


1. Int.roduction
Following the experimental discovery of the icosahedral
phase in the alt'nninium-manganese alloy by Schecbhnan et al. [1],
“much attention has been focused on the systems called aperiodic
crystals [2-20]. ‘

Levine.and Steirhardt [ 3,4 1 have introduced the notion of
quasiperiodic crystals or quasicrystals (G!})' for short. There are
three distinguishing features in the definition of C: (1) The-

- ideal QC exhibit a long-range  quasiperiodic positioml order
(i.e. the mass derxsiﬁy function is .quasiperiodic or ‘almost per-.
iodic ); (2) They have long-range ori&xﬁtiml order ( the bond
angles between neighbouring atoms are oriented (-on the average )
along an arbitrary chosen set of star axes) ; (3) They are | the
special kind of Delaunay systems [21] { the separation 1 between
nearest-neighbouring sites in quasilattice obeys the relations
d <Kr<l<«<RL= ), ' .

The ~one-dimensional quasicrystal (1D QC) is defined by the
positions R ‘of its atoms [4] given (in dimensionless form) by

Rn=n+a+'%[§+(s], W

where o , 3 ,p and T are the real mmbers, [y] denotea the

integerpartofyandnisanint%er mmber. :

If p=o=r, where T is the golden ratio equal to (147 5 )/2, then,

(1) defines the one-dimensional Fibonaccl quasicrystal (1D FRC)

[4,5]. o ‘
The spacing d

s n‘bebweenanyhaoneighbaxrameanbeexp-
ressed as
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T

= _ (2).
11;1 if[%l+(3]x[$+ﬁ]
The binary quasiperiodic sequence (BaS) {d } defines the

nrt,.n

positional long-range order in 1D FQC ( notice that the two dis~
tances 1 and 1+1/r are neither periodically nor randomly spaced) .
The electronic and phononic properties of the one-dimensional

quasicrystals are studied currently in the framework: of simple

models [22-41] .

The purpose of this paper is to investigate within the propo-
sed harmonic model the properties of vibrational spectra (VS) of
1D FRC's. . '

The considered model describes the lattice dynamics of perio-
dic and Fibonacci chain of atoms. The parameter q =z /.7, z > g,
called the parameter of quasiperiodicity (POR), measures devia—
tion of a model from the ideal, periodic ope corresponding to q=
z=0,

Unlike the previous investigations [ 32-41], the next-nearest-
neighbour interactions are taken into consideration.

The detailed numerical studies of the structure and fractal
dimension of VS are performed in a wide range of model parameter
using the free end boundary conditions (m)-

The paper is organized as follows. The specification of the mo-

del in Sec.2 is given. In Sec.3 the eigenvalue - problem for

dynamical matrix (DM) is described. The used mumerical methods
and ‘results of computer similations are presented in Sec.4. Sec.5

conlains main conclusions and Sec.6 is the summary.

2. Harmonic model
We conzider a chain of N atoms the equilibrium positions of
which are given by (1).> The lattice dynamics of 1D FQC is def;ned

by the Hamiltonian
. N

N
P\ 1 2,
H - t K 8 -0
rh 2 Hl t 2
) t=1

t=1

N
1 E 2 3
+ . B, (4 —9,) 12
t=1 .

where P and u are the momentum and the displacement of the 1-th
atom, respectively, M denotes the mass of the 1-th atom, k Lilas
and g ., are the force oo:nst‘.anta of neanest.—neidxlxmt (NN)
and next-nearest-neighbour (NNN) interactions -, respectively.

Within the harmonic Hamiltonian (3) we can model the lattice
dynimics of 1D FQC in two ways [42] : we can define the BQS des-
cribing dependences of force constants {k -, 1 and { g 1,21
on atom distances d and d orwe can specify the BQS
describing the aton masses { M } , respectively.

In this paper we use the first approach [ 32,33,35 1. We aseume
that M =m for all 1 and the magnitudes of the force . constante
describing NN and NNN interactions of the 1-th atom are ( ace

Fig.l) ™~



Keia ELlva@-1Q+1)/r1- [y ) 3 (4)

Bzn B {lt+va(2-[(12)]-[/r]) 3, (5)

where gq=z/t is POQ; k and q denote spring constants.
Hamiltonian (3) and B«BB given by (4) and (5) define harmonic

model v1bmt10na1 spectra of which we will study mmerically.

We point out that for z > 0 and z =0 equations (3-5) describe
the Filnnaocl—type and periodic chain of atoms, respectively,
HQS(, (4) and (5) take two values (see Fig.1)

{ k (14q) if dl"’l = 1 "
ivt, L kO if dl"l,l = 1 ¢ 1/1'

go(l"’q) if d\.*Z,l = 2 + 1/1— (5a)

gL‘z L = { . M
g‘) if d1+2|. =2+ 2/t

Note that the mathematical properties of infinite BQSB genera—
ted by

(G2, D)=L (141) /w0 F-[ 1 ] 1=1,2,...,N , (6)
where v and 131 are real irrational numbers have been recently
studied by Aviram [43,44]. Using the results of Refs. 43,44 in
Appendix A some mathematical properties of BISs (4) and (5) are

given .

3. Eigenvalue problem

Equations of motion have the form
’

e = +k,, (u, ;u)+
mou =k, (u _ru,) Llet w1 B o

te, plu,u)re ) ,0u -
1=1,2,....N
We introduce new mass dependent variables u =Q v m and we
ghall seek the normal Bt;\tiomry modes of lattice vibrations in
the form [ 45 ] '

Q (£)=4] exp(i w, t) - N (B

Substituting (8) into (7) we obtain

QZ QL = 1 QL + Bl—x Q.-i + Bl+1 Ql*i + (9)

Y, 8, v, 9,

- 1=1,2,...,K,

where the following dimensionless variablee have been used

al;zmq)-q[[‘;’]—[.‘;‘]]+
s(zaveo-a ([S5]-[F]))

e B 0 DY

remn(ivzesa ([F1-[H))

and o =m . /k;h=g /£ defines the strength o

interaction. |
Mioe that ﬁlﬂ =" kl.+1,l/ ko » Y™ T h gt,-.-z,l, / &
i mumbers

a== (B + B+ ¥ +Yl*2‘).-Forag1vm¥iave1v'agek |

and



N, and N_l_q gf (-1) and -(1+q) in sequence (11) are given by

{N/t} and [(1-1/r )N], respectively. Since (12) is a successor of

(11) ( see property A4 in Appendix A ) average numbers §

and N f -h(1 o
L, o (149) and -h terms in (12) are [27N/(27+1)]

and [N/(2t+1)1, respectively. Sequence (10) takes three values:

1) .
EZMh(1+9)), 0% (14n)(2+4q), P24 q +
2h (1+4q). Therefore, in (10) there are on average [N/r]
[V/:°] and [N(1-2/7%)] of o, o® ang o terms respecti

: : , ive-
1y.

From Egs. (9) it follows that the frequencies of normal vibra-
tions of 1D FQC are the eigenvalues of NN symetrix band matrix
of width five if FEEC are applied ( i.e. k = kN =
] ] 1,0 Nt T &4

B, = gNﬂ’N_1 = Buan 0 ). In this case (11) and (12)
glvefheoff—diagqnal elements of IM for 2 < 1 < Nand3=<1=<N
respectively; fa’f‘rlzyzzo. (10) define values of « for 3= 1=
N2ando = -p - = 3 l ‘ .

1 A, a1 M =8, Py -, ed® T ﬁ;«-1_ By =

rN—i' o= —f;’N -,

4. Bumerical resulte

In order to study the influence of model parameters on the pro-
perties of VS, the G(x) and AG(x) functions for N:105 and VarialsA
values of q and h are calculated . The integrated density of sta-

tes (IDOS) G(x), determines the number of eigenfrequencies Qi of
T fulfilling the condition 0Z < x . The finction AG(x) 1s & hin.
togram of G(x),i.e. AG(x)= G(x) ~ G{x~A) where A is an elementary
8tep of calculations. Notice that x denotes a square bof dimen-
sionless eigenfrequency x-2- n o2k .

|e-' k, l k (1+q) ‘

& -
< Gl

>
4 *e

} A e e —
r g, (1) T g, -)'

. The model of harmonic interactions in 1D FQC; ko( 1+q)
(emmmmrm2) K (<= — ) ond g, (14a) (——>),8;
(¢—=+—+—c¢—>) are the force 'constants of interactions bet-
woen nearest-neighbour and next-nearest-neighbour atoms,

*

respoeclively .
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Fig.2. The histogram AG(x) as a function of x=0"=m w’/k_;z=0
(i.e.an ideal periodic chain),h=0.0,N=10",an elementary
step of calculalion £:2%107". In the acoustic and optical

region values of AG are given.

100S is calculated using Dean’s [45] method. The explicit form
of the numerical algorithm is as follows. We calculate a sequence

of scalars { u} given by

u - X (13a)
1 1
u, o= X - /3‘:/1;11 (13b)
2 o ) 2 ‘s 3,
wra s x -y, - BBy ) e 3= 8. (180)
7
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Fig.3a. The same as in Fig.2 for q=0.1/7 ;h=0,4=0.02; bers

depicted inside subbandg give the mumber of eigenstates.
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Fig.3b. G(x) as a Aumction of dimensionless square of eigenfre-

quency x:f)z:mooi/ko for 9=0.1/r , h=0 ;l;.l denote the va-
lues of G(x) at the corresponding x (see Table 1). The

bold horizontal lines represent the gaps in the spectrum.
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Fig.4a. The same as in Fig.Z‘for q=0. 5/7. K denote the mmber'

of states in subbands (see Table Z).
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 and o5 7, are the patrix elemnts of
where x is a real mmber and a;,f3;,7; are the ma

™. G(x) is found from the signs of n scalar mmtit@ {v }.

i.e.

where N
ful}

Fig.4b. The seme as in Fig.b for q=0. 5/r.

G(x)= N (x); ‘14)

{ul |
(x) denotes the mumbers of negative u:—-s in the

sequence (13).
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Fig.5a. The same as in Fig.2 for q=1/7.
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. Fig.5b. The same as in Fig.3b for q=1/7.

The results for h=0 and Jncreaslng q, and for qg=1/tr, h=0.1,
h=0.25 are presented in Figs.2-7 and in | F:igs.8,9, respective;—
ly. Notice that for q ¢ 0.5 AG(x) shows sharp peaks in long-
and short-wavelentgh limits. They reflect the Van-Hove singulari-
ty of density of states of infinite periodic chain [46] given by

N 1

P(x)= g T—) . (15)
Y x = x

10
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Fig.6a. The same as in Fig.2 for g=&/: .
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Fig.6b. The: same as in Fig.3b for g=5/7.

The substructure of G(x) and AG(x) in acoustic and optical re-
gions of VS are shown in Figs.10-13 and 14,15, respectively.
In addition, the function ~1(y1) called an average density of
states -
Pl(Yl): ’ §16)
N A&

1

11
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Fig.7a. The same as in Fig.2 for q=10/~.
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Fig.7b. The same as in éig.Sb for q=10/7 .
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is calculated,where 4,< y,= Vx / x___ < 1and 4, is an elementary
step of calculation . Notice that Gl(yl) determines the number of
eigenfrequencies of DM obeying the condition i< Y-
Dependences of Py oMYy for q=1.0/7, h =0; q=10/r, h = 0 and
a=1/7, h=0.25 are shown in Figs. 16a,16b,and 16c, respectively.
'I'hedepende:nc:eofp1 onq and h in acoustic region of VS is

presented in Fig.17. Notice that for q > exp(2) we observe a po-

12

wer dependence of py(4,=1/225) on q. The standard analysis of m- -
merical resilts gives o, (A;)=C,d’s where C-exp(-0.84) and 7=0.486.
In order to study a hierarthical structure of VS the IM under
FEBC is digéénzilized by using EISPACK routines ( BANDR and
TQLRAT). Computations are performed for ‘the mumbers of atqms

F15-610 = N2 v F,. = 4181 and various values of model parameters q

19
and h. The ne:éultgs are pxesentedm Fig.18-19.
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4833 1823 |&780
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N; 2 i
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Ng } 2
3

1
”1!0 218 X 430 508

Fig. 8a. AG versus x= ° = ®/k_ for h=0.10, g=1/t and N=10° .
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: ol
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Fig.8b. G versus x= ©° mm o’/k for h=0.10, g=1/7 and N=10° .
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Fig.9a. The same as in Fig.Ba for h=0.25.
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Fig.9b. The same as in Fig.8b for h=0.25.

Moreover, the branching structure of VS is analyzed using the
following approach. let & be a real positive number and ( Xy, %y )
(Y xl,v Xy ) ) demote the vibrational spectrum given in an
. . 2 2

. = Y

increasing order of x5 i / Qmax ( xi) where Qi and Dmax are
the ith and Nth dimensionless eigenfrequency of IM, respectively.
Then, we consider ©; and Q.., to be in the same “subband"

if (xi+1 - xi)< S ((Yxi_'»1 - ‘fxi)< & ),i.e. & denotes here a mini-

14

Fig.10. G(x) versus x in the acous- G .103
tic region of VS;q=1.0/r, . ‘
N=105; A-an elementary step 15 3
o A=510
of x; As3,0u,8s,86 denote 13 10
the width of gaps occurring ZA .
near values of G(x) equal 1" .
to Na=5574, N4=9017, Ne= 9 A¢(60:2110
=14589, Ne=23607, respecti- Age(9822)10°
vely (see also Table 2). 7 AL-(1L8=2)-1US
5 8y(2322)90°
3,
.
10

1
10 X

15

AF210*

10° X

I
A=210°
Z=10

10K

Fig.11. G(x) versus x for x << 1.0,g=1/7, h=0.0 and N = 105; nm-

bers depicted at the bottom and top of each "staircase”

give the value of G. (a) A=2¢10"2, (b) 4=2¢10"% and (c)

A=2%10" represent G(x) in the regions dashed in Figs.10,

14a and 14b, respectigely.

15



mal width of the distinguishable gap. Using this rule the sub-
structures of VS are detemmined for decreasing ¢ . The results ob-
tained for N=4181, g=1/7, h=0 are presented in Fig.20.
The fractal dimensions d of (of,og) and (©4,0 ) are
calculated using Mandelbrots covering method [47] described in
,AppaxﬁxB. In this way we determine d within 1% and 10% for
a=1 and q~102, respectively. The mumerical results are shown in

Fig.24 and. Fig.2Z.

a) b)

- A-510°
’ Z-100 G| A=310"
Z =100

—1336
— 6136

10 '9017

Ag-(1622H07
Ar (318221107
4,-15222)-10"

Ay={7822)410°° -(78:2)x10°5

A~ (12:2)10°

1 " 1 1 1 1 “ 1 1 aaaala, saaal N ..I
0025 010 X 020 00402 0045 0048 0051 X 0054
Fig.12.The same as in Fig.1C for q = 10/7; (a) A=3KI0 8,,8,,4,,
AS,AG,give the width of energetic gaps occurring near
values of G equal to N2=3445,N3=5574,N4=9017,N5=14589,N62

23607, respectively (see also Tab.2);(b) A:3*10'4, G(x)

versus x in the region dashed in Fig.12a.

16

G| aph2¢2)10°
3451

- | A-210%
2-100

L C)

v..;l salaaaal 1 ° . [ I P | \

10‘2 X 006 X 001720 X
Figs.13. G(x) as a :Elmct].on of x near AZ gap (see Flgs.12a b)

4
for x<<1,q—10/1' h=0, N—10 (a) A—Z*lO , (b) A=2¥10

and (c) A=2¥10" xepresent G(x) _in the regions dashed
in Figs.13a and 13b, respectively.

5. Conclusions.
From the results presented in the previous section one can

draw the following conclusions.

1. The Can’wr—m —]_ike character of VS manifests itself in ‘the
optlcdl reglon very well (cf. Figs.4-9, 14-16, 18,19) and al— )
t dmappedm in the long—wavelengl‘h limit ( cf. Figs. 3-13,16,

18) (22,32, 35] '
2. 'lhem.dthA ofﬂxegapmanmcreasmgﬁmtlmofq This
mpliw that peaks of AG(x) become mgeneralnan'owe!‘animgher

as q mcreases (cf. Figs.3-7).

17
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Fig. 14. G(x) versus x in the optical region of VS; q=1/r, h=0.0, ms_o_/r z-100 | | z=100
N= 10°. The numbers depicted inside the figures give the 7-100 152 B "
' values of G(x)-G(x-2).(a) A=2¥10 °, (b) 2=2610" Y, (c) A= | ‘
2107 and (d) A=2¥10% represent G(x) in the regions da- i r
shed in Figs. 14a,14 and Jhc, respectively. 110

3. For given q and h the width of Agdepends on its position in

the phonon spectrum and tends to zero in the short- and long-wa-

- - an -

[

[P ———

velentgh limits (cf. Figs.3b-94 b,13-16) [32,35].

e e) - ' ) g)
4. If one neglects the gaps whose widths are less than a given \ ' Laniaan Lo
' " - - 15930551 X 15.9305512 X 1593055128 X

mmber 4 > 0,then VS are "band-like” and near the edges of each - \ : _3 |

. ? Figs.15. The same as in Fig.14 for a=10/7. (a) 4=10 7, (b) 4=10 7,
subband AG(x) and pl(yl) exhibit Van Hove singularities (cf.Fig. i : . £ 7 _8 A=
3a-8a) [32] (e) 41077, (d) A=107",(e) =107, (£) A=10" and (&) A=
A3 A . 3 .

' ‘ 8 ‘ of G on x in the regions dashed in

5. In the acoustic region x < 0.1 phonon spectra have the quasi- L .10~ show dependences .

_ Figs. 15a-15f,respectively.
continuous character (cf. Figs.3-13). Eigenfrequencies of IM for =
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1.0

1.0

1.0

i

Figs.l6.Loglo( £y ) versus vy step of calculation A1=1/225,
N:10+5;(a) z=1/7 ,h=0; (b) q=10/7, h=0;_ (c) q=1/r, h=0.25;
p,=0 are depicted as p;=10">. Values of o, having

log;)( £, ) less than 1072 correspond to isolated states

in the gaps.-
.
1= i :-'-[N/T‘J]are‘givmwiﬂxin(i%by

(i-1)n (i-1)n

2N

where l"i = ni(q,h)/ni(o,b). Dependences of I'yonqath=0and n
h for fixed q are presented in Figs. 23a-c and 23d, respectively.
Notice that I',, shows a linear dependence Fz(q)=1+0.177*q an q for
a 0.1 (cf. Figs.23a,b) and a saturation effect for large q ( cf.
Fig.23c). Moreover, l"2 increases almost linearly with h (cf. Fig.
23d) and the fit of linear function to mmerical results gives Ty
= 1.372¢h + 1.112 and Fp= 1.330kh + 1.247 for q=1/r and q = 10/7,
m'pt;:chively. Therefore, one observes the following facts: (1)
dependence of G on x has the form G(x):Go(é,h) '/T ,where Go(q,h)
denotes quantity depending on model parameters (cf.Figs.lO,IZa);
(2) histograms AG(x) show Van Hove singularity at x-0, i.e.,
AG(x)= AGo(q,h) / YT ( cf. Figs. 3a-9a ); (3) the average den—
sity of states p,(y;) does not depend on vy (cf. Fig.46)
Lim py(yy) =C(a,h), (18)
y,—~0 : i

where C is a constant at given q and h/(cf. Fig.13)

- Botice that the width of the acoustic (quasicdntixpcxxs) region
of V5 is a decreasing function of q ( cf. Figs.3-9,16.).
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Ln 9

I.n(pl(Al)) versus 1n(q); J.nset sghows the linear depen-
dence of ln(pl) on In{q) observed for large q . The best

= 0.46 In(q) - 0.84.

Fig.17a.

fit for q > exp(2) gives 1n(P1)

1.0 %

08 A%%A‘ '

0.6 # ‘ |
0.4 Ehhhhnn o o [w] o
O%d”bimbsmgimfé """ ib

F1g 17b. py a8 @ fimction of h, z=1/v, N=10".

6. Vibrational spectra of harmonic models of 1D FQC’s are ‘self-
similar (cf. Figs.[9-2¢) [22,26,32,38]. In the following hierar-

chies each subband is branching into subbands according to the -

rale [35
e [35] + N (1n

= = N ’
Nj=N; ) + Ny o =Ny o+ N3 3% 052

22

Table 1. Values of Li used in Figs.3b-49b.

’

L, = 23607 Ly, = 58361
L, = 29181 L5 = 61804
L, = 32624 Ly, = 67376
L, = 34754 Lyg = 70821
L, = 38198 Lyg © 76393 :
Ly = 41641 Ly, = 79838
L, - 43770 Ly = 81966
Ly = 47214 Lyg = 85411
Ly = 50659 Ly = 90983

, Ly,= 52788 L,, = 94428
Ly,= 56231

Table 2. Values of Ni used in Figs.3a- 8a. In the second colum the

numbers [N/rj] = N; are given (see also Fig.24 where

[N/r 97 correspond to N of (j+1)th level)
100. .. '

N.= 1315 ; [N/r7]

0
Nj= 2129 ; N1
N,z 3445 ; N7
Ng= 5574 ; [N/r°)
Ny= 9017 ; N7

Ng= 14589 ; [N/*]
Ng= 23607 ; [N/v"]
N,= 38198 ; [N/r”]
Ng= 61803 ; [N/7]

23



>5 .
where Ni , Ni_l-_-Nl/r and Ni—Z:(l_ll/r )Ni- denote. ‘number of eigen- § T §5 e
34 [ ] .
states in subbands. The hierarchical structure of VS is shown E / %.4 Ve
L t3 =
schematically in Fig:24, where ¢ and N. denote a minimal % Ve .53 /
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The described Cantor—set-like structure of VS is independent g4 // ::é_ /,.—-"
S - , < 7 £4]
of model paramecters and comes from the quasiperiodicity of the : §3 ; . g . ,
R ; 2 g \
Fibonacci chain. 52 / : 5] » /
— - ) v
7. The fractal dimension d of phonon spectm,(nf, Slﬁ)ahowa 31 §
' T
. . . . 0o . . ' go ' .
a power-law decay 1f. POQ increases. The best fit of the power 0 %P,Qbe,. - :’88 §60 5 %Ogber f 499 600
i u
function 4 to the calculated results at q = 0.5/7 gives SR of state
’ - d
o owd=cxd, (19) c) )
where a=—(0.11 + 0.02) and C = 0.82 + 0.03. Dependence of fra-
ctal dimension 51 of phonon spectra (Ql, ON) on q has a similar ) .
. . '*’5 R —_—r e —
form = 4 o &6 _'_-——-fi 6.4 ; -
dl_CI*q1: (20) g . s -
- ‘ ' = ~F2 g /‘_r—— : g5 —
where «,=—(0.05 + 0.01) and C;= 0.91 + 0.02. Notice that d = d1 <4 (I,;é 91
! ! ‘ - S -
° \65.4 1 . X
21 5 -
: o ) g 49§ —
Fig.18a-f. Phonon spectrum of the harmonic model of httioe‘dy— s' g_ [
4 = = q= i i h. 90 X u r 4.4 3 I
namics of 1D FQ for N—F15 610, g=1/7 and increasing | 0 550 700 =50 4ZJO TIG YRO) TI5
Square of eigenfrequency versus mode number: (a) h=0.15; ' ) v . Number of state [ “Number of state

(b) h=0.25 ; (c) h=0.35 ; (d)=0:45 ; (e) h=0.55; (f) e) » ) £)
h=0.55 for N = F13 = 233. '
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Fig.21.

6> 0.21
8> 0055
}‘6 > 004
6> 002
3> 001

Z- 10 h=00
Fig. 20. The 1uerarducal stmcume of the vibrational spectrum

obtained for decreasing ¢; q=1/t .h—O,N-F19-4181.

0 20 40 60 80 ‘100
The fractal dimension d versus q for NoF,o=4161. Trian-
gles (V) and squares ( (1) representvaluesofdcor

2 o2
responding to ( Qmi max) and (“mm )max) respecti-

vely. The esolid lines represent the power functions d1 =

0.05 -0.11

0.91%g "2 and d = 0.82%q obtained by fitting the

function qu to the calculated results for q = 0.5/7.
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Fig.22. d as a function of h; g=1/7, N=F,4=4181; (V') and
(0) correspond to (0, ) and (02, 2 2,

respectively.

8. VS exhibit characteristic tendencies as the degree of next-.
nearest-neighbour interaction increases. In particular:

-spectra show a general drift towards higher frequencies (cf.

Figs.8,9,18);

- peaks of AG(x) become more pronounced in the optical region
and density of states in the acoustic region decreases ( com-
pare Fig.5 and Figs.8,9); B -

- the width of gaps decreases (compare Fig.Si and  Figs.8,9;

cf. Fig.18);

~ the fractal dimension enlazges (cf. Fig.22).

9. There exist eigenstates Q msxde some gaps ( cf. Flgs 3-9,
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16,18,19). We have verified that eigenvectors of IM corresponding

to ﬂs have the localized character and are surface states [ 28,

1.25
1.20
1_«11 15
' 1.10
1.05
00
10 10 ™10 1 .10 10%210°
log(q)
1.025 1.272 o
1.020 1271 oo
L—d1.015 LM1.270 uu o
1.010- b) 1.269 iy o)
1.005 1268
1.00Q AR5 BF G862 1.267, 65 506500
q .

Fig. 23a-c. Dependences of l"z(q,hZO) = Qz(q,h=0)/!’22(0.0)‘ on q, F17
=1597; (a) l"z(q,h=0) versus log(q); (b) linear dependence
. l"z(q,h=0)=1+0.177*q observed for q < 0.10; (c) saturation

effect in dependence of Fz(q,hZO) on q.
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Fig.23d. 72 (4, h) "'-(;12 (a, h) 51-2( 0, 0) versus h,‘N:E‘l.’;
(A) a - 10[r= 0.618....;(9) a=1 /7=6.180..... .

Fig.24. Schematic representation of the hierarchical structure of
VS obtained for decreasing &. N is an initial mmber of

states in VS; ”ﬁi and N k K denote a minimal width

S ]

of distinguishable gap and mumber of eigenstates in

the subband on the ith hierarchical level, respectively.

-
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6. Summary

The propertics of vibrational spectra of the hammonic model
describing lattice dynamics of the Fibonacci-type chain of atom
have been studied numerically. Computer simulations have been
done under free end boundary conditions. T'he \{ibrational spectra
show properlies of both the ideal (periodj:.c) and disorder ( gla-
soy) chain. On the one hand, in the acoustic limit they have a
quasi.r_x)nt,inuo:s character and exhibit baxidlike pxbperties if
amall gaps are neglected. On the other hand, m the optical re-
gion they show a Cantor-set- like substructure. These general pro—
perties of VS are inciependet of modelv parapeters q > 0 , h and
are a consequence of quasiperiodic. long-range positional order

of Fibonaccl chain [ 3 — 5 J.

IDOS, its histograms and average density of states have been
calculated in the wide range of model parameters. Main tendencies
in dependences of G, 4G and #, on q and h have been determined.

Fractal dimension d of V5 has been calculated for N-F, 5=4181,
h = 0 and ux.x'aﬂsmg q; d shows a power-law dependence on q for
q 01 Moreover, the performed calculations of d for N = F19 =
4181,4:1/7 &nd h=0 indicated that d increascs with h. |

Finally, we point out thal in the acoustic region the phonon
spectrum of the studied harmonic model behaves almost identically
as for the ldeal periodic chain. ’I‘hemfom,I we can expect that
the thermodynamic properties of 1D FQC's and ideal chains should
not differ essentially. Our investigations of the temperature de-

pendence of heat capacity [ 49,50 ] confimm this presumption .
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» Some further information about the structure of VS can be ob-
lained from the properties of eigenvectors of M. This will be

the subject 8f a separate paper [48].
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Appendix A
The mathematical properties of the infinite BQSs given by (4)
and (5) are as follows: '
Al. In BS's, (4) and (5), one of the two constituents, i.e.,
k (1+q)andg, inthe case of (4) and (5), respectively,
always appeafs isolated. The other elements occur in a string
of consecutive elements .
A2. The BQS, (4), is a k —dominant cne and contains strings of
consecutive ko of sizes 1 or 2 only, separated by isolated ko( 1
+q) . _
A3. nnms, (5), is a'g, ( 1+ q )-dominant one and the sizes of
the strings of consecutive elements g, ( 1+ q ) areequalto 2

or 4 .
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A4. Sequence (5) can be obtained from the sequence (4) by replac-
ing k, by {g (1), g(l+) } andk ( 1+q) by g, i.e. BYS
{ - } is a successor of the BRS {kl,lﬂ} [43,44]. e

A5.The ratio of the mmber of k, and k (14q) or g, (l+q) and g, in

the infinite sequences (4) and (5), respectively, are given by

B Ng) (14q)

a

XL e,

A. The BAS (4) takes ite k_ and k_(1+q) values on the sets

N

G = {1] I=[m 7] ,mGNk}

[v]

T

Ck")(1+p): {l}l1l=[m—— "1, meN },

respectively.
A7T. The quasiperiodic sequence (5) takes its &, and g0(1+q) va-
lues on the sets

CgO:C;r‘l C1
Cgo('1+q) H C;_U C1 - ’Cz » respectively, where
C;:{1'|1':[m"r]~-1,m22}and'
’ T
Cz:{ninz[n,r_i]—l,nzz}.

Appendix B
We explain briefly the used method of calculation of fractal
dimension d .
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' 1.000 i
0.800

0.600 -
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Fig.Cl. Fractal dimension d of( <2 ,02- ) versus &x for increasing
Q=z/7 ; (") 2=0; (A) z=0.5; (C) z=1; (ﬁ) z=2.5;
() 2=7.5; (0) z=16; (9)  260; (xX)  z=140;

N-4181, HZ:1; solid lines are depicted for eyes.

16 = 16 2 1O -
1-0G,0(6x)
Fig.C2. The same a5 in Fig.Cl for various My:  (0)  M=F=1;
@) WpEez (R mer=s ©) RS

. (D) HZ:F6:13; N=F19:4181’ 2=1,h=0; solid lines are

0.30 ¥—
10

depicted for eyes.
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Let 5x (6y1) ‘be the real positive number. We cover the spectrum
( rzf, oﬁ- ), ( (€, Og) ) of DH with the segments whose lengths
are 5x (5y;). Let N;(5x) ( Ni(4y;)) denote the mumber of eigen-
states inside of the i-th segment. We determine the number Hi of
segments fiilfillh)gk the condition N,(&x)'= H2 ( N:l (&yp = H2 Y,
where M, is a given natural mumber. Then, according to [47]

Ln(Hl)
3=
In (My)

where M, in equal to [ X ox/x1 (I YXpax/ 611 )i [2]  de-
m‘bes the integral part of =.

07®° 107" 107 107F 107
Log,o(6x)
Fig.C3. The same as in Fig.Cl for for increasing N, (@)
NoF 10946 (4)  NeFge6564; () NeF,=4181;

(0)  NeF 72581 (¥F) NeFg=1597; 2=1,801id lines
are depicted for eyes. :
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We have investigated dependences of d on the mmber N of atoms
in the chain and the magnitudes of 6x and M,. The mumerical re-
sults show (cf. Figs.C1-C3) the existence of a platean ( with the
width depending on N,éx and M,) in dependences of d on &x which
allow us to determine d. The results presented in Sec.4 have been
obtained for N:E19:4181 and H2=1,3,8.
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