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1. Introduction

Strong Coulomb correlations are now considered to play a very
important role in forming the electron spectrum in oxide supercon-
ducting compounds (zee, for example, /). Anderson was the first
to note the proximity of these compounds to the Mott-Hubbard system
near the insulator-metal transition. He proposed the theory of super-
conductivity on the basis of the effective exchange Hamiltonian of
the form/3/-

Het 2 (t-n )l o (ion o2 (S - fniny)
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4 )
with (1 J > nearesat neighbouring sites on & square lattice;
&= 42 is the antiferromagnetic coupling., The Hamiltonian

(1} results from the Hubbard model when “2€ >> ¢ and acts in the
subapace of singly occupied sites (i.e. in the lowest Hubbard subband).
Anderson suggested that the exchange interamction on the 2D square
lattice brings about a resonanting valence bond state consisting of
an ensemble of singlet electron pairs end giving rise to the syper-
conductivity in the system. At the same time it was pointed out in
(see alao 5/ } that superconducting rairing may te caused by s
kinematic interaction. This interaction is included immanently into
the Hamiltonian (1) through operstor factor { 4- 1, o) which rest-
ricls the phase space available for an electron motion.

In the present paper the role of exchenge and kinematic inter-
ections is considered and their contributions to a Euperconducting
pgap equation are investigated by the two-time Green function method
or the basis of the Hamiltonisn (1).

2. Green functions and gap equation

A very complicated problem, one encounters when treating an
electron system on the basis of (1), is a relation between charge
(toson) degrees of freedom and spin (fermion)} ones. A coupling bet—
ween these two classes of excitations is taken into account in



in the simplesat way by applyin§ the wean-field approximation. This
approach was elaborated in ’

by using a mixed boscon-fermion
(slave boson) techni uejs

’9/. However, in our opinion, the approxi-
matione employed in 3.6,7/ ignore effects which may arise due to
the kinematic interaction.

To avold the difficulty Juast pointed osut and to keep possgible
kinematic effects we choose an equivalent representation for the
Hamiltonian (1) by using Hubbard operators /10/

6"0_ > o6 \Jeo s
KOs clegimee), XX X2 mia (i),

Xse— 4
T Cre C’"-e-J ete.

Then we have
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where dﬂa is the chemical potentianl and T = -G~ . The opera-
o oF . :
tore ,Y (}? ) corregpond to creation (annihilation)} of elec-
trons in the lower Hubbard subband. Concerning the nature of commu-
N . Lol -] oG-
tation relstions it should be noted that ,.X; , )({ he~-
=S
have like fermion operstors; while X[ like boson ones.
How to take account of pairing let us iIntroduce two-component

Nambu operators

L1
/kl 4-6' * o6 o6
(i), R
3 (3)

and define the two-time (anticommutator) meatrix Green function

oe‘

(2)
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with normal diagonal matrix elements and anomalpus nondiagonal
ones, The Fourier transform of it is given by

|
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To obtain a quasiparticle spectrum of the system, we employ
the wethod of the irreducible Green functions developed in/11’12/.
According to this method the equation of wotion for a dynsmicel
variable X?r(%} ig written as a sum of a regular linear in

er(f) part due to time averaged forces and an irregular part
é??hc¥j due to inelastic quasiparticle scattering

(SN )= (X RS h K () )

L]
G~ s
Here the irreducible part éz} C?j of the pperator A:' (¥)
is defined as an orthogonal onme to the linear term > A,?X;—.{t")
by the equation

</‘gj)(€€-j>=0- (7

(6)

o
Simultaneously this equation determines the coefficients &ﬁz
as it will be shown below (see eq.(10)).
After the Fourier transformation (5) we obtain the following
equation for the Green function

& Lo + L. [
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Te derive an equation for the irreducible Green function
& éff‘(f}/)@?{f’)»» entering into (8), we differentimte it with
respect to the second time #£7:
-1 .c_/. ‘gs‘é )FG' ’ J?*G" G re, .,
gz K& C)X () = Zhey AKX () +

RN /g;.‘*'gff) 5 .

where we have used egs.(6) and (7). As it is easy to check that the
irreducible Gresn functiens < &'?—/X-e>>“, is proeportional to
the scattering matrix & &'f/%?>>w . This matrix defines all
the inelastic scattering proceases of gquasiparticles end is propor-
tional to the second and higher order in ¢ and J interaction
terms.

In the present paper we derive a renprmalized gquasiparticle
spectrum only to the lowest order in interactions, keeping in (6)
and {8) the linear terms, and ignore the finite life~tims effects
deacribed by the irreducible Green functioms (9). This approxiuation
can be called the generslized Hartree-Feck-Bogolubov approximation
allowing to take into account effects of superconducting pairing.
Spmetimes it is mlso celled the moment-conserving approximation
gince in this approach+the first two moments of the spectral density
function ¢ {X‘.&({-)’ Xdis‘(f ’)j> are conserved’ 13214/,

FNow %o calculmte the Green funetion in this lowest osgder
approximation, we should determine the coefficients -4‘5 by
means of {T). Since according to (£) 3[-6'= [Xf; c?f]._ Z’;ﬂ-{,\’;—
one gets from {7) the following equatioms 3

2 Ay 4x )f}"b A AL KT

{10)
Remetbering thats"the coefficients Jg“e are (2x2) wmatrices with
components (Jfl" )d/s and using the commutation relations
for the Hubbard operators one may express from (10) the components

-
C#M )d/; through correlaticn functionas as
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Here Qe 2° XGT ;.the sunmation runs over rf—’
gites nenrest to ﬂ;e ‘1? site; each p:ir% "*J ) denotes

nearest neighboure too. Note that diagonal components (,)?_.d )ﬂ
(‘7;118 )27_ are correlation functions of the normal type while
nondiagonal ones are of the snomalous type corresponding to a

pinglet pairing. &
N Purther introducing quantities 52-2 and Af- in the
42 -representation as X
G- [ & - t.i (f’-(/—)
SZ" = (‘#t't')-ﬂ * Z Ca#‘“)ﬂ {(16)
= (A sg * Z (#; € ~F T (7)

one obtains from (8} under the assump‘bions made above the matrix
equation for G (g w)

Rz 4 . <G> g
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i f /(18)



Finding selutione of (18), we obialn both normal and anomalous Green
funetions, respectively

&) 7t pe e RS
«XIX g 4= <R bt B

_(573')2
(19)
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where the quasiparticle spectrum 57— ig given by
2 < 2 R
ET) e (REp )+ 45/
() = Rl % .

By means of (13)-(15) and (17) we obiain in the usual way the follo-
wing self-conelstent equation for the gap A? in the spectrum

v

- ——

7’ v Ec * (22)

where 45 = Z ex/o{:x £a), Equation (22) includes both contri-
butions ~ & fl"“eo the kinematic intersction and ~ & due to
the exchange one, '
To soplve equation (22), one should take into account the symmetry
of superconducting states in the ancmalous correlation functiovms (13),
(14) and (17). For the singlet pairing both the S -wave A,zs (2)..
bys, Qo g o o wave, 8420 )= 44 (msgf“ cosg,a),
Any Stnq,xa.:m? a, Btates are poesible + To ob-
tain some restriction on the symmetry of the gap function (17) in
eq.(22), we consider an exact condition for the Bubbard operators
<X‘.G'°X‘_§°> = , that eliminate two-particle states at one

aite. By using eq.{20) this condition can be written in the form

xS% % - <‘ff> ;’ é/."( ) 0

(23)



where <Q:r> =~ g *&O for rngf . s follows from this
equation, a nonzero solution for the gap is possible only for the

—wave state, Ag=A,y (F) . But for the ol -wave
pairing the kinematic interaction e doea not contribute to
eq.(22) and the latter comes to

- 4 <)
A‘fc( {%)=}q—% {d’( d’xv*? ZLAJ _'—')
(2

4)

3. Approximate calculation of the spectrum of a normal state.

To -caleulate spectrum (21), self-consistently, one needs to
estimate, besides the gap A (q-:) , the normal state spect-
rum .S'Zé" ‘ -~ . According %o {11), (12) end (16) the value of
52~— ig determined by normal correlation functions of twe

ty%es: firat, the fﬁnction <X'G'o X;G.> containing fermion-[:‘l—e,
operators and, second, the set of <X¢¢X¢€,¢> , <(Q G) >

ete,, with boson-like ones, The former usy be calculated by means of
Green function (19}, while to estimate the boson-like correlation
functions, we use a decoupling procedure of the "Hubbard-I" type 710/

( L= { g
XD m TS - (;5’)

<(X'o€‘)(-€7()(oa ”j)x<,\/ SXTDX, “ >=(4-3) Los)
<YGG Y (X“)OCQ >=0- (26)

The validlty of these approximations (25), (26) is discussed in
Appendix A,

Finally, we come to the following equation for g
and the chemical potential

"‘[’f )f‘d? *J;Z'ﬁ/:f‘ 2 MZL/? ) 2946 1)

254 &
:’2{ v F 1 3 Mzir}/,

(28)



where /L= % LN D is the average occupation number,

Thus the quasiparticle spectrum (21) for the superconducting
gtate is determined self-consistently by the set of equations (24),
(27) and (28). It should be noted that the "Hubbard-I" type appro-
ximation was adopted in deducing the equation for the normal state
spectrum 05 and chemical potential S , Wwhile the
form of egs.{22), (24) for the superconducting gap A (éf} was
found without this decoupling procedure. We emphasize also that
handling with Hubbard operators up to now we have treated the prob-
lem in terms of "real” electron excitationa.

4, Comparison with mean-field theorie5/3’6'7/

Let us now compare our resulte (22), (24}, (27) and (28)
derived here for the "real™ electron spectrum with analogous
expressions obtained in /3’6'7/. To do this, we employ the slave
boson representation 78,3/ which allows the mapping from Hubbard
operators to new fermion ‘7{-"‘ ’ 71,-4- and boson 5;‘ , 5,'
operators as

o5 £ a5’/ p+ 09 +
/v‘. . 4‘746‘" /Y‘ — tls'%f;‘") X! -» df. éf.

, ete,
(29)
with the completeness relation
# +
41 L foife
(30)

for each aite T . Then the Hamiltonian (2) may be rewritten
in the form

At 5 b b fl o FOT it o fifefpeifoc)

(qbc <g3¢
T ffe BAC EE ),

where the constraints (30) are taken into account by means of
Lagrange multipliers jl; .
Coneidering a purely fermion ("spinon") part of an excitation



spectrum for the Hamiltonian (31) one should first define by amlogy

with (3) two-component fermlon operators .s- H
fm
) {32)
end introduce a new Green function J (f‘ ?-L) ﬁs

Jf 2] = & ¢S 81, (y}»_
« f.-,- (t) /,f/-, (¢9»  «hult) e (€]
«hio (¥ /;5:: SR SN NPV
(33)

Ag before we find a spectrum to the firsg_order in interaction
by projecting the equation of motion for é?;-'{f"ff) onto the
original set of operators Qﬂ;r and neglecting the irreducible

]

Green functions which describe higher order scatttering processes
for new effective fermlons. Then, after the Fourier transform we
get the equation analogous to (18);

w—e?f-yi" A . 4 O
.E* : F (g“,w)=/ /
g  WtEg-pm o 1 (34)

»
where

gf:'éf-(é-éf)-af?' <7€:;]£‘6'>' 5.9’/’0‘ (35)
i)

Z(}[(%ta-fmr> <7£¢’ 7[”‘0‘))6 7 (36)

(/uet/u-? 37)

and we assumed also that the restriction (30) is satisfied only
in the average, therefore ﬂt’ is not depend on the site I .

The solutiens of (34) are



t L wrE
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(38)
) e
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with the guasiparticle spectrum ‘ '

~ g e

éf‘- = ~ - 11
( .) J ) / (40)

Finally, by means of (35) (39) We gbtain the following set of
gelf~conglstent eguaticns for 7 » 7;- and /t :

£7= g b - Hyzd’xﬁ‘ M{zfj' Ifo

(41>
re - & £z
? N %(f}‘_ff é“:' (azr) w2
- X - ,.‘/“ L (B
" [{ ( (43)

Agsuming :I.n {42) the S-wave pairing A = Azs &% , one comes to
the game set of equations as deduced in /3 6 7/. It 1is clear that
eg.(42) permits the o —wave pairing as well. However, the mean—
field approach bazed on the slave—boson approximation replaces the
local constraint (30) by a global one, /'J‘“—‘P 3_, and there~
fore misses the kinematic condition similar to (23) that reatricts
the type of a pairing state.

5. Digcussion

In the present paper, the superconducting pairing in a systenm
of electrons with strong correlations is considered by employing the
projections technigues for the Green functions. To descride elec-
trens in the lower Hubbard subband, the Hubbard operators were
introduced to avoid any decoupling of fermion and beson degrees of

10



freedom usually used in the slave-boson representation. As a result,
we obtain the quasiparticle spectrum of electrons (21), (22), (27)
and (28) to be different from that one for fermlone (spinoms},
{40Y-(42), deduced in the slave-boson representation. The most im-
"portant difference is the appearance, in the gap equation (22), of
a kinematic-type interaction 115/ which comes from the kinetic
energy term., Being proportional to f' it would give the main
contribution since in the liwit of strong correlations O’mtz/u «rt
"But “only the o -wave pairing is allowed in this 1imit
due -to the exact condition (23) that forbids two-pariicle
stétés on one site. Since in the case of c£ -wave pairing the kine-
metic interaction does mot contribute to the gap equation, only the
superexchange one ~ o] survives giving Eq.{24), as in the super-
exchangs theory of superconductivity propesed by Cyrot ‘
Therefore a kinematic type attractlon for the superconducting pal-
ring in the strong correlation limit, % > Do y proposed in

/4/ and considered'lately in our paper 5/ (gee also /18/) does
net work due to the _cl ~wave sytmetry of the gap in this case,

In the recent paper by Kotliar et al./19/, the infinite
Hubbard model with an a/~fold-degenerate band has been treated
approximately and a possibility of the superconducting pairing

. has been pointed out. By taking into account fluctuatiorn correc-
tions to the memn-field results in the slave-boson picture (see
sect. 4) & weak attraction ~ T  for the cf-wave (p-wave) ptates
was obtained for a low concentration of holes (electrons). In the
present paper, we consider only a linearized equation of motion
for the Green function in (8) and ignore all inelastic scattering
procespes that are responsible for fluctuations. To take them inte
account, one should consider the renormalization of the quasipartic-
le spectrum originating from the scattering matrix &i‘?/%l?>>
in e¢q.(9) which can lead to an additionsl contritution to the pai-
ring attraction of the order # in the < —>» o limit.

One should nete alse that an impertant contribution to the
renormalization of spectrum (16) in the normal phase may come from
the shert-range correlations neglected in the Hubbard-I type apprTe-
ximation (25) and (26) (see Appendix A, (A.4), (A.5)). Some of theae
renormalizations as well as an effect of an antiferromagnetic orde-
ring in the system will be considered elsewhere.

11
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Appendix A

4;
Following the method applied in /20/ we demonstrate here 1n a
short manner how the boson—like pair correlation functions
< )(5"' G <)(G€X > <X 00)(6'6-> can be calculated by

the same pro.]ection procedure _as defined by (6). Let us introduce
the set of operators (ﬁ) defined as
FE GO
Py YE) - s Xﬂ P

7w Ze
PER)- Lz e )5:.: x:’ w7

(3) oA
() 1. = e 97 X
PW y
Then the correlatlon functions under consideration can be now
expressed as

< &6

CXwp X3 = 5 <pF x>
Jth g Mg

(A2

(—T‘S‘

a.nd, besides <X X > <)( ) Z <X D .
Employing the nrojection (6) (7) to the equation of motion

for Green functions ¢ X ({-)/P-— CA o) > and keeping 1in
(6), as before, the part’'linear in Xl (z‘-} one comes to the

‘L.
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matrix equation

a)—.f?.;: + e A; «X;r/p;j()?—),\)w/ / X P d}i}jj
_!_!"*‘ [ &0 3 FFy &o 0 )
G5 wetSp [ XF R, (K B R

In particular, choosing P" = X_?- sy one arives at (18). After
calculating the a.nticc:mmutators in the right-hand side of (4.3) and
taking into_account that <X > <x‘i?°'>= £ we obtaln the

results (/i’.?‘ 0)
w—o o 2
J+A T =(8)- G2 /

T FF ny e
<)((/.* ¥ - C,z) 4di /<XJ'+A ){/"6‘

- o o 3 1,50 Fo 12
<Kk ¥ )9")/-&/05;;. X, )//

One may check that the approach developed here leads also to

correct consequences for the case h=0 y dees <X€‘-)( “Se

< <)(°1-> ”/ s etc, Thus the hoson-like correlation i‘unc‘cions can
be expressed by (A.4) through fermion-like omes given by egs. (19),
(20}, The solution of this self-consistent system of equations will

be presented elsewhere. Here we obtain, at least at T=0, an estimation
for the dependence of correlaticon functions in the right-hand silde

of (A.4) on the electron concentration /= by the Guiswiller appro-
ximatlion developed recently by Zhang et al. 21‘/. This gives for
nearest sites?

(A.4)

Fo s +
< )(J'.“‘ )f'/ > x;t <§/'1‘110" C‘./'G" >0 ,
[ ]

X % 94 (s 3

(4.5)

1-n} /7 '
where G4 = 2( ) /1+ ¢4-n)] end <A), 1s the expectation
value in the BCS state/ /. One can see from (4.4) and (A,5) that the

13



“Bubbard-I® decoupling procedure adopted in this paper neglects
the terms im the right-hand side of (A.4) proportional to (l-n) 7.
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