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In the previous paper /1/ we have investigated the static 

polaron states in the trans-polyacetylene and polyyne models in 

the framework of the finite-band continuum scheme introduced for 

the first time in /2/. It has been shown in /1-4/ that the finite-

band scheme gives more precise results in comparison with the 

well-known linearized continuum scheme. Here we study the physical 

properties of the static polaron in the diatomic polymer model 

/5/. The numerical calculations of polaron states in the diatomic 

polymer have been performed in I 4/ whereas the results of the 

linearized continuum scheme are presented in /6/. 

The finite-band continuum equations for the one-particle 

electronic states in the diatomic polymer have been derived first 

in /3/ and have the form 

a Bk (x} 
(Ek -(X} Ak (x) -iv - (ck -it\ (x)) Bk (x) 

" a x . 
(1) 

a A,(x) 
(Ek +a) Bk (X) -iv - (ck+iAk(x) )Ak(x) 

" a X • 

together with the self-consistent gap equation 

• l: (A (x) B (x) 
k,(T k ,k 

- c.c}coska. (2) 
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Here Ak(x) and Bk(x) are eigenstate amplitudes normalized by the 

"' condition f dx(jA (x) j 2+jB (x) j
2

) = 1, L = Na is the chain • • -L/2 

length, I:J. (x) is the gap parameter, I:J.k(x)=A(x)coska, ck=2t0sinka, 

vn=v,coska, where v, denotes the Fermi velocity v,=2t0a. The wave 

vector kin (2,3) is measured relative to k, = rrj2a. 

Let us consider the polaron solutions of (1,2). The gap para-

meter A(x) is obtained in the usual form /6/ 

(3) 

where 2l:J.0 is the Peierls gap in the electronic spectrum. As usual, 

the polaron distortion (3) leads to an eigenspectrum which is 

symmetric around E=O and contains two localized intragap levels 

with energies E = ± w
0 

and two branches of conduction and valence

band states with energies E = ± wk. For E = +w
0 

the amplitudes of 

a localized state are found to be 

tanh2K0x0 

state with 

B_(x) = -(N0jN~)B+(x). 

B+(x) = N'" (1-i)sechK (x+x) 0 0 0 

' a, 

one obtains 

( 4) 

For a 

and 

The amplitudes of continuum states are obtained in the form 

Nk[{wk-a+!:J.k+ck)-i{wk-a+!J.k-ck)+28(1-i)tanhK0 (x-x0)] 

Nk ( (wk +o:+!J.k +c) +i (wk+a+Ak -ck) -2p ( l+i) tanhK0 (x+x0)] 

where N = c (Bw L(w +A) {c2 + Ifv2 - 2K2v 2 jLK ) J-1/ 2 
k k k k k k OF"k OF"k 0 1 

2 
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The self-consistent condition (2) takes the form 

[rr/2 - K(m)E(6,m') - E(m}F(S,m'} + K(m)F(S,m'}] 

rrt (v -v+) [ (l+y2) (1-p2) (m'2-p2) lt/2/2W 
0 - 0 

(6) 

where F(S,m') and E(S,m') are incomplete elliptic integrals of the 

first and second kind, respectively, m2
'="(1-z

2)/(l+y
2

) ,m'=(l-m
2

)
1

/
2

, 

y = 0:/2t
0

, z = ll/2t
0

, p = K
0
v,/2t

0 
, v± are the occupation numbers 

of levels with E = ±w
0 

and the angle e is defined a·s 

tge p[ (l+y2)/(y2+z2-p2-p2y2) Jtn. 

Consider now the physical characteristics of polarons. The 
polaron width EP is defined as 

The global charge of a polaron is obtained to be 

"' 
Q = J dx llpP(x) = (2 - v+- v_) lei. 

-L/2 

(7) 

(8) 

Thus, polarons have the standard charge Q =+lei (for v_= 2, v+= 1 

and v_= 1, v+"" 0, respectively) and spinS= 1/2. 

Finally, we obtain the formation energy of polarons 

EP 4K
0
v,{ [E(m)-(l-m2)K(m) ]/m2 + y 2n(rr/2,n,m) }/rr(l+y2) 1/

2 

+ a
2
(v+- v_)jw

0
, (9) 

where n(rr/2,n,m) is the complete elliptic integral of the third 

kind and n = -(l-p2
). Note that in contrast to /6/ in the finite-

band scheme the polaron energy (9) depends on a. Nevertheless, for 

z 2« 1 and y 2« 1 we obtain the known results of the linearized 

continuum scheme /6/. In the limit a~ w
0 

( or, equivalently, K0v, 

~ l'o. ) the polaron energy ( 9} approaches one of two kinks see 

/3,4/ ) . Moreover, from (8) we obtain that €P ~ oo. Thus, at a= w
0 

the polaron state is ih fact identical with a kink-antikink pair 

infinitely far apart. Table 1 lists the basic physical characteri-
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sties of polarons which have been calculated in the framework of 

the finite-band continuum scheme, numerically /4/, and in the 
linearized continuum scheme /6/. 

Table 1. The physical characteristics of a negatively charged 

polaron in a diatomic polymer. The parameter set from /4/ is used: 

BOeVjnm, K == 68xl02eVjnm2
, ex = 0.3eV. 

Model N(sites) 6
0

(eV) w
0 

(eV) 2x o (a) E P (eV) 

82 0.726 0.647 discrete 162 0.722 0.51 •12 0.645 
202 o. 722 0.645 

finite band - 0.724 0.515 12.1 0.643 

linearized - 0.706 0.499 12.6 0.636 

Finally, the polaron state in a diatomic polymer is 

investigated in the framework of the finite-band scheme. As we 

expected, the finite-band scheme gives a better agreement with the 

numerical results as compared to the linearized continuum scheme. 
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