


1, Introduction

The interest in the theoretical aspects of the structural
phase transitions does not decrease although our knowledge

1, Baing & significant

in this field has grown racently
branch of éhe‘statiat;cal physics, the gxactly goluble models
(osee o.g.Réf.z) has become an fmportant tool in etudies of
the properties of phase transitions, Some time ago, Schneider
~ef ai,3 proposad an exactly sdluble modsl of structural phase
transition with an anharmonic interaction of infinite range:
P 1 2
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- 430 %(LZQL).
The exact solution for all temperatures and the detailed
discussion of the thermodynamical properties of the model
(1.1) both in the classical and quantum limits, have bean
4,5

given by Plakida and Tonchev within the approximating

Hamiltonian method, Some modifications of this model have
also been discussed by various authors 6"9_

Sarbach and Schneider 10 showed that the clasgical partition
function of the whole class of models
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whaere N denotes the number of sites in d=dimensional lattice
(L= L!,-~ L& )) and V(x) is the well~defined potential

{see below):

VE) 2 Vo | V() = w0 }-V'(x)>o (x>%)

X0 1'. 2a)

may be found in the thermodynamical 1limit N —~P»#0 , Very

11 also discussed some

3~11

recently, van Hemmen and Zagrebnov
properties of model (1,2), It was shown that the phase
transition in the model (1.1) and also in the more general
case, Eq (1,2), is associnted with the presence of the so-cal-
led soft-mode which is of the acoustic type in the ordered
phase (T < T ). It resembles a Goldstone-mode behaviour, which
in order, is associated with the continuous symmetry bresking,
In the pravious paper 12, it has been shown thar there is no
any continuous symmetry in ths model (1.1) and the phsse
transition corresponds to the broken discrete symmetry,
It was also found that at T = O, the branch of excitations
reveals a2 singular behaviour at the centre of the Brillouine
zone
X
"’0, = -2!_((?‘}‘ \P‘c}) t Y +0 '

(1.3a)
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2
instead of an expected ecoustic-type spectrum , wo "O .



There are two following problems associatad with the
propertiss of model (1,2). Firstly, why, the singular
behaviour of the soft mode,bD:'(T), /at least at T = 0 /
has not besn found in the earlier treatments, /It 1e easy
to show that the result (1.3) is proper for the modal (1,2)
- sae Sec.S-/_ The second problem is more interesting, It is
generally balieved that in any reasonable model of phase
transition, the critical indices are classical for d> dg
/dc - gritical dimension/, Unambigiously the value of criticel
dimension for model (1,2} i dc = 4 , but according to

3«11

]
previous results the critical index K (T <‘Tc) 19 not

defined for any d > 2, instead of to be squal to one
(K-('#’l ) for d > 4.

Therafore, we have decided to study the behaviour of
the susceptibility function ?( (“-glaz - gee below ) for the
whole class of sxactly soluble models (1,2). The aim of this
paper is to give definite answer on the question what ig the
proper behaviour of the soft mode as a function of tenpeéature.
All our considerations are given in the classical limit
tord 2 3 (d=3%,4,5.,, ), where the discussed model seems’
to belong to the class of universality of spherical model,

The paper 1s orgenized as follows:
In Sec, II the meaning of the gapless mode within the models
(1,2) will be -explained; the behavicur of the susceptibility
function a8t T = 0 and T 2> O is studied in Sec, XII and
Sec,IV, respectively; the connection with the spherical
model ie discussed in Sec. v .and conclusiong are given in the

last Sec, VI,



II. The soft-mode in the exactly soluble models of phase

transition

In rhis Section wa show how the free energy for the
models (1.2) may be found in the limit of large N, In fact,
the exact solution of the model (1.2) was given sarlier 10-12
but as we want the paper to be salf-contained, we shall do
this once more but in another, a simpler way, It is found
thet a common feature for finite systems is the excitation
whose frequency decreases with temperature and becomes of
an order of N-1 below some Ty - This phenomenon is interpreted
as a signal of phase transition with a gapless mode in the
ordered phase 4in the infinite system. /In Sec,IV it will be
shown to what extent this interpretation is right/,

The partition Ffunction £ for the model {1.2) facto-

rizes /within a classical approximation/

ZT = ‘?-"P ZQ i (2.1)
where the configurational part ZQ may be found ss follows:

2o = {048, - puifay)] -

(2.2)
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A usual representation for a S - function

) = ;%: ‘clk.e.

. allows one to find iﬂci by using /twice/ a saddle point-type

Lhx

mathod /see also Ref;ioj,
As it is a rather widely used, standard method / see, e,g.

Rsf.z/, let us only give a final formula for the free enargy

function ‘
Fo= = et - g%’”%)*[ve*)“ s

where the first term in formula (2,3) is a free energy of a

system of harmonic oscillators with effective freguencies

]
m;, - %l [zv(f*)ﬂ{’o-%‘,—] (2.4)

and 1'*-13 defined by a self-consistency equation following

from the condition on the saddle point
* T s -1
T = L“N- Z.[Z*VQ' )+, -qu,] (2.5)
q( .
By definition

-2 (2.6a)

(2.6b)"



The necegsary condition on V(r), for the phasa transition
in tha model (1,2) is

V'Qro) -0 xo > 0

) (2.6¢c)
/we also want v(r} to be at least two timee differantiabla
functien of r = see below/,
In fact, we find from (2,5) that when conditions (2.6) are
fulfilled, then for d 233 and for largs N, V{r * ) behavas

as follows:

VQ" ) - V(ﬂ' ).\._L ah T7T(~T)(2?a)
and

V'Q‘.*) o~ % for T < T-N}Kft% ')}2.7b)

“e shall shortly comment on the above result but prior to
that let us make a widely-used approximation which simplifies

aur further calculations
v ‘= 5a°
e \?q' 29 (2.8a)

d
Sd,@)o‘,-'=5(d)j‘1 cbo‘, L) ‘} xf (2.80)

This approximation of an isotropic spectrum and a spherical
Brillouine zone does not influence the qualitative character
of our regults, 1.8, it does not influence the character of

temperature dependence of susceptibility function or the



value of the critical indices changing the values of the
coefficients and the constants, 2.4., To - The behaviour of
w:’ (.,Z{V'LT*)) , Eg.{2.4), given by the formula (2.7) ie
interpreted as a signal of the phase transition in the -
infinitaly large system /see Ref,e"il/, It may be verified
by taking & thermodynamical limit N-2 e in Eq.-(z.s)

d. .
vy - t‘i )(é) ! (2.9}

where /ses also Eq.(2.8)/

A
@) x*+1 ‘
3 (8) = | —— dx AL,
e+ X ! 5$:’ ’ (2.9a)
'RY
t = d
bq: : (2.10)
It 1s found that Eq,(2.9) is reasonable ( d 2> 3 ) for T3> T,
(c
R N L0 (e.1)
and
2 ! e
W - 2Y(r _
o N ~ (‘t {:,_) ] (2.12)
where
.{. = 2‘ for d= 3 (2‘123)
and .
( -1 for d = 5,6,... . (2.12b)

Below Te » there is no any solution of €q.{(2.9), but 1t may



be shown that in this range the gap 1n the spectrum vanishes:
rero Log =0 . This 1s made by adding a term of
interaction with an external field to the Hamiltonian and
teaking a thermodynamical limit prior to the limit of &
vanishing externsl field /gsee Raf.g and Sec,IV/, The tempera-

ture~-dependence of the soft-mode (2, 4)

~ (t-t)Y £> ¢
LQZ 4 (2.13)
4] !
O , t<t.

allows one to ask if formula (2.13) describes e Goldstone~type
excitation associated with a spontaneously broken continuous
symmetry, The answer /negative /to this question and the
consequences following from it will be discussed in the

next Sections,

III. The excitation spectrum at T = O

In this Section we shall study the proparties of the
spectrum of small oscillations around the minima of the
potential energy of the model (1.2) /see also Ref,lz/_ In the
absence of the harmonic interaction term, the system has a
spherical symmetry / N-dimensiocnal space - see below/, and

small oscillations around any point of the hypersphere
a4 ~

o
Xo X = (3. 10)

-~
where X is N-component column vector

%« & ({ots) | (5.10)



are characterized by N-1 times degenerated zero-frequency
mode and excitation of perpendicular to the surface of the

hypersphera with the frequency §20

2 i "
QO' L= E V ('ro) Ll*\"o R (3.2)
For the model (1,1), V(r) = - %T * ZB'T_Z
!
S

2, =

0 M

/c.f;Ref.iz/

The presenca of the harmonic interaction term in the Hamil-

tonian (1,2) breasks this spherical symmetry. This can be

' A
seen by expressing the potential anargy(J in the X repre-

sentation
- i M'o" 1 4 A
! N[\/(x x) 2 CPX} ' (3.3)
where
n xo A .
- + —_—
X {xa4 ! X = (Xo-ll x-ck‘] ) , (3.32)
i
xq’: w qu and

@ is & diagonai N x N matrix with elements ('PO‘ "qu .
e shall assume that these elements are non-negative €L

also £q.(2.8)/:

A _‘P'Jlr >0 ((‘P*O) (3.4)

what means that the phase transition /in thé 1nfinitely large



system/ takes place without the change of the translational
symmetry, Then, the potential energy, Eq. (3.3), has a de-
genarated minimum

u(xl‘) - NV(fo) (3.5)

A »
X,b = 0 Xo - T .
0 ! (3.6)

The spectrum of small oscillations around one of the two

minima (3.6) is given by the following formula

2
Qo' = ﬂ"(‘?o"tp%) ! (3.7a)

]
Qz’ = -:4— Y (%) 4% . : ‘ (3.78)

Let us shortly summarize tha above discussion, There is
a discrete, but mot continucus, symametry spontanacusly broken
by the phase transition in the class of models (1,2); there-
fors, there should not appear aeny of the Goldstone-type
excitation, On the other hand, a singular c‘-dapendence of a
soft-mode in thess models is expected, at least at T = O
/sea formula (3.7) for a finite, mechanical system /, This is
in contradiction with the naive interpretation of the results
obtainad within the approximating Hamiltonian method or othar
methods 4-11 / see also Eqs,(2,7) and (2,13} /,

In the next Section, the proper temperature behaviour of

2
the soft-mode freguency §20(10 will be found,

10



IV, The susceptibility function
The inverse susceptibility }6—4

2 LQ>(h)
T (4.1)
h=0 H

1s by dafinition proportional to the square soft-mode frequ-

3 o A
ency 520 . we shall show that 520 does not vanish within

2.

the whole ordered phase T < Ty + 80, W /see Eq.(2,13)/

should not be interpreted as a soft-mode freguency /below Tc/

although
2, 2
Qo =(J:)Q T>TC R (4-2)

!
To study the properties of the susceptibility function

we have to add to the Hamiltonian {1.2) & term of interaction

with the external, homogeneous field h

HRW) = T+U - h2Q . . (4.3)
L

The frea energy is given by the followiné formula:

- kT Zb"”@_&) V(r) -1 V(f"')] _h

N 2\/(;)’(4 4)

4 b
(’J“Tf ®hT) = T»T[Z'V g )+QJ0—(P$] (4.5)

»>
and r . is given by a self-consistency condition

e =t (l-. ) [ZV@'*)] + %%"@éz (.60

11



Most of the interesting properties of the model (1.2) may be
" studied by using Eqs, (4,4 - 4,6} which are obtasined within
the saddle-point type method with the Hamiltonian {4.3),

The phase transition takes place in the infinitely large
systems (N—>o00 ), for d > 3, / see also Sec,II /., Then, the

order parameter

. h
5= Jwn B, = lum { ] (4.7)
b= O > w0 ZV&_’) !

1s different from zero for T T , / Eqs.(2.11) and (4,6)/

N
b~ (t-t)%.

(4.8)
The susceptibility 'X given by the formula (4.1} is
= A
x “fweo : ‘ (4.9)
In the range T<Tc , h= 0O
»* b4 b
T o ’ro\:l + a,h” (4 &,k ")J r (4.98)
and
! it b A
» [ V h 4 2
Vi(r*) >~ T ) T, Qo (4+n. h
( ) ( 0 24 A 2 / (4.9b)
where the parameters a,, a,, b1, b2 are found from the con-
dition (4.6},
The parameter b is obviously equal to one, ‘= 1, 8O

[ZV (o) &, "'o A [Ql&-a.zkb ) ] ,(4.10)

12



Let us separately consider two cases
a) T=20
Then, one obtains from Egs,(4.6) and (4.9)

b, = 1, (4.11)

2

-1
X~ - [avteom] " (52
Thue, we find the coincidence with the result (3, 7)
= 2 |A - ( ’“)'1
X =% [w‘“g(hj] h=0 Mo )

b/ Tc >T >0
The integral in Eq,(4,6) / see Egs.(2.9)/ 1s easily calculated

Sz

2V{Ya, v,

(4.12a)

and one finds b2 to be depandent on the dimension d

b, = %_ , (d=3) (4.13a)

b2 = 1, (d = 5,6, ...) (4.13b)

Therefore, the susceptibility is not defined in this region
for d = 3: .

—1
?L = () {(4,14)

and it 1g well-defined for d > 5:

-1
?(' N_(-hc.—t) (d.=5,6J-..)_ (4.15)
So, we way conclude that the inverse susceptibility function
X-1~Q§' for the class of models (1,2) reveals s singular

behaviour at T = 0 for d &« 3 and is a continuous function of

T for d 25/ see Fig.1 /, In the disordered phase

—¥
% ~ (’t"’ {:(_) (4,16)

13



where
¥ =2.,(d=3) , (4.17a)
T »~1,({dz=5), {4.17b)
as follows from Eq.(4.6)

in this case, the susceptibility at the critical dimension,
d = 4, might be also found, After gsome simple algebra, one
finds that the critical indices are ‘classical but the

logarithmic corrections eppear, Namely

a/ T2 Te
o w{T-T)
RSO
by 0 LTLT,
~1
-4, In b
K™ = timm ) -0
W V- T

as follows from Eq.(4.6) snd / modified / formula (4,9)

\?_ The correspondence with the spherical model

It is believed that the models defined by the Hamiltonisn
{(1.2) belong to the class of universality of spherical model
Refs. 3,4,5,10,11 /slthough' X (T T ) has not bean defined
there for any d > 2 /, As the finite value of the susceptibility
function at T = 0, X (0)=[4 Vi) w ]-1 is the common
feature of models (1.2} /classical limit, d 2 3 / independently
of the behaviour 7(. for T > 0 /see the Figure/; so, we may ask
if this phenomsnon is observed in the spherical model, The

answer 1s: * to some extent -~ yes™,

14
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1 it
Temperature dependence of the susceptiblility
funetlon
4 =3
——— d >5
--— spherical model ( 4 ™ 5)

Firstly, let us note that by adding to the Hamiltonian

{1,2) a condition of "sphericity”

z
A3Q =wu (5.1)
N g

one obtains, in the classical spproximation, the usual

spherical model / for any well-defined V(r), alsa for Vv(r) =
= Ar, A >0 / = msee definition of Z,Q (2.2).
in this case the condition of self-consistency (4.6), has the

following form / in the limit N-—» o0 /:

()

W= by * 4:% (3)

(5.2)
where
h
SNRERCT S
SC‘_Q 5“ h (5.28)
/compare with Eq.{2.9)/ and is the function of h and T,

15



The susceptibility function is

X B hs._) = - ot %ts)

B 2 (5.3)
?h k=0 28 - ct 3,(6)'%3

In the orderad phase T Tes 8= lim s §0 and, as

{(5.4a}

") —= d =
lg®] —= =, (&-3)

l%‘(S'Ol < oo l (d= 56. .. ) (5.4b)

_ ’
in the range of temperature 0 C T <'Tc

Xa (-] (d-3 ) , (5.55)
K<ew | (¢>25) | (5.5b)

But, one finds that at T = O
X =0 U.) ) (5.6)

Therefore, also in this case, the susceptibiliry function
reveals the behaviour characteristic of the class of models
{(1.2). This means that }( (T = O ) daes not depend on d,
and X (T) 1s the discontinuvous function of T at T = 0

for d = 3 but the continuous one for d 2 5 (X(T~O)~T)

vI, Final remarks

3-11

According to the results of other zuthors the

susceptibility function of models {1.2) is not defined in

-the ordered phase., In this paper it is shown that neither

4,5,7y9,11

a pseudcharmonic, geplass mode (T <_T°) nor the

3,10

susceptibility calculated in Refs, does not correspond

16



to the properly defined susceptibility function, As the soft
mode is associsted with the response of the system on the
external perturbation, the squere soft-mode frequency ggi
which is proportional to the inverse susceptibility
9(':1[:. %;.,<Q("‘)>)—1 was found, In fect X 15 not defined
below T_, but only for d:g d_ = 4, whereas 1t is a smooth
function of temperature for d > dc and the ¢ritical index X‘r
takes its classical value, X '=-x‘= 1. In such a case it
may be stated that the models (1.2) belong, in the classicel
1imit, to the class of universality of the spherical model,

Let us point out that the singular behaviour of
susceptibility at T = O for d = 3 / and also d = dc =4 /
as a characteristic feature comman for all known models
belonging to this universality class / including spherical
model / is closely related to the non-ergodicity of the modsl,
It turns out that, in contradiction to the resulte of Raf.s,
the dynamics of model (1,1) and also (1,2) is quite nontrivial

Naemely, the sdisbatic susceptibility,

?( ad. L= xﬂkW\ §X:(¢o + ii.)

AAPS (6.1)

is 8 smooth function of temperaturs elsc in the ordered phase

T Ter

(6.2) -

- ' 2 -4
] aviedCa> }
X ag " ™

for any d( 2 3), Therefore, the adiabatic (6.1) and isothermic

(4.9), susceptibilities are different for d = 3 / snd d = 4 /

7



13 within

what actually means that the system is non-ergodic
the ordered phase, 0< T < Tc' As it simply follows from

Kubo considerations 13 , 8t T =0,

Xad = X - (6.3)

in this case, where the potential energy 1s doubly degeneratad
(3.6). This 1is the reason of appearing of singularity in

the plot of susceptibility /see the Figure/

X (T=0) = [4vir)m )" (6.4)

The extended diséussion of the dynamics of model (1,2)
is beyond the scope of this paper, ‘

Lat also shortly comment a new result for the spherical
model, which’ to our data, has not been previously reported

14 /.

In the sphericel model, which may be considered as s limiting

/ ses also a review paper

cass of the model (1,2), insteasd of the forauls (6.4} . it

was found that

X(T= 0)=0 . (6.5)
It 18 ‘& somewhat surprising result, at the first sight,
But let us remember that at T = O, the system is in the
position of the minimum ﬁotantial enargy and ?( is & measure
of ,the response to the homogeneous cxternQI perturbation,
In the spherical model

M . i: *2
X =1o : Xo =W (6.8)

18



and there is no any response at T = O, Egs.{5,1), to the
external perturbation - l‘AQO ., 90 X =0, in agreement with

£q.(6.5).

Acknowledgement

This work has been partly done during the stay of the
author in the Joint Institute for Nuclear Research atr Oubna,
The author is greatly indebted to Prof, H,Konwent,

Prof,N,.M, Plakida and Dr N,S, Tonchev for valusble discussiond,

References

1 R,A Cowley, Adv, Phys, 29, 1 (1980);
A,D,Bruce, Adv,Phys, 29, 111 (1980};
A,D,Bruce and R,A, Cowley, Adv, Phys, 29, 219 (1980),

2 R.J.Baxter, Exactly Solved Models in Statistical Physics,
Academic Press (1982},

3 T.Schneider, £,Stoll and H,Beck, Physica 79A, 201 (1975),

4 N,M, Plakida and N,S_Tonchev, Teor Mat, Fiz, (USSR) 63,
270 (1985) (in Russian},

5 ®N.M,Plakida and N,8,Tonchev, Physica 136A, 176 (1986),

& Yu.M, Ivanchenko, A,A,Lisyanskii and A E_Filippov,
Phys,Lett, A119, 55 (1986},

7 5,Sarbach and T.Schneider, Z. Physik B20, 399 (1975).

8 S,Stamenkovié, N.S Tonchev and V.A.Zagrebnov, Physics 145A,
262 (1987)

2 N,M,Plakida, A ,Radosz and N,S,Tonchev, Physica 143A,

227 (1987),

‘19



1o}

11

12
13

14

S.Sarbach and T.Schneider, Phys, Rev. B 16, 347 (1977).

2,1..van Hemmen and V_A,Zagrebnov, Preprint 425,
Universitdt Heidelberg (1987).

A, Radosz, Physics Letters , Al27, 319 (1988}.
RyKubo, 3,Phys, Sec, (Japan) 12, 570 (1957}

6,5, Joyce, Critical Properties of Spherical Model
In Phase Fransition and Critical Phenomenga, -eds,

Green M_S,, Acad.Press 1972, vol,2 p.375 - 442

Receivad by Publishing Department
on March 2, 1989,

20

Domb C,,



