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Some time ago, Sarbach and Schneider 
111 

showed how the tree energy 
of the class of models of phase transition with the Hamiltonian: 

H 

2 
pf 1 2 1 2 

I. - + - I ¢ m (Q f - Q f ) + NV(- I Q f ), 
f 2M 4 ff1 u. 1 1 N f 

(1) 

where P f and Q f are cannonically conjugated variables, N is the number of 
atoms and V(x) is a well-defined potential, may be estimated exactly (see 
also 121 

). 
These authors stated that the model (1) belongs to the class of univer

sality of the spherical model, although there have existed some unsolved 
problems associated with the behaviour of susceptibility function. The tempe
rature dependence of su~ptibility has been widely discussed very recent-
ly/3,4/ . '; 

In this note, starting from a definition of the partition function 

z = Tr I exp(-~Hb) I, 

where a term of interaction with an extermal field h has been added 

Hh = H - h I. Q f , 
f 

(2) 

(2a) 

the free energy for the model (1) is estimated within a part integral 
formalism without any limitation to the classical approximation. It seems 
that the result is exact in the thermodynamical limit but the arguments have 
rather a physical than mathematical character. 

The partition function Z expressed as a path integral in imaginary time 
151 

may be given by the following formulae: 

1 
Z = f D [Qq(r)] exp(-r;S) 11m z<L>. 

L-+oo 

(3) 

where Qqs are the Fourier ¥••••-s ef Qi111 

.} 



T R 
s = f dd l: (lt[ II) q )

2 

0 q 2 dr 

+ NV(_:_l: Q Q l- v'NhQ )I 
Nct-<lq o 

(4) 

L 
z<L> = f n <J;~q(L) ... J n dQq(l) exp(-.!. l: < x 

q q 1in=l 

- - . L 
= J d1nL ••• Jdm 1exp(-.!.N ~ l: V(m1))(TI dQ (L) ••• J ·n dQ (1) x (5) 

o o II 1=1 q q q q 

L 1 L 1 
n .S(m -.ll: Q (i)Q (i)}exp 1-- l: '" ( l: 1-(cf> -<1> )Q (i)Q (i) + 

1=1 I N q -q q h I= 1 'I 2 o q -q q 

T = {3h L·<. (6) 

Inserting a usual 8 - representation 

1 
00 

lb. 
.S(x) =- J dke 

2rr -oo 

into Eq.(5) one finds Z (L) in the form 

2 



(L) ~ ~ 1 
Z ~ f drnL ••• f dm 1exp[- N N 

0 0 

L 
E I V(m )] 

1 ~ 1 1 

1 oo 1 oo L 
-f dkL···- f dk 1exp(iN I m k) x 
?:r-oc :M-oo n=lnn (7) 

x ( n z~Lll z<;! 
q 

L 

~JlldQ (L) •. .(lldQ(1)exp{-.!_I I (
26
M[Q (n)-Q (n-1)]x 

q q q q 1i. n~ 1 q -q -q (7a) 

x[Q (n)-Q(n-1)]+.!_E-Mru 2 (n)Q (n)Q(n))l 
+q q 2 q -q q ' 

1 L 
exp[+-NE I 

2h n=1 

2 
h 

w 2 (n)M l. 
0 

w 2 (n) = ..l..(¢ -ql + 2ik :!!_.). 
q M 0 q 0 E 

(7b) 

As the calculation of Z ~L) needs to take Gaussian integrals, the only 
problem, is to use a convenient notation. As a result one finds 

(8) 

where 

1 
+ ••• + ]{Sa) 

cL-1 (q) c~_lq) ••• c~(q) 

(8b) 

3 



(8c) 

(8b) 

By using in Eq.(7) Z q in the form (8), one can see that the integral over all 
k(n) takes the following form: 

f dk 1 ... J dkL exp[ -Nr(l kn l)J, (9) 
-~ 

where 

~ -i 1: k, mf + 1.. l ln Z (L) 
f ' N q q M..,~ ( 0) 

Let us assume that the estimation of integral {9) may be given by analogy 
with the saddle point method but extended to the L - dimensional space. 
Then, the leading contribution to I is 

I ::: exp{ -Nf(l k
0 

(O)J)J. (10) 

where I kn{O) I, are functions of mn-<\ found from the condition 

(lOa) 

Therefore, tbe partition function Z(L) in this approximation to the leading 
term, (Eq. in (Hl)), is giv<ln by the following formulae: 

(L) 
Z = eq>{-NF ( lm 1 1l] lm1~ mi(O) 

where 

L 

F( lm
1
(0)J) = ~ 1: V(m

1 
(0)) + f(k

8
(1m 1(0) I)), 

11 I ~ 1 

and lm1(0) I correspond to the minimum of the function F 

4 

(11) 

(lla) 



Equation (lla) has the solution (see also Eq.(lOa)). 

h 2 
+ f 2V' (m(O))] ' 

A(L) (0) ~ fo5Ll (co (q)) 
q q n ' 

co(q) -
n 

a< L l(O) 
q 

a<L> (co.Cq)), 
q 

.... = k ~ k) • 
n 

(llb) 

(12a) 

+ 

(12b) 

(12c) 

In the limit, ,c;; ~ 0 (L ~ ~ ), formulae (11) and .(12a·c) allow one to obtain a 

free energy fm>ctiotl 5 in the form 

k 8T 
5 ~- -. lnZ 

N 

where 

m(O) 1 l: i[ 

N q 2<u(q) 

cth ( h«J(q) 

2i<8T 

2 
- mV'(m(.O)}l- ~ 1i 

'2 2V '.( !ll{l})) 

) + [ __ 11: ___ ]2 

2V'(m(O)) 

<u2 (q) ~ .!...[ ¢ -¢ + 2V'(m(O))]. 
M o q 

{13) 

(13a) 

5 



This result Eq.(13), is expected to be exact in the thermodynamical limit. 
We cannot prove it, as we are not able to extend the saddle point method 
to the L-dimensional space (L ~ ~) and also to show that the solution (12b) 
corresponds to the minimum of the function F. However, there are other 
arguments justifying our statement: Firstly, in the classical approximation, 
kBT »1lw(q) the well-known result 

m(O) 

In( hw(q)) + [V(m(O)) -V'(m(O))m(O)] _ 
kBT 

"'-2(q) + [ 
-II 2 

2V'(m(O))] ' 

w2 (q) = .!..[ ¢ -¢ + 2V'(m(O))], 
M o q 

is reproduced (see /l, 21 and /41). Secondly, in the special case 

V(x) = - !;_ x B 2 
2 + Tx' 

(14) 

(14a) 

(14b) 

(15) 

the exact solution was found within approximating Hamiltonian method by 
Plakida and Tonchev 181

. Their result is the same as our result (13). 
Let us emphasize at the end that because of the form of this paper some 

mathematical details, especially corresponding to the derivation of formu
lae (8) and (12a), have been omitted. Detailing discussion and somewhat 
deeper mathematical arguments justifying the result (13) will be given else
where. 

The work was carried out. under contract CPBP 01.02. 

REFERENCES 

I. SarbachS., Schneider T.- Phys. Rev. B, 1977, 17, p.34Z 
2. Van Hemmen J.L., Zagreb nov V.A. - Preprint 425, Universitat Heidelberg, 1987. 

6 



3. Radosz A.- Phys. Lett. A, 1988, 127,p.319. 
4. Radosz A. - 1988, unpublished. 
5. Feynman R.P., Hibbs A.R. - Quantum Mechanics and Path Integrals, Mc-Graw Hill, 

N.Y., 1965. 
6. Plakide N.M., Tonchev N.S. - Theor. Mat. Fiz., 1985, 68, p.270; Physica, 1986, 136A, 

p.176. 

Received by Publishing Department 
on March 2, 1989. 

7 


