usual 131
, we rewrite eq. (1.1) in the form 

H 
M 1 1 2 + -
I 2T 1 ( ,.- + -2 u . ) - - 2 c .. u . u . (1.2) 

i = 1 ~ Zl ll 1·:S i, j 'S_M IJ 1 J 

Here uf = u}ti ± iu yi, u are the Pauli matrices. The operator 
of the number of particles is given by · 

M M 
N ~ (a.*a. +a*. a.)= I 2.!...o ~uzi· ). ( 1. 3) 

j = 1 1 1 -1 -1 i = 1 2 

In this wirk n always denotes the number of pairs in our sys
tem, so that the solution r./J of the Schrodinger equation 

(H - E) r./J = 0 (1.4) 

satisfies the condition 

(N - 2n) r./1 = 0. (1.5) 

Up to now there exists one method of analysing Hamiltonians of 
the type ( 1. 1), ( 1. 2) for n ➔ "" , the Bogolubov method 12•4• 51• 
This method is exact in the thermodynamical sense. In this 
paper we construct exact (if n· ➔ oo) eigenfunctions and eigen
values of the Schrodinger equation if the kinetic energy is a 

. step- like function of the momentum and c ij = 1 ( cf. ( 1. 1)). 
Our method consists in substituting for large n the finite 
difference equation deduced from the Schrodinger equation by 

l
f~Blittt'lltibi!l tsilw1IT31l \ 
ij Gll~~ME D!cieioomtmO J 
t •. £:1.Snb1CTFiHA 
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the corresponding differential equation. The article is or
ganized as follows. In sec. 2 we study the exactly solvable 
double Racah model (see 16,71 ). The parameters in (1.2) are 
chosen as follows: 

M = 2n 

{.
o, 

T = 
i 1 • 

ciJ = {

1, 

0, 

l~i:S n 

n+1$i$2n 

if 1::, i, j ::, n 

otherwise • 

(1.6) 

or if n + 1 ~ i, j ~ 2n , 

This model is the simplest one which has a "new" branch of 
the excitation spectrum which is not given by the Bogolubov 
u-v transformation method. 

In sec. 3 we consider the nontrivial model with the parame
ters 

M = 2n 

T. -{ 0, 
I -
. 1, 

1:Si,Sn 

n + 1 :s i < 2n 
(1. 7) 

c1j = 1 

in eq. ( 1. 2). For this case and a large number of pairs (n ➔ oo) 
we construct the wave functions and eigenvalues of the Hamil
tonian which are exact if the condition (3.16) is satisfied. 

In sec. 4 we discuss the general case where the interaction 
coefficient function is a constant and the kinetic energy js 
a step-like function of the momentum. The parameters in 
eq.(1.2) are chosen as follows: 

M=n,.!. 
b ' 

Ti = L k , if ~ (k - 1) < i .s ~ . k, k = 1, 2, ... , d , 

C ij = 1 , 

(1.8) 

Here the numbers d , b, nib are integers, d > b • Since every 
continuous function can be approximated by a step-like func
tion as exact as necessary the only assumption of our method 
is c 1. = 1. 
2 '. J 

One can prove that in the limit, where the kinetic energy. 
becomes a continuous function, the new excitation spectrum 
branches (with the frequences Cu a, a = 1, 2, . . . d - 1 cf. ( 4. 34)) · 
will be confluent with the old ones (with the frequences rk, 
k = 1, 2, ..• d cL(4:,I2)). Note that our method may be gene
ralized to the·case of an interaction function of the form 

cij = I ga c ia c ja • 
a 

In sec. 5 we compare our results with some results of the 
u-v transformation method. Our exact (asymptotically exact) 
equations for the spectrum lead to new branches besides those 
branches of the spectrum which are given by the u-v transfor
mation method (see the dependence on the parameters' m,k, 
ka in equation (2.8), (·3.15), (4.41), respectively). 

It is necessary to remark that these new branches of the 
spectrum do not contribute essentially to the statistical sum 

1 A 

--H 
z (0, n, M) = I < {3, n I e 8 I /3, n > (I. 9) 

f3 

(the summation runes over all states with n pairs, Mis the 
number of vacancies in eq.(1.2)) in the sense that they do 
not contribute to the quantity 

Jim ln z(0, n, M) /n, (1.10) 
Il ➔ OO 

M=yn 

The reason is that the multiplicity of the state witp quantum· 
numbers ek, ka• k = 1,2, ••• , d, a= 1,2, ... , d -1, ka = 
= 1,2,3, ... does not depend on ka 171: 

d 

p(el, ... ,ed, kl, ... , kd-1) P ce 
1 

, ••• , e d) n rceP), 
p=1 (1.11) 

n' I (n' - 2q + 1) n' 
rce ) = . , e = - - q. 

P q ! (n' - q + 1) ! P 2 (1.12) 

Here n'= .!!... is the number of added spins; it is supposed to be 
b 

even so that all numbers e are integer. Since the multipli-
P 3 



city (1.11) is independent ofka, the summat~on over ka, 
a= 1,2,.~., d = 1 gives us some factor in eq.(1.9),weakly de
pendent on n • 

This work is related in a way with refs. /S-1.0/ devoted to 
the problem of error of the u -v transformation method. 

2. TRIVIAL EXAMPLE 

Here we study the Schrodinger equation (1.4) with the Ha
miltonian (1.2), (1.6). Let us introduce spin-vectors Sk, 
k = 1, 2 

n ➔ ·+ 

.!..Ia1=Sp 
2 1 

2n 
1 I 
2 n+l 

➔ ➔ 

17i = s 2 • 

Spin Sk is described by the quantum numbers £k, mk, 

f k s. n /2, I m k I ~ f k . 

Now the Hamiltonian (1.2), (1.6) looks like 

A ' A + - + -
H = n + 2S z2 - - ( S 1 S 1 + S 2 S 2) 

n 

where 

( f'm' 1S zlfm) = mnff, 0 mm'• 

( f ' m ' J S + j f m) = \, (e + m ..- l ) ( f - m) S ff , c5 m + 1, m ' ' 

S- = (S +) *. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Equation (2.4) implies that the Hamilt~nian (2.3) is diagonal. 
The condition (1.5) assumes the form 

(Sz1 + 8 z2) 'P =O 

and gives 

m2 =-m 1 =m. (2.5) 

Thus, the eigenvalues of the Hamiltonian are 

H o " = n + 2m - }._ l f 1 ( e 1 + 1) + f 2 ( e 2 + 1 ) - 2m 2 l . ,1 L 2 m n . (2.6) 
4 

> 

Let us denote 
• n 

mo= - ~• 

ek = ..!!_ - P . k. ·1 2 2 k •.. = ,· • 

Then eq. (2.6) turns into 

A 2 
ffe1f2m =Eo +2n(m-mo) + A(p1+P2-

n 
0 ~ pk ~ 2 , k = 1, 2 , 

where 

2 2 
P1+P2) • 

n 

(2. 7): 

(2.8) 

A-n 1 2 ( ) E0 = - --0 - -) - A • 2. 9 
2 A 

If A> 1 =Ao then lmol <n/2 (see eqs. (2.7), (2.2)) and E 0 
is the ground state energy. On the other hand, if A < 1, to 
the ground state there corresponds £ 1 = f 2 "' n/2. = - m ; then 
the ground state energy is (-A). 

3. THE SIMPLEST NONTRIVIAL HAMILTONIAN 

Here we consider the Hamiltonian (1.2), (1.7) in the nota- · 
tion of sec. 2 

A A++ - -
H = n + 2Sz2 - - (S 1 + S 2 ) (S 1 + S 2 ) 

n 
(3.1) 

Later on, the number n will be considered to be large; the 
numbers £ , m, £ ± m wi 11 be supposed to be .,pf an order of mag
nitude n ; correspondingly; we substitute v f 2- m 2 for the ra
dical in eq. ( 2. 4). Taking into account ( 2. 5) the Schro4_inger · 
equation (1.4) has the form 

V(m)t/1 0 -~U 2 -m2}1t/Jf +t/10 -21/10 l=O, 
Lm . n m+l Lm-1 Lm 

V(m) =n+2m -4A(£ 2 -m 2)/n -E. 

(3.2) 

(3.3) 

5 



here we have taken f 1 = f 2 =f (cf sec. 2) for simplicity. Like 
in sec. 2 we represent V(m) as 

4A 2 
V(m) =· A + -- (m - m O) n 

n 
mo =- 4X· 

Suppose 

4A > n/f , 2A > 1, A = 1/2, 

so that !m 0 [ < f ·(cf. eq. (2.2)). We have 

4A 2 4A 2 
A=n- 0 £ + 11 m 0 -E+2m 0 • 

(3.4) 

(3.5) 

(3.6) 

(3. 7) 

The crucial point of this and of the next section is the trans
formation of·the difference equation (3.2) into a differential 
equation for large n (as n ➔ 00). We have 

d 2 1 d
4 

tµ/] 1 + t/In 1- 2t/Ie =(--+- - + ... )t/Je 
Lm + Lm - m dm2 12 dm4 m 

(3.8) 

The substitution 

m-m 0 =_Yvn (3.9) 

in eqs. (3.2), (3.3)~ (3.4) leads to 

[ F(y , n) _ ~ l d 4 
dy 2 - 12n dy 4 - ... l 4(Y) = 0, 

where 

F(y, n) 
A + 4Ay 2 

A(B + cy /vn+ y2/n) 

C y } 2 2 )(1---·+ ... ' - (w y - 2£ B ,Jn (3.11 

6 

•\ 

~· 

11 

w2=4/B, 2£=-A/(A·B), 

B = (f 2 -mg)/n 2 , c =-2m 0 /n. 
(3.12) . 

So, for large n, eq. (3.10) reduces to the quantum hadronic 
oscillator equation. Cobsequently, the eigenfunctions and ei
genvalues are 

<l\ (y) = exp I - w/2 • y 2 !'H k ( v-;;; • y) + •.• , 

1 
ck= (k +2)w + ... 

Using eqs. (3.12), (3.7) we get 

E = 
0 

_ 4A f2 n · f 2
-(n/4A)2 

n - 4A + 4A • k v 2 -- + ... 
n 

Note that eq. (3.14) is valid only in a certain region 

k<g•n«n. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

If the difference 2A - 1, 2A > 1, tends to zero, the number g 
also tends to zero. 

4. THE HAMILTONIAN WITH A STEP-LIKE KINETIC ENERGY 

4.1. Let us study the Schrodinger equation (1.4) with the 
Hamiltonian (1.2), (1.8). Using the notation of sec. 2 we have 

H 
d d + _ 

I l k (n/b + 2S zk) - (A/n) I S k SP 
k=l k,p=l 

(4.1) 

➔ 1 ➔ 
(this time Sk= 2 I ai' n(k -1)/b < i $. nk/ b) ) and the Schro-

dinger equation assumes the form 

IV(m 1 ,m 2 , ... ,. md) -
(4.2) 

1 · · 2 
-(A/n) I RkRp 2 (a/amk- a/amp) + ••• lt/1

0 0 =0, 
1$.k,p<;;_d t.lml .•• t.dmd 

where 

7 



R =·'f2-m2 
k V k k • 

d 

V(m 1, ... ,md) = k:
1
Lk (n/b +2mk) -Af

2
/n -E 

r 
d 

I Rk 
k = 1 

(cf;·eqs. (3.2), (3.8)). 

(4.3) 

(4.4) 

(4.5) 

The numbers L k and b will be supposed to be fixed and as 
in sec. 3 we suppose further n/b to be large. Remark that the 
numbers mk, k = 1, 2, ... , d 'are connected by the condition 
(1.5) 

d 
I. (n / (2b) + m ) = n • 

k = 1 k 
(4.6) 

4.2. To calculate the minimum of the function (4.4) under 
condition (4.6) we consider the equations for the absolute 
extremum of the function V - 2a I. mk 

av 
am k 

- 2a = Q: C 
m=m 

where a is a constant. 
Denoting by 

ak =Lk -a 

6 = f , A/n 

we rewrite eq. (4.7) as 

a k + 6 m ~ / R~ = O • 

Then, we have 

m~ = - ak £ k / r k 

· R; = 6£k/rk 

·-rk =\/at+ 62 

8 

(cf. eq. (4. 3)) 

(4. 7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

I 

l 

' 11 

f 

From eqs. (4.5), (4.8) and (4;11) it follows 

A d fk 
6=6-I-, 

n k = 1 rk 

and eq. (4.6) gives 

d n 
I (-2b -ak,fk/rk) =ll, 

k=l 

(4.13) 

(4.14) 

In principle, equations (4.13) and (4.14) are sufficient to 
determine both the parameters 6 and a . 

Thus, the point mk = mk , k = 1,2, ... , d is the· ·conditio
nal minimum of the function (4.4). Now, using the Taylor ex
pansion and eqs. (4.4) and (4.10) we have in the neighbour
hood of the minimum 

A V =A+ - I 
n k,p 

r 3 e 
[ _k _( m _ mo )2 ,:_p_ 

/).2f k k r 
k P 

(4.15) 

apak 
- _'\ 2-(mk-m~)(mp-m~) +O((m -m

0
)

3
)], 

A 
n akek 

I 2L k (- - -- ) - !l2 • n/ A - E 
k 2b rk (4.16) 

Let us study the term with derivatives in eq. (4.2);'T2. Sub
stituting there Rk (see eq. (4.11)) for Rk, one gets 

I T 2 

' 
1\6

2 

n 

~ep a2 a2 
I--(~--
k, p rk r p amt amk amp 

) . (4.17) 

' 

•: 4.3. In the following, we use the standard procedure• for 
the simultaneous diagonalization of two quadratic forms (4.17) 

! and (4.15). Denote 

Z k = (m k - m ~) v r k / e k / 6, (4.18) 

9 



denote further 

2 f k 
D = I 

rk 

and introduce vectors h , h with the components 
a 

hk=vf/rk /D, I.h~=l, 

h ak = a k. h k • 

Then, eq. (4.17) transforms into 

" - A 2 a 2 a2 . 
T 

2 
= - D [ (h --) - I. --- ] . 

n az k az 2 
k 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

With the notation (4.18) and (4.20) we rewrite conditions 
(1.5), (4.6) in the form 

(h, Z) = 0. 

If 

'1l(Z) = <ll 1 (Z)ct: 2((h,Z)), 

then 

" " 
T2 <ll(Z) = <ll 2 ((h, Z)) T2<ll 1 (Z). 

Taking 

<Ii 2 ((h, Z)) = o ((h, Z)) 

we ensure eq. (4.23) to be fulfilled. 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

4.4. Now let us consider the quadratic form V2 eq~ (4.15). 
In veriables Z, compare (4.18), it looks as follows 

A 2[ 2 2 2] V 2 = 0 D - (ha Z) + I. r k Z k • (4.27) 

We have to check the extremum of the expression in the brac
kets under additional conditions (4.23) and 

2 Izk =l. 

10 

(4.28) 

Let us substract from the expression in the brackets the func~ 
tion 2(h, Z)o +CiJ 2I.z:. In this way we derive our conditions 

k 
of the extremum of the expression (4.27) 

(r:-<u 2)zk -hak(ha,Z) -hko=O, 

Whence it follows that 

2 . 2 
Z k = (ha y + h k o) / ( r k - CiJ ) , 

k 

where 

2 • 2 2 
y =(ha, Z) = I (hak y + hak hk o)/(rk - Ci) ). 

- k 

Cobdition ( 4. 23) implies_ 

I (hakhky + h: o)/(r:- CiJ
2

) = 0. 
k 

(4.29) 

(4.30) 

{4.31) 

(4.32) 

The system of equations (4.31), (4.32) has a nontrivial solu
tion (y, o) if its determinant is equal to zero. This means 

(I hk hak 2 
k 2 -) 

(rk-CiJ2} 
= I 

k 

h2 
k 

r2 ---2 0: 
k-CiJ k 

2 
h ak _ 1). (4.33) 

Suppose the numbers rk, k = 1,2, ... , d are different •in pairs. 
Then, one can reduce eq. (4.22) to the following form: 

f k qi k 
I 
k r (r 2 2 = 0' 

k k-<u ) 

fp a k 
- i---- -\ 

rp k - p · r (a k + a p) 
p 

(4.34)°· 

- (4.35) 

We rearrange the numbers rk into a monotonously increasing se
quence rk ➔ pk(r), Pk+ 1(r) >pk(r). If all the numbers r/;k have 
the same sign (we did not succeed in proving this conjecture), 
equation (4.34) has just one root wk in-between every two num
bers Pk(r) , Pk+ £r) and (d -1) roots altogether. 

4. 5. Our system has (d - !)-degrees of freedom ( cf. 
eqs. (4.6) and (4.23)); thus, it is quite natural that it has 

11 



· (d - 1) modes. In a usual way, (with eq~ (4.23)), one can pro
ve that the eigenvectors Z(a) = (Zk(a)},, k = 1,2, ••• , d, a= 

= 1, 2, •.• , d - 1 form the orthogonal basis 

(Z (a), Z (,B)) = 0 a,B a,,8=1,2, ... ,d-1. (4.36) 

Instead of variables Z k we introduce now new variables ya , 

d-1 
Zk=·I Zk(a)ya. 

a=l 
(4.37) 

With this nota_tion the quadratic forms (4.27) and (4.22) look 
like 

A 2 d- l 2 2 
V =-DI w y, 

2 n a=l a a 

T _ A 2 d-1 
2 --nD I 

a=l 

a2 
a 2-· 

Ya 

(4.38) 

(4.39) 

Using the condition Ao 2= 1 (cf. eqs. (4.13) and (4.19)) and 
eqs. (4.15), (4.27), n(4.38), (4.17) and (4.39) for A> A0 (cf. 
eq. (4.43)), the Schrodinger equation may be transformed into 
the equation 

l d-1 a 2 
--( I (---2 +w 2y 2) +A+ ... )<ll(y)=O. 
2 a = 1 . ay . a a 

a 

(4.40) 

This is the equation of the system of quantum hadronic oscil
lators weakly perturbed. Thus, we get the eigenfunctions as 
some products of functions (3.13) in every variable Ya• and 
the admissible values of the energy 

d a e . ti 2 d- 1 
E = I I 2l k ( ..!L - ~) - n - l + 2 I k w + .•. 

k = 1 2b r k ,\ a= 1 a a 
(4.41) 

Here, the values of the parameters ka are restricted analogo
. usly to eq. (3.16). 

Note if ek"' n/2b for all k, k = 1~2, .•• , d, then the 
transformation (4.18), (4.37) is similar to transformation 

12 

(3.9). Regarding to.parameters f k, k = 1,2, ... , d, the r.h.s. 
of eq.' (4.41) is exaxt only for large values of these parame
ters. 

Note further that it is impossible t-0 compare eqs. (3.15) 
and (4.41) because in eq. (3.15) we have taken b = 1, d = 2, 
L1 = 0, L 2=J, and then eqs. (4.13), (4.14) give a= 1/2, 
r1 = r 2 ; on the contrary, when deriving eq. (4.41) we have 
proposed that all numbers r k , k = 1, 2, .•• , d are different. 
Denote by B (f 1' f 2 , ••• ,' fd) the express ion in braces in 
eg. (4.41). One can prove that 

B(fl, ... ,ek-l't'k-1, ek+l' ... ,ed)-
(4.42) 

-B(£ 1, ••• ,£k-l' fk, ... ,£ d) =2rk+O(1/n). 

One has to take into account the variation of the parameters 
t1 and a in eq. (4.41) indiced by variation of the parameters 
£5 , S= 1,2, ... , din eq. (4.42) (all these parameters are 
connected by eqs. (4.13), (4.14)). 

The critical value of the parameter A, A= Ao as mentio
ned begore is determined by the condition 

Ao 
n- I 

k 

fk 

I !Lk-a1 
= l ' t1 = 0 (4.43) 

(see eq. (4.13)) and by eq. (4.14). If A<Ao, then 11=0; if 
A> A0 , then t1 = !1{£ 1' £ 2 , ••• , £ d; A) >0, D 2A/n = 1. Consider 
formally the limit where the kinetic energy becomes a conti
nuous function of the momentum. From eq. (4.43) it follows 
that 

A0 ( n/(2b) ' .... n/(2b)) ➔ 0 

if d, b ➔ OQ 

and jl k-Lk_1! ➔ 0. 

5. CONCLUSION 

Here we shall compare our formulas for the allowed energy 
values (eq. (2.8), (2.9), (4.41), (4.42)) with analogous £or
mulas of the Bogolubov method. 

For the ground state energy the latter method gives 

13 



M 2 /). M 
E o = _ I 2T i V i - - _ I c ij u i Vi u j v j • 

l = 1 Il l,j = 1 

(5.1) 

The excitation spectrum, when the term of the fourth power of 
the creation and annihilation operators a* , a are neglected, 
is determined by the operator 

M 
H' 

2 
2 11 . (a * a . + a* . a . ) , 

l i l -1 -1 

where ( we have taken c ij = 1) 

2 2 
11i=Jli +ei, ei=T 1-a; 

so that Ii, a, u, v are defimed by 

A M. -1 
Ii =li-2 I 11j, 

n j= 1 

2u~ = (1 + ei /111 ), 

M 2 
l v. = n , 
1 l 

2v ~ = (1 - e . / 11 . ) . 
l l l 

(5.2) 

(5.3) 

(5.4)· 

(5.5) 

At first, let us consider the formulae in the fourth section. 
Similarly to eq. (1.8) we transform in eq. (4.8) the quanti
ties ei into ak. We are convinced of the fact that eq. (5.4) 
agrees to eqs. (4.13), (4.14) if only all numbers fk, k = 
= 1, 2, ..• , d are equal or close to the maximum f k = n / (2b) 
This result together with eqs. (4.41) and (4.42) shows the 
ek -dependence of eq. (4.41), k =·1,2, ... , d, to coincide·, 
if (n /(2b)) - £ « n/ b, with the excitation spectrum wrich is 
given by the u-v transformation method. 

On the contrary, the ka - dependent part of eq.(4.41) 
a = 1, 2, ... , d - 1 represents new branches of spectrum which 
are not given by the u-v transformation method. The dependen
ce on the parameters Pis• k = 1,2, in eq.(2.8), if pk« n, 
coincides with the excitation spectrum (5.2). The m-dependen
ce in eq. (2.8) can also be given by the method of u-v trans
formations; one has to apply this method separately to both 
the independent Hamiltonians which constitute the Hamiltonian 
(2.3). Finally we should like to remark that our method and 
the Bogolubov method give an n-independent ground state 
energy difference. 

We shall conclude by the remark that our work gives the 
implementation of the idea by Anderson 1111 , § 3. 
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