


1. Introduction

A main problem of crystallization theory is the study of
erystal growth in a fluid phase. Recently, seversl two-dimensio-
nal models have bheen proposedl'a), in which captures and escapes
of single atoms from the crystal surface have been identified
with the transitions of a Markov process and the shepe of the
crystal edge - with its states. In such models the growth procees
takes place by u sequential addition of hard dises to the edge
of the closely packed phase representing the crystal, see fig.l.
The fluid phase in these models ie treated s uncorrelated
medjum, so that the additions of atoms to different sites of the
crystal edge could be considered as a sequence of independent
random evente.

A completely different picture may appear in melts or solu-
tions with strong interparticle correlations not only in the
crystal phase but in the fluid one too. For example, in the casme
of ligquid cryetals one should +take into mccount orientational
correlations in both phases. A simple model of such a situation
is given by a dimer system completely covering the sites of a
square lattice, as shown in fig.2. In thie model the crystal may
be repregented by a region of regularly packed vertiocal dimers
bordering with orientationally disordered fluid phase, In fig.2
the crystal edge is shown by a& wavy line. It is epeily meen that
the additlon of a single dimer to the cryetal phase causes the
rearrangement of a certain number of neighbouring dimers in the
fluid phase. This illustrates the fact that crystel growth pro-
cesses in correlated media may depend not only on simple kinetio
1'2), but on the global state of the
sample as well. In this aspect the study of the equilibrium

properties, as in models

states of such systems becomen important too.
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Pig., 1. Edge of crystal in a Markov rate model.
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Fig., 2. Edge of crystel in the dimer model of crystallisatlon.
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Fig. 3. Two dimer configurations and their ayperposition.

Fig. 4. Arrow arrangements ensuring

poeitivity of superpositional polygons.

Differsnt configurations of the liquid -~ orystal interface
¢an be created by fixing the number and position of vertical



dimers in a particular layer and requiring then clomse packing
{if possibie) of the dimers on the remeining lattice bonds. In
fig.2 the bonde of the selected layer are labelled altermatively
by 1 end 2. If all bonds with label 2 were cceupled by dimers
and all bonde with label 1 were vacasnt, then the ordered crystal
vhase should spread over the whole lattice. The difference
A-:/J1 'f'z of the averasge ocoupation numbers /.74 and Pz of odd
and even bondse, respectively, plays the role of an oxrdering
parameter in the model. It is easily meen that a value |Al< |
is connected with the appearance of in-phase or cut-of-phase
crystal domains, which co-exiet with orientationally disordered
fluid phase. We may introduce an "external staggered field"
acting on the selected layer of bonds by ascribing special acti-
vities E and"’( to the bonds labeled by 1 and 2, respectively.
¥hen ‘g/r(-—- 0 or g/ﬂ—-oc , 8 unique crystal phase is expected
Yo ppread over the lattice, characterized by the values -1 or +1
of the ordering parameter A .

It 1e the purpose of this paper to study the dependence of
the ordering paremeter A on the bond activities g and M,
as well ee on the lattice pize. In order to obtain exact results,
we pimplify somewhat the problem by considering a lattice with
* the geometry of an infinite in the horirontal dimennion oylinder.

The paper is organized as follows., In sedotion 2 we desoribe
the method of investigation, which reduces the problem to a
random walk one, The solution of the obtained inhomogeneous
eguation for the ocorresponding generating funotion is derived in
section 3. Section 4 containa the reeulte and a diecusslon,

2. The method

There are many equivalent methods of calculation of the
partition function and correlation functions in the dimer
problema's). A1 of them exploit somehow the planarity of the
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lattice end lead to the evaluation of determinente of ddagoniga-
ble matrices. This means that the dimer model is equivalent to a
eertain free-fermion problem, which in turn reduces to the solu-
tion of the diserste Laplace egquation. The latter equation natu-
rally arises in the theory of random walke. Thus the partition
function of the dimer problem may be expressed in terms of the
generating function of random walke. The uee of the random walk
theory is especially convenient in the study of correlation funo-
tione, pince then various methods developed for dealing with
lattice inhomogeneities can be applied.

%e coneider a sguars lattice /\ containing l. rows and
M  columns, wrapped on a torus for the creation of perioedic
boundary conditions. We select the vertiocal lattice bonds between
the (L~ 1)th and Oth row: to each dimer covering such a bond we
assign a weight E if the column number ie 0dd and a weight 1 4if
the column number ip even, All the remaining vertical dimers have
aqual welghte y. and all the horizontal dimere have equal weights

X .« Define ZZA tx)y,g,q)as the partition function of all dimer
configurations, in which the lattice A is completely covered
by dimers.

To reduce our problem to a random walk one, it ie convenient
to consider the square of the partition function, ZZj' ; rather
than Z, iteelf. Coneider the superposition of any two dimer
configurations entering into the product of the partition fune-
tions. It containe closed superpoeitional polygons, along which .
the dimers originating from the different partition functions
alternate, and pairs of coinciding dimers. Both the former and
the latter will be depicted as closed loops. Bach lattice eite
belonging to a loop will be met just once at completing a run
along the loop. Thie means that the loope are not self-intersect—
ing. An example of a superposition of two dimer configurations
and the corresponding set of loops is shown in fig.3. The loops

conteining more than two bonde heve twe orientations which dis-
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tinguish between the two ways of alternating the bonde from the
first and the second co-factor in the product z,\ ZA ; otherwise
the oholce of the orientation is arbitrary. In an elementary
loop containing two bonds both ‘orientations are considered as
equivalent. Thus the sgquare of the partition function, Z2

el
represents a weighted sum over &ll configurations of oriented

loope completely covgr.lng the lattice.

Consider now & random walk on the lattice /\ . Bach orien~
ted loop of length N> 2( " - even) im represented by a clomed
patk running slong N bonde without eelf-intersection. Let us
assign a weight

Xip) =Nwié) (2.1)
=4

to any oloeed path, possibly self-intersecting, which rune along
the bonds é,g,_,..., gh (theres may be coinciding bonds among them).
In (2.1) the weight (u(€;) of the step alomg the bond 5: taken
the value xi ,yt ’ gf or?tf if the weight of the dimer covering
~ that bond i x , ¥ .? or" , respectively. Demote by {P}A the

set of paths without self-intersections, such that no two paths

from this set have a etommon lattice pite. Introduce the partition

function

2Vt gtytnt) =7 T1Xw) (2.2)

1P, Peipl,
where the summation is over all poesible eets {P}A « The limit

t + oo corresponds to clome packing of the paths and may be
written as

=ML {t) t yt 5t t) = Zz (x )
Lom 2, (xttIL) = L 000R) (2.3)
t—=oo .
This means that all the thermodynamic functions, calculated with

(t)
the aid of 7~ , yleld in the limit t-»00 the corresponding
thermodynamic functione of the dimer problem.



The ernumeratiom of all configurations of closed paths,
{t
which enter into the partition function ZA ) s i1e based on the
aquality

nu-xpl=2 N -Xe] 2.4)
P {p3, peiprl,

vhere the prime in the left-hand eide means that the product ie
taken ov'e;' all non-—periodic cloeed paths, i.e. over pathe for
which the sequenc'e'_‘qf bonda passed, g,,g’z,:.,,,g’h, cannot be repre-
sented in the form (£,,...4, ),(8,,_,-.,gk)',,,.','(‘g’“:_,gk) with some K <h.
The 1dentity (2.4) with a more general weight function X 1s
Imdwn in the context of the Ising model as Feynman's conjecture}
ite proof is given by Shema.ns). In our case (2.4) has a rather
simple meaning. A correspondence can be eptablished hetween each
term in the expaneion of the left-hsmd side of (2.4) and a set of
pathe on ‘tha lattice. Conslder a set in which two pathse, P, and
Pz s, have a aite in common, say S&/\ . In the expansion of the
left-hand pide of the ldentity, a term e¢an be found which comple-
tely reproduces the above set but with one exception: instead of
the two intersecting pathe, p, and P2 , there is just one self-
intersecting at the site s path. The numbers of paths in the two
gets differ by one while all the weights (o coincide. Since

each path emters into (2.4) with minue sign, the contributions
of the two intersecting and the one gelf-intersecting pathe cancel
out. Similer considerations hold true elso in the ease when p,
and pz have several pites in cémmon. The only exception is the
case of periodic paths, when the rendom walking partiole paeses
two or more times the eame trajectory. Due to the fact
that in the product in the left-hend eide of (2.4) ell pathe are
different, the expansion of that product does not contain terms
which could cancel out periodic pathe. That ia why the perlodie
paths are excluded from the product.



As & result of the cancellation of all intersecting paths,
in the right-hend side of (2.4) there remains a sum over all
gets {P}A of pathe without intersectione. Thus the right-hsnd
side of (2.4) coincides with the psrtition function (2.2) up to
the factor -1 of each closed path in (2.4). In order %o compen—
eate for the wrong sign, we replace (2.1) by new welghts of the
rendom walk. Let us attach arrows to the bonds, as shown inm fig.4.
To each step traversed in the direetion of the bond gc vwe assign
now a weight «w({§;} , and to a atep traversed in the opposite
direction we aseigm welight —t?)(gl-} . This change of weights does
not.eneure by ltself the prOpér slgn of each path p . But in the
limit of close packing, see (2.3), thexs are only superpositional
polygone left which completely'cover the lattice. For euch poly-
- gone a theorem du.a t;a Kasteleyn;7) holda,‘l which ensures the nece-
egsary change of sign. B

Define instead of (2.1) & new weight function X ¢ vhich
on a path p consisting of the stepe s,,S;,..., S, tekes the velue

i{P):nw(gL)s‘:?M(-st) s (2.5)

i=1
vhere aign(si) = +1 if the step S; ie in the direction of the
oriented bond ﬁ; , and Eign(si) = ~1 in the opposite case,
Then from equations (2.2) - (2.4) end Kasteleyn's theorem we
obtain for 1t -+ ~

7Y (xt,yt 5t ,78) = g'[*‘}“”l : (2.6)

There is s4ill one defect remaining in the cloese-packing
limit of expression (2.6): Kasteleyn's theorem ensures positivity
of all superpositional planar polygons. But in the representation
of Zf, there are also polygons looping the torus once or several
timee either in horizontal or in vertical direction, or in both
directions. The sign of these polygons does not change under the



above replecement. In the remainder we confine ourselves to the
finite-size effects in one dimension only, namely we kesp L
finite and pass to the limit M=o | In thie 1imit the lattice

/\ has the geometry of an infinite cylinder. Any closed path
looping the cylinder croeses any row an odd number of times.
Therefore, each such path contains an odd power of  or? and
hence the change %-‘-‘5' »1=-"1 in the right-hand side of (2.6)
ensured its positivity. :

Taking logerithm of both sides of eq.(2.6) we obtain

{(t}

In Z, (x *#t:?tﬂit)ﬂ"p'['l-}(m]'_ (2.7)

By expanding the logarithm in the right-hand side of (2.7) we

obtain

- -

tn r] i1- )(l'P)]"z Z [X { Z Sal0), (2.8)
P

LEA

Sed

=9

where SN(U ie s sum over paths weighed saccording to the above
deseribed rules. This sum conteins all poesible ¢losed paths star-
ting and ending at site ie/A , Note that in the last equation (2.8)
we have relexed the condition for non-periodicity of the paths

by interpreting [i(P)]' as a periodic path coneisting of J’
¢ycles, The relexation of all constraints on the paths allows us
to use generating functionme of simple random walks.

Note that the introduction of oriented lattice A  breaks
the translational invariance in horlzontel direction. The invariae-
nce can be restored by introducing an elementary cell of two
sites which are nearest nelghboure in the eame row. We label the
sites in the elementary cell by ¢ ,0 =12 .

Denote by \X/:V'(E,miﬁl,m') the weighed sum over all paths
consisting of 1 steps, starting from site o’ in the cell
r'=(,m’) and ending st site o 1in the cell r={f{,m) . The
welght function of eteps takee values + xt, iyt t'§t tqt similarly
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to the weight funetion for closed paths {2.5). The sum over the

lattice sites in the right-hand side of (2,8) may be expressed
}

in terms of WW' ae follows:

-1 M/L

2
Z S, = 2 Z 2. W, (mitom) (2.9)

ieh g=q E=a m=d

Correspondingly, expressjon (2.7) takes the fomm
2 L1 M/z oo

2P ytsta=-2 £ T T AW Gao

o=y OTY\"?\'I

oo’
The function W,H obeye the recurrence relation

W, (r i) Z Y (rieow, ey | (2.11)

N+t

o’
The trensition metrix Y’ can be convenlently represented es

a sum of two terms,

oo’ o-a-

yo= + % (2.12)

r

. ’ o
wheore Pmr 13 the translationally invariant pert and !-1, is
connected with the presence of mMdefect" bonds § and .
According to eq.{2.,5) we have = -

tyfsm,m'(gl,ﬁu _&g,g’..p] txgl,t' (-Smﬂ,?""—d * S'm.m')

tx 8o SR ) B B (=B 001+ 8 014)
(2,13}
and
el - 8P b, -8 11 Gy 0+ 8,0 Berd) 0
0 EOU) e B 1t G108 o8 11)
(2.14)

Introduce now the generating function

Wle,mie’ m’)“Z W, (e mle, ) (2.15)

m=0
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and sum up both sides of eq.{2,11) over M ., Taking into account
(2.12) and the initial condition

wod"a"(‘e)mlz" m’) - ‘S\cr,u-' Je,cr A\M m’ s (2.15)
we odbtain
w ™ (rin) Z P ey W i) =
r {2.17)"
oo
- cic)w (i,
=8 b y 79 rars) ).

ot

Prom (2.10) it follows that in order to evaluate the parti-
tion funoctlon ZA , we need the solution of the inhomogeneous
equation (2.17) W’ (rir) for ell Y €A , However, the problem
can be significantly aimpliﬂéd if we take into aceoﬁnf that the
ordering parameter, mentioned in the Introduction, is the diffe-
rence in the densities [J,é and f,( of the dimers with activities
7% and ¥ . Let ue introduce

Pylt) = frﬁ% InZ, (xtytyt.nt) . (2.18)

In view of relation (2.3) we have

/g,ggt) =py - (2.19)

The differentiation with respect to ’g' in (2.18) selectes from
the sum (2.10) only those ps*he which pass a bond § at least
once. If a path pasees along g-‘bondl ¥ times, then its weight
%ill contain a factor g . The action of the operator }o/7%
1lsads to the appearance of a factor ¥ in front of ite welght.

t=oo

A non-periodic clceed path of length M may have as many as n
starting points. With sccount of the faotor n™' each such path
entsrs into the sum (2.10) with B coefficient Y . A path of
length M comtaining J’ cycles has again M sterting points and,
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therefore, enters into the sum (2.10) with a coefficient V/j: .

Congider now the sum
M/2 oo

7. 7 :V,i{(o,mlom) , (2.20)

m=4 n=i

vwhere the bar meane that only paths traversing a ? ~bond at the
first or final step enter into Whrq « It is eaesily seen that
each non-periodic path paseing &long ?-—bonde Y times enters
into the sum {2.19) V times, since it may start or emd at each
of the ~bonds. A pericdic path of ‘}. eycles enters into (2.19)
with a coefficient V/jr which equels to &1l the poesible starting
points of the path in this case.

From the above considerations it follows that

M/2  ee

. F__)!_. N o 0
/Jg{t)’ zmz Z W, (c,mlo,m) (2.21)
mzq n*=4
o .
In order to introduce the generating fumction W’ , We notice
that

— 1
W‘:'(g,m]o,m)=-?’cW,:L(L-f,m]O,m)#ﬁW:-‘fo»""lL'i,M), (2.22)

and, with account of the lattice symmetry,
- "
72110 mlom) =~ 25 (L1 o). (209

Prom equations (2.15), (2.19) - (2.23) end the translationsl
invarisnce in the horizontal direction we obtain for /)_g the

final expression

pe = b, 43t Wh(L1,0000) - (2.24)
and sn anslogous expression for /),l H
o = b tntw?(L-1,0l0,0) . (2.25)
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Thus we heve reduced the initisl problem to the standard
task of finding the generating functions of simple random walks
on the lattice.

3, Solution of the eguation for the generating function

Here we deeeribe in short the method of eolwving the system
of equations (2.17) which in expanded form reasds:

\VH ((,'m}+yf[\3l/41 (rd,m}-W,, {{I"”m )} +xt [Wzilulm'” AR

- to +H{E+ y [ ,(0,m) - ‘S‘E,owu(L’f.M')]) (3.18)

W, () +yE W0t m) = Wy, )]+ 3 [ (8 00) W (6] =
(3.1p)

-(§+y)'t[“_‘ W, (0,m}) - ,5‘ M (L-1,m) ]

Wu lf,m)-yt [Wu“”rm)‘wu “’*’7’“” +If[W,H(£,MJ —W’H H’M—”] =

(3010)
‘{"T"?)t [SZ,L-szq {o,m) "S,g'o Way {L-1 ,rn)] ,
Wn{f,m} -yt [Wn(fﬂ’m)"wnle"'"")]"’ xt [Mg{fa"‘_}'qu(C,m-d] =
{3.1a)
Sf »,0 ’}1 y)t[gfle fo,m)- CS‘E,OWJ.:{L":’“)] .

Here for the sake of brevity we have set

Wa.d., (E,m) =Wo'a-’(£’m 'O,ijt,;t,gt,?lt) s 0',(7’:4,2,’

with (f,m) , respectively (0,0) , being the toordinates of the
final point y and the initial point v; .
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It is readily seen thet (3.la) and (3.lc) comprise a set
of coupled equations for the functions W,, (¢,m)and W,, ()
while {(3.1b) and (3.14) comprise another set of coupled equations
for the functions W, ({,m) and W,, ({,m] . Due to the symmetry

relation
Wu(f,ml 0,0 3x»3)'§"[) = WH(E,m}o,o',x,y,vt,g)} (3.2')

we need to solve the firet set of coupled eguations, (3.la) and
(3.1¢), omly, which efter the Pourier tranzformation

L1 M2
\X/ (@, :)—~—— 7 Z o (em)exp (~2xiad/L - 4miaym/m)
C o m=q
Lt Mz (1.3)
Wogr ()= . 2 Wy, (@nna)exp (2nin L/ +4miasm/m)
2420 8,=0
takeg the form -
A Lriag /M A
{4 +2i#fs—1m 2_5_:':5, JWH (a,,a,_)+xl‘.‘(€ - 1)W,_1 (2s,8.) =
. (3-45)
axiag /L ~ ~
=L 4 M[E ‘ Wﬂ{o,a;)-\x/_”(l_q,a.,_)] )
LM L
~ 47 idy /M _
[42#thn“]w m“m)x ( -J)Mﬂm.ﬁ
(3.4v)

’l“?)t 1 ming/L \X/ (0,82) - W“[L-Lﬁa.)] .

Here W,.r, denotes the Fourier transform of Wi, with respect

to the second coordinate only,
M/

\"x’/o-a" (€,a.) = "r?::" Z—J‘wa-c’ {‘e»‘m)e)‘P ("47"5“17’1/"")
m=

"z (3.5)

Wypr (Em) = 7 W (Lis) exp (47i0am/M)

a,=1
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Now we consider (3.4z) and (3.4%) as & system of linear eguations
A A

for W, (a,a,) and Wy fas, a;) . Ite solution reads:

- XA/l ~ ~
\:‘[11("‘““2) T:T?:F\E’u(“"“) b }}] == Bylane )].e WM(D»”‘J‘%[L'{’“‘)]—
~ (3.6a)
g e o S,
-
ﬂ
A 2 5 e (aa )E_ W, (0, nl)-mtu aa)}-
W, (a022) = = £TH Bip(aves) = T Bl (3.6b)
[*t*?)B (a4,8 z)[ema‘ﬂ'ﬁza(o,al)—WM(L—uaI)]’
where B’;D.f ig the complex conjugate of BW.: y 8nd
£ 4 .. . 2%a
Bﬂ(a‘!)az}: Q)rﬂ”az) E_'t -21}5’14‘\ L’]
( / }J (3.7)
- '4—e_x}0 $xia /M
Bi‘z_(aho‘l) .2)(44,2,_) ‘.
with
i . Zﬁ'ﬂz -7
Dy = 4yrsint T 4 dotsint g 4 (3.8)

Next we have to detemine the four quentities W, (c,a,)
W11(O,a1),\x41(L—1,al) end W,, (L-1,0,) which enter into equations (3.6).
To this end we notlee that

L-t 4 "
Z Wogr (B4,02) = Wogi (0,0}
ay=0 (309)
L4 _—z2mia,/L " ~
14 f Wg’r’(a“a’-) = WW'{L_”AI‘) )
4y=0

and, therefore, the summation of equations (3.6a) and (3.6b)
over 44 , from 0 to L-1 , and the summetion of the eeme
equations multiplied beforehand by ex,o(-27fﬂ4/L) s ¥ields the
required closed set of coupled linear equations:
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~

W, 10,22) = _t% A“{O,a,,}+(§*?)[A41(L'1,ﬂ1)“44 (0,a5)-Auyl0,8) Wy (L, 2,) ] -
- (n‘*y)lﬂm(bha;) Wu (0,“1)'A41EOJ“1)W11{L'1 J“?-)] ,

@24(0,ﬂ1)= }__Zﬁ Agql0,a,) ﬁ?][ﬂzq“—"‘ﬂd%a{ofat) -A“{o,a:)\X/“(L-Laz)]-

- (}I-ty)[ﬂ 11('—“1; ﬂz)ﬁ—/ﬂ (0,4} ‘Az-zw)“z)ﬁ’za (- “1)] ,

(3.10)

A~

WM (L-d,a;)=‘z_,(4 Aultsaa)+(E+ })[Au(o' ?-)Wu (0,a.)- Aylt, a0 WM“—‘ “z)]

“("*3)[A41(0J0'1)W7_4 (0:‘1:.) “Am("i ai)Wu {L-1, “1)_] ,

\’x‘-/h [L“f, az) = %%Ath;az)‘*(g *#)[Au (o;az)WM [01“2.)" AM (4 al)wﬂ("‘-f'a"ﬂ -

- [n*y)[ﬂiiloial)\;}u(oaaz) ‘Azz(4,az)ﬁ'z1(1’—1’az}] ]

Here we have introduced the notation

A

oo’

({ ) f lif —Zﬁ'g'q‘,e/‘._ B‘H (ahaz.) Bu(a,,a,_) ) (3'11)
P Y e e " *
. a,=0 -‘E’i?_(““ a,) Bﬂ (ar,a,)

There are epecific relationships between coefficients (3.11) at
{= L-1,0,1 which greatly simplify the solution of egs.(3.,10).
Namely, we notice that for L even end any o, ,

Aﬁ(o; a,) = Az (0,a,) )

4T£a1/M)

A“(U;ﬂl)=-—A;,,{O,a,_)-_-x(i—e A”(O,a.,_}’

(3.12)
An(taa)= = Au(1,as)= - Ay (L-t,a,) = Ay (Lt as)
Au“;ﬁz) Azq“ a,)= A;Z(L 1,0,) = Az{“—"f:ﬂz)‘; 0

AM (4Ja1) —?{1-‘[4X25‘122:‘:1 +t ]Aﬂfa,azji
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Therefore, all the coefficients A_,(¢,a,) with £=L-1,0,1 ean
be expressed in terms of just one sum,
Liz -1 ma . ®a -2 1-1
4 i
] (3.13)

A-m(o:am):% Z V\‘g— som? - 4‘4X som? —f‘;i.—

o

i

=

4

The next essentisl simplifieation arises in the close-pack-
ing 1limit. At the present stage of anaiyeis thie limit amounte
to keeping just the leading order termes in t . Thus one finde

(the complete sclutions of egs.(3.10) are given in the Appendix)

\hﬂﬂlo:al)z
2 .2 2yt Aul0,a
:_1%':_4“‘3—2:1% + lz_y:s_éxzs"m %f_z A“f A, )t —— q{ y. 8{“1](1*£I ‘aa))] :i {R’JJ
7 {3.14a)
+ Ot

—gmiag/M . A0, 82) N (Q(t'z}} 31481
- +14b

W, (0,0, = £ {=(1-¢ )" dia :

4 A ] 2% 41 {
._‘.—-XL g 4}(_ Sam? A,ﬂ[ y L]d{al)+

~ i
WM(L ’hﬂq.) ﬁj]'g*_g Eey H 2.5
(3.14¢)
+ Ot
~ -4riau /. ALlo,a,) -2
Wl,('-‘ﬁf"i)'ﬁ"'E%q%(g"l)x“‘e )_d%(%) +0lt )}, (3.14a)
where
y g, ¥-3y
d(an) = T T " (3.15)

+ __}f;(_:f*_ﬂ L?L(az)[MéL(nl)l + 0{t?)
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and

ris
b o= {4x|5n T\t _—ﬂ”] a0, 1] (56

Notice that (S' {ai)-'-o when L -=oo , since
-ﬂz

s 2.«6\2 21" 2 -2
%ﬂ:wAﬂfo a,) = [ 5imt 202 2] Ly gxtsin? +t}
(3.17)
./
=t fson Ze | Lyteoctsims T2 067

Now we turn our attention to equation (3.14¢). Obviously,
from {3.3) and (3.9) we have
Mo
Wy {L=1,0) = z Wy, (L-1,a,) (3.18)

a,=1

Thus, by summation of (3.l4e) over A, from 1 toM/2 , and
subsequently passing to the limit M -»oc , we obtaln the desired
result

fim W' (1-1,010,05x,4,8,7 ) =

M -»co

(3.19)

{ 3 Yly=n)+3yr0RG) (1428, (9)]

(E*ﬁlt ™ 4§q +{g2_%q)R{lf)[*HZSL(cpj]+2{§+y){at+wJ’L{w[1+(5’LW)] 75 )
where, in the close-packing limit ( £ = o= ),
Rf{f’)‘—x‘51'/“(.}9’(?.2-&9:154}1«2{()_4&7 | (3.20)

o . . 1 L -1
8.19) =yt {x Isimp| +(ytextoimr) ] SN _ (3.21)
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The result for SLpr} in (3.21) is exaect. It can be easily
obtained by using the 1dentity3)

L/z L/z 1 L2
M 2 {uls s fgi]m ={erewn™ s i O R I A WP es

k=4

Indeed, by differentiation with reepect to U of the logarithm

of both sides of eq.(3.22), one finds
Liz 2Wk P
1 + T - _
z [1 W sin L
k=1 (3.23)

-L
EPRC 173 lu‘l
=4
(1407%) {4+2 [Hm+u_z),,l]L_|“1-Lk ]

The expresaion for ‘91.“” now followe by setting here

u =x syl /y

and taking the definition (3.13} of A, (0,a,) in the close—packing
limit.

In the limit of large L we may separate in expression
(3.19) the bulk term,

W;:& (L-t,0l0,05%,4,%,n) =

A {4‘%@ HI SR |
gyt o YrEN Y -gIRIy)

(3.24)
x
_nt-d i J 1-R(¢)
" 1; B+ (-3 R)
and the fin’.lta-sizo correction temm,
A
wc:rr (L"1 olo, oixryrga’l) =
{3.25)

IE Ple[1+6,19)] +2my Rig} , 19)
a ey,
o Rp)Qle+24,(¢)Sty)]
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where

Plg) = y'-n? + (") RiA)

Qly) = y+E0 + (4" -PPRIY)
S(q)j:[y‘-?ﬂ)R(‘F)HE*?)(’I*}HU+‘S\L‘W] .
When | —»oo | 8,_((?} 1s essentially different from zero in the
neighbourhood of the points =k , k=0,t4 t2,... , where

{3.26)

G0y~ Lop(LE1smpt) 411" (Laoe 1g-kel=0) (5 009

Since in the neighbourhood of these points R!(f)»»x}S""M{’I/g y the
leading-order finite-size correction becomes

1{ 1_,,11 oo 4 -f
w;:T(L—i,oJo,o;x,y.ﬁ,’t) ’:}FZI % ldi [wsh 2 +%%)].(3-23)

Bvidently, at ¥=% the O(L") correction vanishes. In the
case ¥==% ye obtain from (3.25), (3.26)

W (L4,010,0 5,4 A4 Td R{¢) AL (3.29)
1 0 iy ¥ 31 = — — e .

Lot ? y ? y') gt i J "f 4*2&'_((’?)

In the limit | »o> equation (3.29) ylelds

Wciir('—*hf)fo;oax,y.y,}} = ij?t é (Lx/y —»oo) (3.30)

We emphasize that expression (3.19) 1s an exact result,
valid for any even number L ., In the special case of transig-
tionelly invariant infinite cylinder, i.e. when §=4'[=7 s it gives

for the average density of horizontal dimers, eee eqe.(2.24),(2.25)
iy
X [Snep|

- SO NS O N
Py f? T {4 0y j f [?%x’-&h«tt{’]”l[l-FZJ‘,_f?)J}

0

(3.31)

19



Naturally, this result coincides with the one which followe by
differentiation of Kasteleyn's expression3) for the partition
function of infinite ecylindrical strips. Indeed, the latter

expresgion in our notation reads

lim 4602y =

M=o L2 e (3.32)
% o, (2tr
T tn{ysin BT [yt == [
t=1
Hence p X
Lz [28-1)70 -1
(K) 4 (A poa yteamt 1=
= s ——— L
P - "*% - v (3.33)
% L/2 2w -1 ‘
Co 4 (g LY [ewigsmt ==
:—2:“ Tiw L LZH.[ - ’

where u(¢)=;[x/?);h«¢ . Now, the ctoincidence of expressions

{3.31) and (3.33) can bte easily shown by using the identity 3)
L2 - 4 tiz " L/z

2 [ae sint EEUE 15 =[iae0) ™ pat] T L) )

=1 (3.34)

instead of (3.22).

4. Results and Discussion

Expressicns (2.24), (2.24), (3.2) and (3.19) give the requi-
red dependence of‘fé ’th and hence of the ordering parameter A
on the bond activities and the lattlce size L . In the limit
L+ «~ , according %o {3.24), the expressions for the average
become
densities of bond cccupation ,/% , ]%

P

pycpoe 4

L T e s

L2 -t
1 - x genyp (3% x e 'e)

(4.1)
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Hence it follows that /4 =0© in the thermodynamic 1imit
Maoo 1[5 o for all values of =x 4, E and é .

Let us turn now to the finite - slze effects. In the leading
order O(L7') , we obtain from (2.24) and {3,28) the finite-
-size correction 2 to in the form

Se e

@ 4 54 (414" 7 y(E- 1) =
S5 L x (42 +55)* 0/&2[%2 J (3”“”)'

PARE 1)
o) (4.2}
The expression for JPﬁr follows from (4.2) by exchangling
the places of E and 4 . Therefore, the lesding-order
finite-size correction AW to the ordering parsmeter is
“y )
fs '
(4.3)

At F 4= 4 the finlte-size corrections to f} and 'fz
according to (3.30) are CD{Z’Z) , namely

(2)
-/D )D‘e x 421_2 (rL ) (4.4)

The results obtained for 4 indicate that we deal with a
specific thermodynamic quantity that originates from a correc-
tion addition to the free energy rather than from its bulk or
surface components, Indeed, the presence of a modified layer of
bonde in the infinite ecylindricel lattice lesds to the appearancs
in the free energy density of s surface term and corrections

(in the limit of large [ )&

f;:”if bl (g3 8)  Lhpp )+ fﬂ‘“"l‘ (x5t .E.i Foer (53%0)04.5)

Qur result

Xi'm L” J2

L*ee

implies that

21



7
g ’qurf = %"]—? fﬁurf- ’
(4.6)
Hence

‘{SMI’“ (:rlyj ;1*) = ‘f{xlfj’fé) ' (4.7)

The explicit form of the function Y can be found by integra-
tion of the equation

2 ; .
2~ V{a?,i)'z‘yk < j} -
4.8

with f)f glven by (4.1), Thus we find the surface contribu-
tion in the.form
P

ﬁ“rf(‘ﬁ?,ﬁﬁ):zlrj"(‘fg"{‘? S I8 ;5) Eany

ly-rx:f tf } (4-9)

Evidently, the nonzero value (4.3) of the ordering parameter
i8 ensured exclusively by the correction term L"-;fwn— (%9,% 4)
in the large /4 expansion (4.5). In & finite
syatem with homogeneous boundaries, »f“ﬂ. is suppoeed to be
universal and in some geometries to be pimply related to the
conformal encmaly number ¢ - of the theory 29 . Besides the
conforuel properties, fc,,.r depends, in genersl, on the nature
of the boundary conditions, Differentietion of fw"_ with
respect to boundary parameters givea therwodynamic quantities,
en example of which is the peramster /i in our model of
crystallizaetion,

Appendix

Por the sake of completenesa we write down here in full the
solution of the system of linear equations (3.10) at finite
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values of L. end M |, both assumed to be even numbers. For

convenience of notation the solution is given in the form

\';J" {0,a,) d,(a,)

Wploas) | o |dalan

Flttag) |t | day)
\?(7“ {L-1,a,) dy (22}
whare

d,(a,) = dTan) +
+t A" fo, al){ﬁ +4) [4+m+§)A WA a,)] +(ny) [1+(§+7}A“(;,qz” }

d(a)= 1+ -?} A (h:82) + (5 +4)+ 1) £, ()

2

dr)=1+ 3;"‘ Ay (0a) +(+Y) e tan) +

sy A t0,00)

4.ua,/M

A"I_(a‘l = )A41 ‘Daa;}[a’.(ﬂ,_] +_t_2(§+g)‘y'1z) A:‘{U,ﬂ,_)]’

x (e
dylay) = %—4—1;{5{ (a,) — [“"’I*})AM“ al)]d(ai)g

A (0,8 B4 Y - W}———}'MM (1,8, +2(5+ 3+ e (a) ] +
A E O IA (0,a0)

~hriag /M

A—:, (a;)= X (e -1 )(% 'W)A:} fo,a.) ,

Here,

£, (a,) = A" (1,2,} +4x* mzz_?fﬁ.‘; A,"[ola‘l-) + ?A" (1,a5)
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L/2 ” o
L, MRy 1. a 2fa, z
A‘H{o)al): 'L_ Z [" }l}ml T FHXTSIN _._j;l._. + t J ,

L q..g:"
L/2 z xa —2q-4
25 a, . g LKAy 2. 2 K4
Aulias)=-E 5 axsint T2 [gieat st S 1 0]
a,=1
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