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In the previous paper /1/ wWe have investigated the static
polaron states in the trans-polyacetylene and polyyne models in
the framework of the finite-band continuum scheme introduced for
the first time in /2/. It has been shown in /1-4/ that the finite-
band scheme gives more precise results in comparison with the
well-known linearized continuum scheme. Here we study the physical
properties of the static polaron in the diatomic polymer model
/5/. The numerical calculations of polaron states in the diatomic
polymer have been performed in /4/ whereas the results of the
linearized continuum scheme are presented in /6/.

The finite-band continuum egquations for the one-particle
electronic states in the diatomic polymer have been derived first..
in /3/ and have the form
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together with the self-consistent gap equation
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A(x) = - ‘u% 5 (A:(x)Bk(x) - ¢.c)coska. (2)
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Here Ak(x) and B (x) are eigenstate amplitudes normalized by - the
Ls2

condition i) dx(]Ak(x)|2+|Bk(x)|2) =1, L = Na is the chain

length, A(x;ng the gap parameter, Ak(x)=A(x)coska, ck=2tnsinka,

Vo =v.coska, where v, denotes the Fermi velocity vF=2tDa. The wave

vector k in (2,3) is measured relative to kF = n/2a.

Let us consider the polaron sclutions of (1,2}. The gap para-

meter A(x) is obtained in the usual form /6/

A (x) = B, - Kv [tanhK (x+x) - tanhK (x-x)] (3)

where 2A° is the Peierls gap in the electronic spectrum. As usual,
the polaron distortion (3) leads to an eigenspectrum which is
symmetric around E=0 and contains two localized intragap levels
with energies E = * w, and two branches of conduction and valence-
band states with energies E = + w . For E = +uy the amplitudes of

a localized state are found to be

¥
A+(x) = N0(1+iJsechKo(x—xD) , B+(x) = No(l—i)sechKo(chO) ’ (4)
172 4 1/2
where ND = [Ko(w0+a)/8mo] ' N(j = [Ko(wo—a)/amo] f
_ 2 2 2 - 2 2, 1/2
tanhZI(ox0 = Kv./4h , A AD «”, and KV, (I_\D "’o) . For a
state with E = —, one obtains that A_(x) = (N;/ND)A+(X) and
r
B_(¥) = =(N/N)B, (x).

The amplitudes of continuum states are obtained in the form

A (x) = N [ (wk—a+Ak+ek) -i(wk—a+Ak-s:k)+25 (1—i)tanhK°(x-xU) 1 .

(5)
Bk(x) = Nk[ (wk+o:+Ak+ck)+1(wk+:x+Ak-ek)-2p(1+1)tanhK0(x+xo)] R
_ 2 2 _ 2_2 -1/2
where N = ck[aka(wk+Ak) (ck + I(gvn ZKOVFk/LKO)] '

5§ = (1/2)KOka[l—i(wk—a+Ak)/ck], p = (1/2)Koka[1+i(mk+a+Ak)/ck].

The continuum states have energies w: = t(ci+Ai+oﬁ2).
.



The self-consistent condition (2) takes the form

fr/2 - K{(m)E(8,m") - E(m}F(E,m") + K(m}F(&,m’)] =

=t (v_-v,) [(1+y7) (1-p7) (m'2-p%) 1 P20, (6)

where F(@,m’) and E(¢,m") are incomplete eiliptic integrals of the

first and second kind,respectively, m2=(1-z2)/(1+yz),m’=(1-m2)1/2,

y = o:/ztn, z = A/zto, e = KOVF/Zt0 , v, are the occupation numbers

of levels with E = tw and the angle 6 is defined as
2 2 2
tge = p[+y®)/ (yHz"-p-py?) 1A
Consider now the physical characteristics of polarons. The

polaron width EP is defined as

£ = 2x0 = (1/K0)arcth(KovF/A}' (7)

The global charge of a polaron is obtained to be
Lz

9 = [ ax 80°(x) = (2 - v~ v )|, (8)
~L/2
Thus, polarons have the standard charge Q = *|e| {for v_= 2, vy=1
and v_= 1, v, = 0, respectively) and spin S = 1/2.
Finally, we obtain the formation energy of polarons
E, = 4KV {[E(m)-(1-m)K(m)1/m* + yT(n/2,n,m))/m(l+y") ">
2
+oat (v, - v__)/wo, (9)

where I(m/2,n,m) is the complete elliptic integral of the third
Kind and n = =(1-p°). Note that in contrast to /6/ in the finite-
kand scheme the polaron energy (9) depends on «. Nevertheless, for
z% 1 and yz« 1 we obtain the Known results of %the linearized
continuum scheme /6/. In the limit a - w, { or, equivalently, Ky,
-+ 4 ) the polaron energy (9) approaches one of two kinks { see
VAT YA N Mo?:'eover, from (8} we cbtain that Ep -+ o, Thus, at a = A

the polaron state is ih fact identical with a kink-antikink pair

infinitely far apart. Table 1 lists the basic physical characteri-



stics of polarons which have been calculated in the framework of
the finite-band continuum scheme, numerically /4/., and in the

linearized continuum scheme /67

Table . The physical characteristics of a negatively charged
polaron in a diatomic polymer. The parameter set from /4/ is used:

t,= 3eV, ¥ = 80eV/nm, X = 68x10%V/nm°, o — 0.3eV.

Model N(sites) AO(eV} w, (eV) 2% (a} E, (ev)
82 0.726 0.647

discrete 162 0.722 0.51 «12 0.645
202 0.722 0.645

finite band —_ 0.724 0.515 12.1 0.643
linearized — 0.706 0.499 12.6 0.636

Finally, +the polaron state in a diatomic polymer is
investigated in the framework of the finite-band scheme. As we
expected, the finite-band scheme gives a better agreement with the

numerical results as compared to the linearized continuum scheme.
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