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ron correlation limit [2,3] due to the discovery of Hightemperature
superconductivity. In this casge state space in esch lattice gite ig
defined by three components, nemely: I 0 being a hole (or vacancy}
end two one-partiele stutes with spin up [T) = C:[0> or down[D:(;l(».
Here C_;,' )Cs. (&= t4) are the fermion ¢reation and eanihilation
operators

{Ce,C;}= Beer ){CS.)CQ,.'}:{C: C:;_}:O 5 (1)

and Ce [0D =0 (two-particle states!Z):C:C:,[ 0P are absent when elec—
tron repulsion is strongU > ©a ), The Hubbard operstors ];11 defined
with thesge staf:esXE%:l‘!‘.,P)<$,{.‘ in the lattice gmite 1 form o gene-
ral linear greded Lie algebra pl{2/1) [1,4]

(X0 XY =5(X T S s XV Suhammand®

Here anticommutator stends for two fermion operators (which change
the number of electrons in the gite by odd number) and commutator for
other cagses. The Hubbard's Haemiltonian

. + VRN
H=Z2X t. CleCje + Z Uy mepny, (U=, n.sehe, )

T 6=t4 o % 5 Y
expressed in termg of X;H'

H=Z{ (XX exe Uy XX A N

becomes that of a genersalized Heisenberg model on the superslgebra
apX{z/1) [2,3] » Faithful representation of the algebra is turee—dim—
engional and describeg spinless fermions and spin waveg.



Below we construct the simplest integrable Heigenberg models
on the real supersubalgebra of the spl(2/1} algebra. To attain these
ends (as in the quantum cage) we consider a linear problem for &
three—component spinor @T(x,‘t)=(f-’ﬁ ,‘bz 13(,) of the graded vector
apace vV @Ji) with two Bose and one Fermi dimengiong. Compact super-
subgroupUSE’h(Zli):{MGSPL(?_\‘D)MMEI} is generated by four Bose and four
Fermi generators [51 . Let us consider matrix-valued function of
two variables X andt )SEUSPLW)/H,which is diagonalized by the

matrices %,(x;t)éUSPL:(Z',‘I):

S b= xhZ ¢ b . (5)
Asgume constrainta on S to be quadratic, then there are two pos-
sibilities [6]
1. =38 -21 , 1. S7=% (6)

which relate homogeneous supergpaces i

I'USEL(Z“)/S(U(Z)@UU)) , II'USPL'(Q'l%(L(‘im@U@)) (T

The generators k{ of stationary subgroup H commute with =
[Z ’hilzo,i.e. y under local transformations we have

%(x;%)—»e“w’ﬂcg,(x,ﬂ b= il 8 =3 @

Tre 81(1,1) superalgebra is defined by the follewing commutation
relations

T, Ty=o (T, T3z [T, 20 o
and is Isomorphic to the algebra of superquentui mechvics sgm{.).

Cubic congiraint
= .
S =9 . 10)

oceurs on the noncompeact superalgebre cspu(l,1/1) [7] , end realized
on the 0SPU(1,1/13/U{1) honcgeneous superspace.
Let the iineer problem be of the form

U=10¢ . V=iag 8,5, (1)

It leads to the Landau-Lifshitz equation

18,208,871 . (12)

Just as in the theory of spontanecus symmetry breaking the stetionary
gubgroup H is a group of vacuum invariance; in our case it defines
the symmetry of the system physicel phase after transgition as well
ag the tangent plane of the homogensous superspace {7). This
tangent plene determines geuge-equivalent NLS model, and the local
gymme try group H transformg inte a global symmetry of the NLS model.



In order to construct the “attepr We consider a current ljr‘= 3, -1

e . I
(r= G,1). with g(xﬁ)eUSEL(zh) being & diagonalizing_'
nmatrix in eq.(5). Decompoge Superalgebra uspl(2/1) onto two ortog=

onal parts:uSPe{fo}=Lm@L('” where [L}{", L\J]}C IR h“:)l“ s and |
is the stationary subgroup algebrs < et Y, < LY,

/0 0 |y . DR,
L 3=t S 1% L. %=1® olo
¥ ®lo ¥ olo

, ¢
where W) | YLV ere o Grassmanian functions of x end 1 , and
15 the even Gressmanisn one., The zere curvature condition .7, -
Y+ ['3\:)'31\4]:0 and the equation of motien (12) allow us 4o
construct the component '}J; » Pexrforming gauge transformations, we
have from (11)

U=qUqg.q =07 +':j,)\7=3V3“+§tc}“=itf2+a“d¢+§j° e

and the following models :
I. A pure Grassmenian odd U(?;)vector HL3

i\#{t+ YL F2RY V=g | -Lq/:t+‘~}{xx+2.‘i71"f{“|§ =0, s .
II. Supersymmetric Bose-Fermi L(1/1)1Ls
1P+ P %—2,(@‘?#!71{1')‘?:03 Yt ¥, k2 EPL? V=0 , (6

-t N ‘ DU
From the equation Sfﬂ [Z ,’31}3,. one gets.immediately & connéc~ .
tion between the energy density of the Heigenbers Supermagnet ang-
the particle density of ILs model :

Logste Si= - (G vy ) , Lok SEPe LTy (o
Both models of “he magnet are supersymmatric with respect to the
globel transformations :S—’S /=~E"1,SR , ReUgpLialr) »

but  from the plane vergiong only the L{1/1) HLS model (18) poseases

global supersymmetry ; P = VP , Y= )

13)

- ~5 R FMRE. TS
SSRGS - ETTRE S e,
=if[{SATE ATRY 05T L o SR\
II'{A;E‘}sg_ _,({(-y.p ¢ 19 S"P)+(A%\{J {{7-5“(“") Eﬂ;{;—;ﬂ)}""‘p”
and  the Hampj;ltonian functions _
I. H_:hf(%xl}fx 1--\}1\&';,( —2Y Y ydx 5 (20)
mo Hz [(B9% + T,y - |Pl'-2|0PFw) dx (21)



The global supergsymmetry of the L(1/1)HMLS (16) gives zise to
the odd-Grassmenian integralsof motion Qif‘f\’-_?"\uclx )szft_ﬁtii ax
to exist and these are the first snd only local representatives of
an infinite series of the odd-Grassmanian nonlocal inteprals of mo-
tion whiech is generated by the elements Tas(d) and Ty (2)
of the transition matrixz | (9\) " {monodromy - matrix }. The leisen-
berg model (12) is defined by the Polsson superbracket on the curve
phase space [8] of the superalgebra usp}_(E/T) w},th structure con-

stants Cac
“ AR Cw Adg Sequ®

end Dby the Hamiltonian function (17). For the integrals of motien

which ave the components of supermagnetization vector Ma =
(-]
fS’ﬁ(x;{:) ax we get the superalgebra uspl(2/1)
{.Ma’aMﬁ}_CQEQMQ B ( )

then the odd-Grassmanian components M ,{®=95,.,%) generate the fol-
lowing gupersynme_try trangformations :

?gﬁﬁ-(ﬁgﬁf *fs?‘e)a %Sq:%(:?'il&l};‘i,_‘e))
58, =-3Erfa®), S5 =3EF -SRI,
§%, = HAsEr IR, T, B=®,8,).

To zgsol%'e constraint (6) let us congider the representation
«_(S¥] Salh = (S 87 to[pt at

S= S Pl \_.{Sq),where S= Si 2z.) =< O?-__) are elements of two-
dimengional algebra with getierators © and ©

D=L+ SUHTR | c (= £ 008, et

where gl:’” , -§1,g_ are C -number functionsg of X ,‘t . Then one

gets ) _

I'SQUSPLKZ\%(U(Z)dUU)) ',S::m=0 ,('{=*,?-,'S) , L.ee, in such a system
there ig no pure bosonic limit(neither es for the plane version
of WLS{15) ) and dynamics of the model is reduced to spin wave dyn-
amica

1. S &€ UﬁP"J@‘“) /S{h(ﬁl*)ﬁv(ﬂ). There is a bosonic limit
here (ag well as in the plone L(1/1) version of WLS(16)) s

) _ o™ e _ 3 e | - z =
%_ =%, 2= éi-'@l’-) )%s '—E,U' \Si %’L-&-\S[‘-’—) 7$‘ %),(23)
so thatl ST‘Y*[%:?{%‘:F;— and §I 3 {',_ is the fermionic components.
Mamiltonien of the leisenberg model in the first case is
H =" ii_.,.‘g. (C‘: C‘x+ C:xc"-x de b

+that iz the Hamiltonian of the medel of free nonrelativigtic fermi-
ons. The latter is related to a continuum 1imit of "olagaical" Hub-



bard model (4) at U —> o ,(U;j=3:_J;U) , @xpressed in terms of
the [lubbard operators, In terms of the Fermi operators (1) model (3)
may be reduced in the same approximetion to U(2)‘ NLS(15) (e.g.
by sveraging over grassmanian coherent states,‘{f>=é’:§%w“ §CZ%‘0> .
But for a mmcroscopic (classionl) state of the condengate type to
exist a bosonic limit (c-number limit) should exist as well. In our
model it is only possible in the second cege

SGUSPLW)/S(L{W) B U(4)) , when the Hemiltonien ig
H =l 38w~ (87 ) e) (R0 D) (K5 D)), Yo

then its fermionie part corresponds to the continuum limit of the
effective Hamiltonian

=2 (ST (G DG D) | e

proposed in [9] for the Hubberd model in +the limit U . In Eg{24)
Si=:Cy , S$=C{¢ o&i are the pseudospin operators, ol; = C:f)

G{j; = CM‘ are the vacation operators. In the ground
state there sre no vacations and all the pseudosping are directed up.
By analogy with the case I, one can assume the plane version of this
model (L(IMINLR (1€) ) to describe another representation of mo-
del (24) in the same phase with the macroscople guantum aversge
value,

Ultimately we note that for the noncompact supergroup
OSPU(1,7/1) more complicated equations occur with higher nonlinear
texms [7] due to the cubic constraint = g » Which are gimilar in
the form to those of the su{3) generalized Heigenberg model [10:] .
The exiension of the model is possible including superalgebra
spl{ N [M ) in order to teke into account ,d and other electron
stateg [11] » Two~dimensional models of Heigenberg supermagnet are
also posgsible to¢ find both in the form of either nonlinear & model
or the Ishimori one [11] .
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