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The Hamiltonian
H = %E €y C;ecgc + uiz N M, (1)

with C&- and C:; being creation operators of fermions in a
Bloch and Wannier s;ate resp., is usually called Hubbard model’1/,if
one assumes U to be positive, since it is the on-site matrix ele-
ment of the electron-electron interaction. Otherwise, if U is
thought to describe a kind of effective attraction of electrons like
in the simplest version of a model of superconductivity, it can be
negative. Unfortunately the two cases, i.e. U >0 and U<O resp.,
are usually treathd differently, due to the differing goals of desc-
ribing magnetism or guperconductivity /2,3 . In the following it -
will be shown, that by generalization of the functional integral me-
thod outworked mainly for magnetic purposes, it is possible to handle
both the attractive and the repulsive version of the model (1) on
the same footing.

The funotional integral technique starts with rewriting the in-
teraction term of the Hamiltonian as quadratic form. There are seve-

ral different transformations known within the context of magnetism,
which are all operator identities and formal equivalent - till the
moment, when approximations are introduced. However, employing a
special approximation scheme usually destroys this equivalence yield-
ing different results to the same physical questions. Due to the
lack of a oriterion which transformation is to prefer the method is
often oried arbitrary, since the choice of the quadratic form pre-
determines the results. To avoid this disadvantage the authors argued,
that dealing with the model (1) one should not restrict the various
possibilities of breaking symmetries,what is usually done by adopting
a special quadratic form, rather the model should "have the choloe"”
by minimising its thermodynamical potential /4 . :
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Working out this idea we start by rewriting the interaction term

1

et = 2 (A=) v Rig + (-0 3 8+ (2 IR @)

with S; being the epin vector

4
Six = 7 (eiativr €l Cin); 3;y=§. (Cin Ciu - Ci';cio),‘ 5.-!=§<".-f- M) (3)
and R; being the quasispin vector
_Af k . 1 1
Riy = z( Cip Ciy + Ciy Cip) j R,‘y =5 ( C;\Ci:,— Gy Cie) ; Ri;=z(n,-'+n,-‘-1) .(4)

This transformation was shown to be a generalization of quite all
quadratic forms used in the context of magnetism 4 « However, due

to the containment of both spins and quasispins in (2) it is pos-
sible to look for magnetism ( < ;> 0 ), charge ordering (<R >+ 0 ),
or superconduction ( {Rix>#+ 0 ) in a unified manner. Inserting eq.
(2) into eq. (1) and applying the time ordering trick the partition
sum becomes

o2

- u.2<4+°<;) -8%, -,sfdzum (5)
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Here was abbreviated

u :

k=L (e-pr g -Shadng ©
H () = - g; (1-%) $¥e) + 4 5 (44 ) R2c2) 7
A) = eP%y - (8)

with h,  being the external magnetic field applied in z -direc-
tion and measured in energy units. One can immediately see that the
chemical potential M which is known to be /2 when neutrality and
electron hole symmetry is assumed, acts as symmetry breaking field
with respect to Riz in the same manner as h,, does with respect

to 5-‘1 « The latter may be of interest when (1) is applied to desc-
ribe substitution effects in magnets or superconductors. Now, the
Hubbard-Stratonovic transformation

a A? *ee -x%-2{mMa'x A (3)
e = rdx e
-0

is used at every lattice site and at each instant of "imaginary time"
to rewrite the partition sum as functional integral
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with §2, being the functional

; 2 (11)
Ru= T2 (de (xio + yio) + In Z L. xe.,. y@.]

i o = X
where
A
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By substituting

—X-i (t) = 44'0(" ‘K‘(t) ; Ii(‘)= 'J’l"‘ﬂl gi(t) 13

Z, = Ycﬁ 2 X.c0) DY) e —QE“}NX;“)M))&(!)'"J (14)

—oa 11 (4_(,(?)3/2.
with
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-p%, . -| ey ;idr(g(im_ﬁi«) + ul’.tz)&m)} _

£C..] = 4r{Tte

Therefore the functional Z 1is no longer explicit dependent on the
x;'s. Now, one can proceed in the usual way, i.e. applying coupling
constant trick, writing down the associated Dyson equation, discuss
the different approximation schemes developed to calculate £, eto.,

as done,e.g.41in /3/ for the two field scheme, which is a special

case of eq. (2). Of course, the latter is out of the scope of thias
letter and will be published elsewhere. However, without doing any
apecial calculation one immediately recognizes that for each appro-



ximation the dependence of the o will be different., Therefore
the best choice of the ®; 1s determined by the approximation emp~-
loyed to caloculate the partition sum and the related thermodynamical
potential. By minizing the latter one finds the equation determining
the o straightforwardly,

229 M Z2 =0 ; for all o; (17)
P 90(; .

This criterion holds independent of the method used to evaluate the

functional integral (14). However, usually the partition sum is cal-
culated by means of the gaddle point approximation, i.e. only the
extremizing "paths", hereafter agaigned as K?(t) and X?(t) regp.,
are of interest. By minimizing the functional 52 with respect to
the fields one finds '

Xe=d=x S g z| | 8)
2% éxi(t) Xi(t)z_x-?(t); Xi(t)=_ie(t)
A+ (19)
Y= S,
=it bA JI;(!) Z X )= Xie(l),' X;(t)=Y;e(z)~

Within the saddle point -approximation the thermodynamical potential

becomes a functional of the extremizing paths, which are functions

of the «; via eqs. (18), (19). One has

SR EY = T ) 25 G- + 2 Qre X Yo1(20)
e ® o4y 2B p )

From eq. (17) one finds

0=2 3 , 1789 9‘_2‘?+1<‘12)3'1_14"-£*_: u.
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The second and the third term in eq.(21) vanish, due to the gaddle
point approximation. Since Z depends not explicitly on o; the
resulting expresasion looks like

4 A
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0= B8Y _ 3% de XF° () - ——  [dv Y %) . (22)
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The fields can be expressed with the help of mean values of the local

spine and quasispine. From variation of the functional b Z in
eqs. (18) and (19) one finde
1-%
Xy == T:— .‘%“pu < §;@y (23)
eery - A+ T4l s
h 6 G P = ‘JS‘ pU < Ry, (24)
Here was introduced
CAay, » MiTgeAm) (25)
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Ineerting eqs. (23) and (24) into eq. (22) ylelds
«  _ BU 4 ¢ 2 ¢ 2
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which givam the twn eolutisna

Sexvas

4
%o ="z {1+ 487) (28)

The second term in eq. (20) demands

/]-O(il a X > 0. (29)
B8

This melects

«; .-216(4-J4+9el)- _ (30)

By eq. . (30) the &; are completely determined and there-

fore, no "arbitrariness® remains. However, since the &; depend on
the mean values of the looal spins and qQuasispine, i.e. the quadra-
tic form itself depends on the results, which should be oaloulated



from it, one has to solve a self consistent problem. The remaining
task is to determine the functional Z in a more or less advanced
approximation scheme. This is beyond the scope of this letter and
will be published elsewhere.

The idea of the method presented above can also be applied if
the functional integration is carried out by expansion around the
extremizing paths to the second order. Furthermore, what said above

is independent of the special kind of %, , since it is related to
the Hubbard interaction term only, and therefore other models, e.g.
the (periodic) Anderson model, may be treated in complete analogy.

The author wants to thank E.Heiner for discussion and critical
remarks.
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llpegnaraercsi ocHoBaHHAasi Ha HMCIONb30B aHHH o6o6meHHOH
KBa/IpaTH4YHON ¢GOpPMbHl CIMHHOBBX M KBA3HCIMHOBBIX I€peMeHHbIX
nponenypa, KOTOpasa yCTpPaHseT NMPOH3BOJ B MeToge ¢GyHKHHO-
HanbHOTO HHTErpHPOBAHWA, BbLI3BAHHbIH CYMEeCTBOBAHHEM MHO-
TOYHCNEeHHBX CnocoboB 3anucH B3auMofelic TBHA Xa66appna.

Pabora Bumonuena B JlaGopatopuu TeopeTHUYeCKONH ¢H3UKU
OUAH .
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To avoid the arbitrariness of the functional integral
method, originating from the numerous different ways to
rewrite the Hubbard interaction, a self consistent pro-
gedure is given based on a generalized quadratic form
1n terms of spins and quasispins.

The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.
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