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I 
1. INTRODUCTION 

i 
Recently a large number of theoretical models has been proposed t o  

explain the pairing mechanism in the new oxide high-T, superconductors 
(see, e.g. 'l'  ). An important role of strong single-site Coulomb correlation 
was pointed out in several models based on the Hubbard model. A theory 
of superconductivity was proposed in I2 '  where the pairing of holes (or 
particles) in the nearly half-filled band case was caused by the kinematical 
interaction in the Hubbard model. 

But equations for gap functions, obtained in by a sophisticated 
diagram technique, has no simple physical meaning, and the appearance of 
two gaps in the simple Hubbard model seems unreasonable. 

In the present paper, we consider the theory of superconductivity in 
the Hubbard model by employing a much simpler and physically more clear 
equation of motion method for the two-time Green functions 1 3 '  . This 
method has been proved to  be successful in obtaining interpolation solutions 
in the Hubbard model (see, e.g.'4' ). By generalizing the well-known "Hub- 
bard-I" approximation '5' t o  incorporate the superconducting pairing 
correlations we get a simple system of equations for the gap and T, . In 
comparison with the results of'2', we get only one gap function with the 
wave-vector dependence of the extended s-type and some corrected 
expression for T, . These differences, as it seems to us, are due t o  a more 
consistent consideration of kinematic-type scattering rocesses in the equa- 

l!, tion of motion method than in the diagram technique . 

2. EQUATIONS FOR THE GREEN FUNCTIONS 

To describe a system of electrons with a strong Coulomb correlation, 
we consider the Hubbard Hamiltonian 

where a;, , a are the creation and annihilation operators for electrons ' with spin o on the lattice site i; t i  is the transfer integral, U > 0 is 
the intra-atomic Coulomb repulsion anA the atomic energy level E is mea- 
sured from the chemical potential p ; E = E - p . 

A complete set of orbitally nondegenerate localized electronic states 
1 nit , n l ,  > a t  the lattice site i 

1 



To distinguish whether an electron with inverse direction of the spin is pre- 
sent or not a t  a lattice site i, when operators a t ,  , a la  act on the states 
(2), one should introduce the projection operators In, -? ,  (1 - n ,  -, ) I I 5 .  

As a result, one obtains the Hubbard operators XPq = I I p > < i q , acting 
on the states (2). They can be written in terms of the Fermi operators as: 

The Fermi operators a  i v  , a: are given by the equations: 

Now we consider the two-time thermodynamic Green function 

where the usual notation is used. In the atomic limit t  i j  = 0 its Fourier- 
transform is given by 

n n G . .  ( { A , )  = 8 g(o); g ( o )  - - - )  g l ( @ ) + - g 2 ( ~ ) '  
1 J O  i j 2 2 (5) 

where n = 1 < n i ,  ; is the average occupation number: 0 1 n 1 2 (we 
a  

consider the non-magnetic system, < n  i u  > = < n  -, > = n  ,/ 2 .  Two terms 
in (5) correspond to electron excitations at  a lattice site being empty or 
occupied by another electron with inverse spin projection, respectively. 

For t , . 0 we derive an equation for G i j  ( w  ) by using equa- 
tions of molion for the Hubbard operators (3), e.g.: 

1 1  
[ X ,  , H I  = [ a .  ( 1  - n .  ) . H I  = E a i t  ( 1  - n i I )  + 

1 T 1 1  

P t . .  l a .  a+ a .- a: a i T a j ,  + a  a a+ I .  (7) 

J lJ IT 
i r  i t  J &  

The last three terms in eq. (7) are due to the commutations of the operators 

a i, , a  i, , a t ,  in X li4 with the Hamiltonian. Effective four-particle 
interactions can be introduced to describe each of the three contributions 
in (7). They have the following f o m ~  

Vl - t i ,  aTt( l  - n i s )  a .  . 
~ t '  V 2  - t  1 . .  J a '&Il - n i t )  a .  J J  ' 

and can be illustrated by the diagrams 

These are the kinematic-type interactions caused by some limitations due to 
the projection operators n -, , (1 - n -, ) . 

The same type of interactions (9) appears in the diagram technique 
for the Hubbard operators (see, e.g. / 7  8 /) as zero-order vertices To. 

As is well known, to obtain equations for the Green functions in the 
I theory of superconductivity, one should introduce an anomalous pairing 

of the Fermi-operators with the same direction of lines in diagrams for the 
dressed vertex r. For this aim we should perform the following decoupling 
in the equation of motion (7): 

+ + + 
a .  11 a .  I T  a .  ~ s  - < a .  I t  a . > a i r -  ~ s  < a . a .  1s J J  > a .  I T '  

where both the normal and anomalous pairing are taken into account. 
By performing the same procedure in all other equations for the Hub- 

bard operators in (4) we obtain a closed system of equations for the Green 
functions. For the Fourier components of the Green functions in the q- 
space one gets the following equations: 



where 

The parameters .A and F depend on the anomalous averages for electron 
pairs a t  different and the same lattice sites, respectively. By employing the 
identity <[ a i ,  a i t  . H 1 . = 0 one can find the equation 

that couples them. 
Equations (11) are Gorkov's system of equations for the normal and 

anomalous Green functions. An analogous system of equations can be writ- 
ten for the matrix Green function << ( X r s  %>> + 

q 
. I t  is convenient 

to write it  in the form: 

where for the spin a. = t the matrix 6 is constructed for (p, q )  = (14,32,  
31, 24) and for the spin o = A is constructed for (p, q )  = (13, 42, 41, 23). 
For u = r the matrices in (15) are given by: 

0 0 0 

F *  n i 2  ,I* A *  

Eq. (15) can also be written as 
A A 

i t - I  = 2-1 - N t .  (17) 

where 2 - = ' - . The matrix f is an irreducible part of the Green 
function. 

I t  should be pointed out that the decoupling (10) is a natural gene- 
ralization of the Hubbard-I approximation ' 5  t~ the case of anomalous 
averages. For A = F = 0 one gets from (11) a standard equation for the 
Green function <<a, I a,+ ,z in this approximation. 

3. SPECTRUM OF EXCITATIONS AND GAP EQUATION 

By solving eq. (17) one can obtain-the _electronic spectrum of excita- 
tions. I t  is defined by the equation Det ! N-' X-' - t = 0 and is given by 

where ,2  ( < ) are the Hubbard subband energies: 

They correspond to  the Hubbard-I approximation. For t,:<U they can be 
written as 

n +  n 
€I& = E + U  + - t ( q ) ;  ( )  = E,+ (1  - --) t ( & .  

2 2 (20) 

and respectively 

Let us consider two cases O <  n < l  and l ' n . .  2. In the first case the 
Fermi energy level is in the lower subband, where f 2  = 0 a t  the Fermi 
level P . In that case c f - cZ2 = U and one gets 

There is a gap in the energy spectrum in the lower subband: 

In the second case 1< n < 2, an analogous situation takes place for the upper 
subband. Now, since c f - € 2 2  = - U , one gets 

and the gap appears in the A ( 4 ) spectrum. 



I t  is important that the gap (23) depends on the wave vector "q. This 
dependence is caused by the scattering processes of the third type in (9) that 
after the decoupling in (9) brings about the single-site correlation function 
F (13). The ;dependence of the gap (23) is the same as that ,%f the band 
energy t(G). This type of pairing is called an extended s-type' . In the 
limit U -, m when all ~ w o s l , ~ ~ t r o n  states are eliminated, F +  0 and the 
gap does not depend on q: A ( 9  ) + A .  Since the anomalous single-site cof- 
relation function has not been taken into account in 12' , there is another q- 
dependence of the gap function. It should be also stressed that we have only 

/ 2 '  
one gap parameter A , and not two A A 2  , as in 

Now we can from eq. (11) calculate the anomalous Green function 
and find out the corresponding correlation function. As a result, we obtain 
from eq. (13) the following equation for the gap'parameter A : 

Further we consider only the case t << U. For the occupation numbers 
0 < n < 1 the main contribution comes from the second term in (25). In the 
limiting case U + m the equation for the superconducting transition tem- 
perature Tc below which a nontrivial solution for A exists has the form 

+ 
The summation over 4 will be replaced by the integration over t(q) with 
a model density of states that is constant in the interval [ - W ,  w I. By using 
the equation n = ( 1  / N ) x < n,  > we eliminate the chemical poten- 

'4 0 '4 0 

tial P in the Hubbard-I approximation for the average occupation num- 
ber n. As a result, the electronic excitation spectrum reads 

The equation for T c  (26) then takes the form 

where the dimensionless temperature 8, = Tc i w (1  - n/ 2 )  and the para- 

meter a = ( 3  n  - 2 )  ;( 2  - n  ) are introduced. In the logarithmic appro- 
ximation we get for 1 - a >> 8, 

The nontrivial solution for the gap exists in the range of concentration 312 < 
.c n < 1 (the critical value for the hole concentration x , = 1  - n  = 113). 

The equation for the gap at zero temperature, A = A ( T  = 0 )  , in 
the same approximation as eq. (26), has the form 

In the logarithmic approximation we get 2  h /Tc  = 2n/ y = 3,5, 
that is the BCS weak coupling value. 

For the occupation numbers 1 ': n < 2, when the gap appears in the 
spectrum of the upper Hubbard subband, equations for Tc  and A have 
the forms 

1  ( n / 2 )  t ( i )  c l  ( G  ) 1  = - -- x ------------- - th ------- , 
N q c1 (; ) 2Tc (32) 

+ + 
where c l ( q )  = [ 2 -  ( 3 n 1 ' 2 ) l w  + ( n , ' 2 ) t  ( q )  . For thecriticaltern- 
perature Tc in this case we get for (1 - n) >> Oc 

4 Y ( 2  - n ) ( n  - 1 )  2 ( 2  - n )  
T = -- w \/ ---- ---- - exp 1 - ----- --- I .  

c l7 2  4 -  3 n  

The nonzero solution for the gap exists in the range I c n ': 413. 
By comparing the results for n < 1 and n . 1 we find out the electron- 

hole symmetry: the formulae for n < 1 transform into the corresponding 
one for n ? 1 under the substitution n + 2 - n, t ( i )  -+  - t(4) and c1 , 2  ( 3  1- 
+ - c 2 , 1  ( q )  . 

The main results obtained here in the limit U - ti are in accordance 
with the conclusions of the theory ,'* , though there are some deviations. 
For instance, the n-dependence in the exponent in formulae (30) for T, 
does not coincide with that in " 

' 
though the critical value for the hole- 



concentration xc = 113 is the same. Equations (32) and (33) for the up- 
per subband obtained here in the explicit form permit us to check the elect- 
ron-hole symmetry of the solutions. 

4. DISCUSSION 

We present a simple approximate scheme in the equation-of-motion 
method for the two-time Green function for the Hubbard model that gene- 
ralizes the well-known first order approximation (the Hubbard-I approxi- 
matiod5' ) to the case of superconducting correlation.The proposed method 
permits one to obtain in an explicit fonn the gap equation (25) for a finite 
value of the single-site Coulomb repulsion U. Different scattering processes 
in (9) were analyzed, which show the role of the kinematical interaction in 
the pairing mechanisms for both of the Hubbard subbands and in the appea- 
rance of "qdependence of the gap (23). In comparison withI2/ we get only 
one gap function of the extended s-type. In the limit of strong Coulomb 
correlation, U + w , equations for Tc (26) and the gap (31) give the re- 
sults of the theory but with a sli htly different numerical coefficient. 
These deviations from the results of are due to  another coefficient in 
the matrix equation for the Green functions (15), (16). An explicit form 
of equations for T, and the gap (26), (31), (32) both for the lower (0 
< n  < 1) and upper (I ' n < 2) Hubbard subbands reveals the electron-hole 
symmetry of the problem. 

The proposed method allows one to take into account the correlation 
of higher orders in (t/U) as well as to consider, in the framework of the 
Hubbard-111 / 5  approximation, the role of finite lifetime effects due to the 
nonelastic scattering of excitations. These problems would be considered 
in another paper. To apply the results of the present investigation to the new 
oxide superconductors of La2 -, Sr, Cu O4 and Y Ba2 CU 307 types, 
one should take into account a realistic crystal structure of the compounds 
and the existence of the long-range antiferromagnetic order in the nearly 
half-filled band for copper ions. 

The authors are greatly indebted to Academician N.N.Bogolubov for 
helpful discussions. 
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Plakida N.M., Stasyuk I.V. E17-88-96 
On the Theory of Superconductivity in the  
Hubbard Model 

I 

A pairing mechanism caused by the kinematical interaction 
in the Hubbard model is considered. On the basis of equations of 
motion for two-time Green functions with anomalous pairings ta- . 
ken into account, equations are derived for the superconducting 
gap of an extended S-type and T, . 
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Theoretical Physics, JINR. 
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