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A ~reat interest of theoreticians all over the world is stimul­ated again to the Hubbard model [1] especially in the strong elect­ron correlation limit (2,3] due to the discovery of Hightemperature superconductivity. In this case state space in each lattice site is defined by three components, namely: j o) being a hole (or vacancy) and t>·1o one-particle states with spin up It>= C~io) or down\l-)~<\IJ>• Here C~ )C."' ,(r::=.\i-) are the fermion creation and annihilation operators 

c.nct C6" \c) :::.0 (two-particle statesf~)=C:c~Jo)are absent vwhen elec­tron repulsion is strong U ~ oa ) • The Hubbard operators L 1} defined with these statesX~"'=-\i)p><q..;i\ in the lattice site i form a gene­ral linear graded Lie algebra pl(2/1) [1,4) 

Here anticommutator stands for two fermion operators (which change the number of electrons in the site by odd number) and commutator for other cases. The Hubbard's Hamiltonian 

expressed in terms of )(.rt 
< > 

u = 2:'f t .. (x~x7t+x~·x~·)+ u .. x.ux~·} n .. \.,; '1..J '1..1 "'J"' J '" > 
(4) 

becomes that of a generalized Heisenberg model on the superalgebra spl(2/1) [2,3]. Faithful representation of the algebra 1s three-dim­ensional and describes spinless fermions and sp1n waves. 
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Below we construct the simplest integrable Heisenberg models 

on the real supersUbalgebra of the spl(2/1) algebra. To attain these 

ends (as in the quantum case) we consider a linear problem for a 

three-component spinor ~ T(x ,1::)= ( 4>1 :>~t. \ 1..) of the Graded vector 

space V (2.\1) with two Bose and one Fermi dimensions. Compact super­

subgroup u::.ru~l<l={MESPL(t\1))11:1+=1} is generated by four Bose and four 

Fermi generators [5} • Let us consider matrix-valued function of 

two variables X and t ,SE USPlllliVH, which is dia,:;onalized by the 

matrices ~ (x,i)E U;:\PL (Z\1): 

$ ( x, t) = }\x;b2:: '} (x,i:) (5) 

Assume constraints 
sibilities [6} 

on S to be quadratic, then there are two pas-. . 
I. s =3S-2I , II. 

) 
(6) 

which relate homogeneous superspaces : 

r. U%PL(2ii}%(U(zJ®U( I)) ' II. U$Pl(2\%(L(1[1)®U(1)) (7) 

The generators kt of stationary subgroup H commute with L. 
[z h]=O i.e., under local transformations we have 

' ' ' ~l(x;t) 
'a- (x,tJ ~ e ~(x,t), lC>);J=fT<(x~lk.i: % ---.. S . CsJ 

Tt·e sl( 1,1) superalgebra is defined by the following cormnutation 

relations 

(Si) 
) 

and h1 :1.somorphic to the algebra of superquantu·.1 rneclu .. nics sqml•-). 

Cvb:Lc constraint 

:S3=$ 
occurs on the noncompact S'J.peralgebra ospu( 1,1/1) [ 7 J , 
on the OSPU(1,1/1)/U(1) bomoceneous superspace. 

Let the linear problem be of the form 

u~ ~:>.% V= i~"-;; +:>,(Z,;:;x ::1 

It leads to the Landau-Lifshitz equation 

1. $t = [% 'zxx J 

(10) 

and realized 

( 11) 

( 12) 

Just as in the theory of spontaneous symmetry break:ine the stationary 

subgroup H is a group of vacuum invariance; in our case it defines 

the synunetry of the system physical phase after transition as well 

as the tangent plane of the homogeneous superspace (7). This 

tangent plane determines gauge-equivalent NLS model, and the local 

symmetry group H transforms into a global symmetry of the NLS model. 
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In order to construct the :'.atter we c~msider a current -::tt"-= ~r }-t (/~ o, 1) with l!r(x11:)E.\JSPL(2\1)being a diagonalizing matrix in eq.(5). Decompose superalgebra uspl(2/1) onto two ortog-onal parts:U..'-Dlt2Jt)=t5~'G>L(·!) where [ U.\.' LS)Jc l)~+jJ l'lo.C>C/(2.} and ut.) -, , 
u~) ) :s th~~:a:i(T~·r33·· ~'"·; ,:< 71_i' ~ 1 i) , (13) i¥.'do7 \-voo t;;here 1..V1 , 1.\Jt. , o/ are old Grassmanian functions of X and t , a.'ld 9 is the even Grar:smanian one. The zerc curvature condition 'd("' ''::1 01 -')/:1r +[:!'II J'Jr J-~o and the equation of motion (12) a.J.low us to construct the component ~~ • Performing gnuge transformations, v~ have from (11) 

U ='dUf+~x 'f=;.:>-t::, +':1, ,V:~Vf' +~tf=;_~z::~:>.";l,+':J. C14l and the followine models : 
I. A pure Grassmanian ada. U(z}vector ilLS 
;_~ +V, +2~"(Y,:o .;_v,: +V. +Z'\l;"!\"f;: -=o C15J 

t XX 
) t XX. II. Supersymrn.etric Bose-Fermi L(1/1 )HLS d\ + 'P,, l-2.\Y'f +Y'l')Cf'=o, ;_It'!+ 'P,;, +- 2, ~'I' If -=o (16l 

.·_.,: From the equation Sx==<Jt-t[Z:,~1}}' one 8ets-.immediately a. Codnec­tion between the energy density of the Heisenberg supermag:tiet and: the particle density of lJLS model : ~ ~ - - .-,· ~ . ·1..- - -
I. ldr:S,=-(.'f,V,+¥,:1(), !!.. 2:str%,='P<f'tVV. (17) Both models of "!;he macnet ~e supersyrnmetric with respect to the e;lobal transfo:rtl)ations :S-+,$'=1<-',SR > ~E\J'£!'1.,\2.\1), but from the plane versions only the L(1/1) liLS model (16) posesaes global supersymmetry : 'b <p = i 'If'\') , "i 'If " t '\) '§ liSJ11il toni an structure of the plane versions ( 15) and ( 16) is generated correspondingly by the Poisson superbrackets I l-' C:(-l f - r-l)rCAlf(&l ~ 'f A) dx r.J..A,l',1,;1.~J1Aw.-.'Y.'& ' ~'\v.~>r. ; c1sJ rr{A,&1 =i.f{.,;;(~A 0!:'-;~~)+fA ~ t~-(.-1/(A>p(R!~"1;- 'f fl\ldx(19) 'ls'_} o<f> w • T • T ~ w w &Y>'t> ') J ' and the Hamilto~an functions 

H = f I \ji; \if + '\';; \!';' - z, V, w:; "f.: 1( ) .ix , \ X. 1; X X 

H -~ f[<?, '1', +- '1', I¥;. - ~~~~-2.\4>1"\f~) clx . -~ 

(20) 

I. 

II. 

(21) 
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The global supersynunetry of the L(1/1 )l-IT.S (16) .::;ives rise to 

the odd-Grassmanian intecral~ of motion Q 12..-= j<f'¥ d x ) Q21=-Ji.V~ dx 

to exist and these are the first and only local representatives of 

an infinite series of the odd-Grassmanian nonlocal intec;rals of mo-

tion which is generated by the elements T2.'l\:A) and T 1 2-(.)..) 

of the transition matrix T ( '),) (monodrom~,r · matrix ) • The Heisen­

berg model (12) is defined by the Poisson superbracket on the curve 

phase space [ 8] of the superalgebra uspl(2/1) with structure con-

stants c.," , r ,_ ",.., A~ "' ~ ~ 
tA,~s-~~~. ~dPe,~ 

.,,e,c:.. ..::>tt.. ~e 

and by the Hamiltonian function (17). For the integrals of motion 

which are the components of supermagnetization vector ~ ~ ~ 

JS.,...(x,i:) ol.x we e;et the superalgebra uspl(2/1) 

(22) 

then the odd-Grassmania.n components M <l..f.CA..; 15,. .. , "&.) generate the fol-

lowing supersynunetry transformations : , _ 

'b %, = Hll•,f +f.-;~)' 'h$, =~(:iii I,} +f I,'i7)' 

~%,=-~il~>~f+I•~~), 'hy =tlS €C -S~I~)~, 
.Y - - - -

'bS,=t(-il~>,-!+-f",'il), r=(c,c.~J, '\l=('l'l 1 'il,) 
To resolve constraint (6) let us consider the representation 

"=r~·-~,_s, I j"_:_\whereS=(S' s~) L+~(c+c-1-)are elements of two-
tJ \ .F.+ \ 2.$~}· $ ... -_....)l 'J t =.... 
dimensional algebra with generators '9 and '11 : 

% • (x
1
1;) = %~' (x;t) + %~'(x~)~ , C114 ( x1

-1:-) = t114(x1-1:-)'~ ,(" = <, · , 4) _, 

where St;,q , ft,2... ere C -number functions of X , t . Then one 

cets 
r.:St::'\J%~L(~I;Jf,("U(<)®\5(<» ~%;"=0 ,c-<~•,>,•) , i.e., in such a system 

there is no pure bosonic llinit(neither as for the plane version 

of lTLS( 15) ) and dynamics of the model is reduced to spin wave dyn­

amic>J 
II. % E lJ% Pw (2.\l) /% ( L..(< I<),.V(<)). There is a bosonic limit 

here (as vrell as in the plo.ne L(1/1) version of HLS(16)) : 

c'"'=<>·"~'o'·'=- "3;/ ct<•> __ .L(i-\';1~)/ 1?-= ·h)C23) 
j:)_ "'' ,,,_ ;C (l1+\';i') > ~.- ~ ?'(i+\51"'-)•'> fl' 

so thatlS~o1.ft{<;?;~";'~~~)= ~and f, J f1. is the fermion1c components. 

Hamiltonian of the Heisenberg model in the first case is 

H =- ~j(c,: C,x + c,'", c.~ )dx 

that is the Hamiltonian of the model of free nonrelativistic fer.mi­

ons. The latter is related to a continuum lilni t of 11 classical11 Hub-
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bard model (4) at U ~ oo , CU~ = h~ U)) expressed in tenns of 
the Hubbard operators. In terms of the 1'enni operators (1) model (3) 
may be reduced in the same approx~ation to \](2) l~S(15) (e.g. by averaging over ,grassmanian coherent states/'V)=et~~t~orV~e.~c~~~o). But for a macroscopic (classical) state of the condensate type to 
exist a bosonic l~it (a-number limit) shoUld exist as well. In our model it is only possible in the second case 
%fU$PL)2j1)/£(L(i\i) •ll>\;(1)) , when the Hamiltonian is 

then its fermionic part corresponds to the continuum limit of the effective Hamiltonian 

H ~-?=*-•Joero~..j{ztzj- +(%,,"~-£)(si,+~)} ) (24) 
t,) 

' proposed in [9] for the Hubbard ffiodel in the limit 1J~OQ • In Eq!24) S:Z= oL~C..:~ )St=c.t,._,.(,t are the pseudospin operators, d-.;_ =C!t.> 
d..,~ = C. it are the vacation operators. In the ground state there are no vacations and all the pseudospins are directed up. By analogy with the case I, one can assume the plane version of this 

model ( L(1\1)NL% (iG) ) to describe another representation of mo­del (24) in the same phase with the macroscopic quantum average 
value. 

Ultimately we note that for the noncompact supergroup 
OSPU(1,1/1) more complicated equations occur with higher nonlinear 
terms [7] due to the cubic constraint S3 = % , which are similar in the form to those of the su(J) generalized Heisenberg model [10] • The extension of the model is possible including superalgebra 
spl( N I M ) in order to take into account p , d and other e;lectron states [11] • Two-dimensional models of Heisenberg supermagn~t are also possible to find both in the form of either nonlinear ~model 
or the Ishimori one [11) • 
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