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I. INTRODUCTION

The paper studies the spectra of the overtones of degenerate
vibrations in gyrotropic uniaxial crystals. The Dipole-active
degenerate vibrations in these crystals are circularly polarized
in the plane perpendicular to the optical axis. The IR spectra

of the molecular crystals are strongly affected by the overtones
(see review 1). The overtones and the combination tones with dege-

nerate vibrations govern tﬂe dispersion of the refractive index
and the optical activity of the electromagnetic waves te.m.w.)
which propagate along the optical axis. Since the vibrational
circular dichroism (VCD) and the vibrational optical rotatory
dispersion (VORD) are best manifested in the lack of the bire-
fringence, the overtones of degenerate vibrations govern these
two phenomena in the near IR frequency region (see the experimen-
tal studies in Ref. 2),

Overtones of nondegenerate vibrations in the spectra of
molecular crystals have already been investigated in their com-
pctneasl’s'u, but there has not been so for an extcrustive analy-
sis of overtones of degenerate vibpations (see Ref, 5-8). The
contribution of overtones of degenerate vibration to VCD of
helical polymere is studied in Ref. 9. In the present paper we
consider the symmetry and the anharmonicity of two-quanta cir-
cularly polarized excitations in crystals, the structure of two-
phonon spectra -~ and their influence on IR and VCD spectra (ex-
pressed through.the dielectric permittivity and gyration tensor).
Our investigation, based on the general properties of the vibra-
tions in uniaxial molecular crystals, namely their symmetry in

the molecule, their collectivization in crystals and their dis-




persion relations w(K), leads to a model of anharmonic two-pho-~
non spectra in different point groups. We emphasize the necessity -
to study the total symmetry of the crystal hamiltonian, including
time inversion. It is namely this additional (noncrystallographic)
symmetry that explains the appearance of the circular vibrations
in the crystal classes C3 and C,. The group-theoretical analysis
igs based on the gray Shubnikov groups Gx6 and the corepresenta-

tions (see Appendix). However, for the convenience of the reader
we formulate our results of the classical crystallographic groups

G and their irreducible representations, pairing together the
one-dimensional complex conjugated representations r; and r; into
ryeri. ’

This paper is the fourth in the series of papers published
in 1984 (see Ref. 10, 11, 4), Its outline is the following: Sec-
tion II contains the formal scheme of the calculations of the
dielectric permittivity and of the gyration tensor in point group
C3 (we use the relation between dispersion laws for degenerale
vibrations with left and right circular polnrizutioniz). In Sec-
tion III we analyze the properties of IR and VCD spectra for the
frequency region of overtones of degenerate vibrations. In Sec-
tion IV we investigate the combined spectra in the region of the
sum of frequencies of degenerate + nondegenerate vibrations. Sec-
tion V gives the results for tHo-quantn-jpectrl in the crystals
of the point groups D3 (32), C~ (&) and D, (422). The Appendix
gives some details about group theoretical analysis. )

Our results may be important also in the case of intra-ionic

vibrations in ionic crystals.

II. DIELECTRIC PERMITTIVITY IN THE REGION OF OVERTONES
OF DEGENERATE VIBRATIONS (POINT GROUP Ca)

We £onsider uniaxial molecular crystal containing one mole-

cule (one structural unit) in a unit cell. For the sake of simpli-

'
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eity we consider the case when the point group of symmetry of
the molecule coincides with that of crystal. These groups for
uniaxial gyrotropic crystals possess a two-fold degenerate repre-
sentation (or a pair of complex conjugated representations), cor-

related with a pair of degenerate representations with a matrix
element of the electric dipole moment in the plane (x,y) perpendi-

cular to the optical axis z.

II.1. Description of degenerate vibrations in the molecule

+
1n

in molecule n of one vibrational quantum of

We introduce the operators of creation b;n' b and of an-

nihilation brn’ bln
right r and left 1 circularly polarized dipole-active vibrations
with the equal frequencies @ The corresponding normal coordina-
tes are correlated with the vibrations' electric dipole moment

as follows:

y, * (1/ﬁ)(b;nobln) 2 A (PysPysP,) = (p/VE(1,i,0) (1)
1, * (1Ni)(b1n+bm) + B, = (p/VDI(1,-1,0)

Taking into account (1) and the relatigns between the operators
b , b and the conjugated operators of the momenta (~id/ nj)a
j=1,2,
. _ . s . .
(-ia/aq) = (ANZ)(b] b -ia/ag, = (1/VI)(bp-b)) (2)

it is not difficult to f£ind the following commutational rules
for boson operators b’, b

+* +* + +
r,lbr,l - br,lbr,l = 13 brbl - blbr = 0- (3)

The normal coordinates 94» 4, commute. It is also easy to find

the harmonic operator of the energy of the separate molecule

ﬁn.= hw (b b

+
o Prnlem blnb 1). (4)

]J\’
" In this Section we study the crystals from point group ¢

in which the normal coordinates (1) are transformed as the ba-



sic functions |I,>, |r3> of the pair of complex conjugated non-
‘ ¢ x
degenerate representations T, and Iy = [,
The wave functions of overtones of degenerats vibrations

may be represented as follows
+ + + L4 . + * . 5
a) brnbrnl0>; b) blnbln[0>, c) brnbln\o> (s)

Their symmetry is governed by the direct products of the rep-
resentations (rz,r3) (see Tahie 1, containing also direct pro-
ducts with one-dimensonal totally symmetric representation ry
which is z - dipole-active). Using Table 1, we can. give the

following representations of the overtone electric dipole mo-

ment$
p{2) = p @ (1,-1,00 2003 ) ‘ (6a)
p2) = p P i,0 0]l (6p)
{2 = p{ (0,0, 1) bl #b b)) (6c)

Table 1
Direct products of the irreducible iepresentations
in point group C,
ry, T, I
rl(Z) ry, I, Iy
Pz(r) P2 Pa Tl
r2(1) r3 r1 rz

The structure of two-phonon spectra depends strongly on
the anharmonic interaction between the phononsi'a. We consider
its intramolecular origin only and we find the following anhar-
monic invariants in the energy of a molecule of point group C4
(q° are totally symmetric normal coordinates):

- cubic invariants

(3) _ 3 * 3 T3
Aan = A3g9n%1ndan * A31q1n’A31q2n

- quartic invariants
Aﬁ: = Ahﬂq:nQLnQZn + Au1qonqin + A;lqonq;n +
2 2 (8)
* Ay291n92, ¢
In the calculation of the expressions (7), (8) we use the
full commutation between the normal coordinates and the hermi-
tian nature of the hamiltonian. As in the previous papersio’uo
vwe assume .that the phonon (exciton) bands of intramolecular vib-
rations in crystals are narrow. Thus we use the approximation
of the dynamical theory of many-particle spectra, hccording to

that theory the hamiltonian of the crystal preserves the number
of quasiparticles of each type. In anharmonic part (8) we pre-
serve only even terms which have the same numbers of the opera-
tors of creations and of annihilation. So im the term

2 2 s .
Auquann we substitute expressions from (1) for 9, and 970

using the commutation relations (3) and finding

a(4,a) _ +2. 2 +2 2 - +
AHi - Auz(brnbrn'blnbln) * uAuzbrnbrnblnbln' (9
The influence of the operator Aﬁ(a) as well as of the other

terms in (8) is found through the theory of perturbations for

an anharmonic oscillator (see, for example, Ref. 14). It is easy
to show that the operator Aﬁ(?) gives the same harmonic addends

to the energy of left and right polarized vibrations. We include
those addends in the quantity hwo. The anharmonic part of

the energy takes the following form

+2. 2 +2 2 + .+
= h
hA(Db brn’blnbln) + A1b blnb bin' (9a)

Aﬁ:"h
where A # A, are real constants for which the measurements
usually give negative values A, Al < 0. We consider these quan-
tities as known from overtone spectra of isolated molecules.

The operator (s may be considered as a model for anhar-

monicity governed by the molecule symmetry.



II.2. Operator of intermolecular interaction
We model this operator in the harmonic Heitler-London appro-

ximationlo’u

. The product 149, with circular normal coordinates
149, is invariant in all uniaxial crystals, therefore the fol-
lowing form of the operator of intermolecular interaction is

valid (see (1)):

ol . et r .+ 1 . + _
Hing = 2 [vnmbrnbrm * vnmplnbln] -
n,m
. ' . sym . + + as ., + +
= n,m[Vnm (brnbrn*blnbln) + vnm(brnbrn-blnbln)]' (10)

The quantities v:m, Vim do not coincide because of fhe
hirality of the crystal structure in relation to the symmetry
axis 3. The dipole intermolecular interaction is the same for
intermolecular exchanges of left and right circular polarized
vibrations. The difference Vi;_appears as a result of the inte-
raction between the polar and axial vectors (see the group-theo-
retical considerations in Ref. 15, 11). In our case the quantity
Va: is a result of the interaction between the electric dipole
rotating with frequency @, and the antisymmetric part of the quad-
rupole polarization which also is rotating in the same manner.

The dipole- quadrupole interaction is comsiderably smaller tham

the dipole-dipole interactionis, and the following approximation

0 .
vas/vsym
m -

-where a 1s the crystal lattice constant and A is the wavelength

holds1

3 —y

~a/a®~ 1077 4 10, (11)
of the e.m.w. The difference in the intermolecular exchange of
left and right circularly polarized vibrations is one of the
reasons for the optical activity of condensed media15.

Further on in our considerations, we shall use mechanical
excitons17 as basis functions for crystal excitationsis. These
excitations do not include the macroscopic electric field which

accompanies the vibrations in crystals. It is the mechanical

excitons which define the resonances of the dielectric permit-
tivity and possess the analytic dispersion relation w(k) at

k = 0. We make the substitution

b, () = VDI b exp(ik.®) (12)
»
n

r,1l;n

(N is the number of unit cells in the crystal). The crystal hamil-

tonian (see (4), (9), (10)) is .transformed in the following way:

H

- ~anh - _ +
:(nn«Aﬁn ) +H o o= ﬁ[hwr(f)br(f)br(f) +

+

> * + +
nwl(k)bl(E)bl(I)1+(1/x)k I (AR(D (k) Ibi(K-ky Db (k) )by (K=ky)
1772

+ + + &
bl(kl)bl(K-ki)bl(kz)bl(K-kz)]*Aihbr(ki)bl(x-ki)br(kz)bl(K—kz))
(13)

+

According to the time inversion the following holds for
dispersion relations of- left and right circular polarized pho-

nons 12 :

-
wr(k) = ul(-k)‘ (14)

II.3. Calculation of dielectric permittivity

We use the same methods for calculation of t(w,R) as those

in Ref.iq’u, They are also applicable in the case when the mecha-
nical excitons are chosen as basis functions: We start from the

formula

_ (o) 2 - - s
:ij(w,K)/to = e ‘ij‘if(‘oV‘“ ) < Ji(R,t)Jj(-k,O) > w - (15)

fhere ¢ = 8,85.10'12P/m,6ij is Kronecker symbol, ¢§°) = :;°)¢¢§°)

are the contripbutions of far resonances which are quasi frequen-
cy independent and the operator Ji(?,t) is the sum of the follow-

ing two parts (see (6)):

a1 C g -iK.n, (2) . +2 .2
19,300 = di2eg Te ("’ [(1,-1,00(b -b] ) +
n
. +2_. 2 (2) L
+ (1,1,0)C¢by-b ]+ p “7(0,31)(b_ by -b by )} (16)



211 _ -iK.n (2)r +2 .2
i (R = 20, L K [D; (b t-b3 ) +
n;S=1,2,3
€2)1, +2 2 (2)r+l
Dis (bln ) + D (brnbln brnbln)]' (17)

(2)

where D is the matrix element of the quadroupole polarization

between the ground state |0> and the states with two vibrational

quanta (r+r, 1+l or r+l). Relations (6) are fulfiled simultaneously

with the following relationsioz

- for the antisymmetric part of D(Z)

(2)r,1 r,1

(2)r,1 _ _,r,l1, o1 N (18a)
Dyla L Nt by 2
NT = N} = iNT = -inN} = N() (18b)

p$2ITHl | (2)

Ds2 =N (18¢)
- for the symmetric part of D(z)

Q13,0330 = €2 (1,035 Q7505 = P (1,0 (13a)
Fafrteas,h = o (13b)

So the calculation of dielectric permittivity can be reduced
to the calculation of Fourier components with respect to time t

of the following retarding Green functions

(2) 2
Gr’l(x,t) z

r,1;n (t)br 1; 0(0)>K =

= -je(t) 2 exp(-iK. n)<0|b

£l n(t)br 1; 0(u)|0> ) (20a)

e @®,t) = -i0(0)T expl-ikDi<o|p | b (t)b b1, (030> (20b)
n m

In the calculation of Green functions (20) as in Ref. 4 we
take into account the ground state |0> only since the other states

are non-excited even at room temperature because of the inequality

hwo » KkT.

We find the following expressions for the diagonal components

of dielectric permettivity in the region w =~ 2u°

(0) (2)?

(@K /e, = eppw,K)/ey = €y - p ) /(e hv) x

€11

(6L (K0 « Giz)(k,u) - 6D (K,-wy - Giz)(-ﬁ,-u)] (21a)

2
e33efize, = ¢§® - pM7 e avitel ) (Kyw - {2 -k, -1,

(21b)
where v is the volume of the unit cell. Green functions with the
argument (- ) are nonresonant at w =~ 2w° and we include them in

addends ciO)

. The calculation of Green functions (20) at hamilto-
nian (13) is done by standard methods 1. We receive the following
result:

(2/N)ZE [w-wr’l(K/2+k)-wr’l(K/2-kH

6 R, = k : _ (22a)
’ -
1-(2A/N)§ [U°Ur’1(x/2*k)-0r’1(X/2 k)]

(1/N) B [w-w (K/2¢k)-w, (K/2-K)] "
) (g : 1 r
r*l

‘ (22b)

yw) p
1-(A /N T [wmw_ (K/2+K)=wy (K/2-K)}
n r 1

The nondiagonal component ciz(w,ﬁ) contains a dipole contri-

bution

. . w2
BP0, %) = ~eFiPew,B) = -1p‘D) /(conv)(siz’(x,u)fsiz’(x,u)l. (23)

The other nondiagonal parts of c(w,K) correlated with the
operator JII, are expressed through gyration tensor pij(w,f), in-

troduced by the relation

lj(w,K) z (w) + J.e1 lplilxl, (28)

where e. is Levi-Chivita symbol. The calculations similar to

ijl

those from Ref. 19 give the following expressions for Pi4

119 = 050 = -p DD (e mn 6l (R0 o
e (R, - plPnED (e pviel2) (kW) (25a)
033 = 22 B /e el (e + 68 (k) (25b)
9



p1p@@ = =,y (@) = p P /¢e bv) 6L pw) + a{P ik,
(2) (2) (2)
- Py Qz /(cohv)Gr l(K,w)- (25¢)
III. IR and VCD SPECTRA IN THE OVERTONE REGION (POINT
GROUP C3)

The analysis of IR spectra is similar to that for oriented
helical polymersg. The quantities °11(“‘K) and ‘33(”’K) describe
birefringence (see (21)). E.m. waves propagating perpendicular to
optical axis z possess the following refractive indices for ordi-

nary (no) and for extraordinary (ne) waves
2
no(w) = °11(“‘RLZ)/CQ; nZ(u) = :33(w,ftz)/eo. (26)
Taking into account (14) and (22) we find the following rela-
tion

e (K@ = 6{F (-Kyw) - (27)

The quantities (22b) and (21) are even functions of X. There are
two types of poles of Green functions (22) in the overtone region
(For a detailed analysis, see Ref. 4):

a) quasicontinuous bands

uij<R,E) = w (R/2+4K) » uj(n*(/z-i)-, i, = 1,1, (28)

b) discrete levels of biphonons which appear at high values of
the constants of anharmonicity A, Ag. According to subsection II.2

the three bands “rr’ Ull’ ur*l differ because of the gyrotropic

terms originating from the quantities Vﬁi. Hence, the boundaries,
the Van HOve critical points and the other elements of the bands
(28) are triplets but with very small difference between the compo-
nents of each triplet. This is not the same for biphonon levels
since the poles of (22a) and (22b) and, correspondingly, of no(u)
and ne(w), may be very different because of different values of

the constants A and Al'

10

If the case of oblique propagation, in the direction of angle
g with the optical axis z, the ordinary e.m.w. has the same refrac-
tive index no(JD. In the overtone region the band ur(f)*wr(-f) =
= ul(§)+ul(-k) is manifest (with the accuracy of quadratic on K
terms). A biphonon level corresponding to anharmonicity A splits
from this band. The extraordinary e.m.w. is characterized by the
following refractive index

‘11(0)'33(0)

n(s) = — - (29)
colc11(0)31n B+ ;aa(w)coa 8l

Thus, two spectra (see (22a,b)) are manifest. The band (28) with
triplet structure as well as two discrete levels will appear. One

biphonon level corresponds to bound state with electric dipole mo-

ment p(z, perpendicular to the optical axis (the pole of cll(u)),

(2)

while the other possesses electric dipole moment P, paralele to

the optical axis (the pole of c33(u), the constant of anharmonicityAi).

Taking into account relation (27) and linear on K terms we

obtain

2 (2)
; (2)? a6
<33P k) = -i 2p___ 1 LK =

€AV 3Ks K=0 8

aw, (k) w, (=k)
-2, 39 1%
, (2)2 R.;[U—wl(ﬁ) - wl(—z)] { °Kl + (k) !
. _: 2p
z -1 . (30)
BV 1~ (2arM) I {w-w) (K/2+K) - ul(x/z-k)]'1$2
: 4

-
The star of an arbitrary vector k in the class C3 contains

three vectors. The corresponding components of grad ul(f)- perpen-
dicular to the optical axis, represent three vectors which include
the angles 2x/3 and have an equal absolute value. Their sum va-
nishes in summation over k in (30). The only nonvanishing term in
(30) is

2
II . 2 -1
Ky = ~iKy2p 2 /(e m) 7

dip, . #y _ .
€42 (w,K) = 13,

Elwl(:) - B Y 2w () 73K, + dwg (KD /3C-K,)]

< m—— . (31
{1 - (2A/N) z [u-ul(k) - wl(-k)] }
k

1



It is easy to prove that the quantity aw(k)/ 2K, + aw(-i15&49?t
hamiltonian (10) originates only from antisymmetric part V:;,
therefore it is proportional to the gyrotropic ratio (11).

In the most interesting case, in which wave vector K is di-
rected along the optical axis, ﬁlz, two e.m.w. appear, which are
10,9

circularly polarized with refractive indices:

nf"l(w,l(]z) : nfm(u) £ p (WK 1 (32)
where (see (25b) and (31)):

pylw) = pga(w) . pg(u)- (33)

This is exactly the case in which there is no birefringence.

It is the most convenient for the study of vorp19:29

and VCD (the
effect of VCD is proportional to the imaginary part of (33)). The
refractive indices for two e.m.w. differ through the quantity

n: - ni = 2p,(w)K and it is this difference that governs VORD.
The frequency dependence of the two addends in (33) is mot the
same, but'only two-phonon states (22a) appear and their dipole mo-
ment p(Z) is perpendicular to the optical axis. As in the region
of the fundamental tones of degenerate vibrationslo, the frequency
dependence of dipole contribution pgg(u) contains the square of the
equation for the poles, while the denominator of the quadroupole
contribution contains the same equation in the first power.

The other components of gyration tensor (25a,c) will become
manifest in the case of oblique propagation of e.m.w. They govern,
together with (33), the elliptic polarization of e.m.w. and they
can be measured in conditions of birefringence.The antisymmetric
part (25c) can be measured using the reflection methods onlyig.

The two types of overtone states, (22a) and (22b), at K = 0 behave

as resonances of the quantities (25a,c).

12

IV. COMPOUND TONES WITH DEGENERATE VIBRATIONS

Degenerate vibrations (r2,r3) can be combined also with the
totally symmetric vibration r,. These compound tones represent
another part of two-phonon spectra. It may be seen from Table 1
(for point group Ca) that the symmetry of the combination of to-
tally symmetric plus circularly polarized vibrations, r,xr, or
T xT g is the same as that of the corresponding degenerate vibra-
tion. These compound tones possess electric dipole moment P(c> of
the type (6a,b) and their contribution to dielectric permittivity

is described in (21a). They contribute also to the gyration tensor,

(¢)

see (25) and (31) 19:0

® 0). The Green functions corresponding to
(22a), which describe the contribution of compound tones, have the

following form:

(c) _ s g + +
Gr,l(x,t) = -ie(t) é exp(-lK.n)<0|br'lzﬁbin(t)br,lgoblo(O)|0>v(3u)

where b;n’ b, are creation and annihilation operators for the to-

1

tally symmetric vibration of frequency w, on the molecule f. For

1
expressing the hamiltonian corresponding to compound tones we use
the follwing properties of nondegenerate vibrations: 1) normal

coordinate 9, DAY be expressed in the form of

= (AWVD(b] b, ), ' (35)

qon in

2) the dispersion relation is even
w, () = w (), ' (36)

3) the quantity Auongiq2 in (8) governs the type of the anharmoni-
city terms. We take into account (1), (36) and the terms which pre-
serve the number of totally symmetric vibrations (b;bi) and the
number of degenerate vibration (b;br or bibl), We obtain
anh + + + Qan
o1 = AP P (DD *babyn)

So, we add quantity (38) to hamiltonian (13)

ac

anh (38)
1

= E o, (bT. (F)b, (k) + T a2 .
x 2 1x 1 A om,1

13



For Fourier~components of Green functions (34) we obtain

(1/N) I lw-w_ (RK/2+8) - w,(x/2-%)] "2
k r,l 1

w)

= " K ENR (39)
1 - (A /N) : lw-ur’l( (2+k) - w;(K/2-K))

The structure of the two-phonon compound spectrum, as well as its
éontribution to dielectric permittivity, are similar to these of
overtones (see previous Section). Using (1%), (36), (39), it is
easy to prove relation (27) for compound tones. The only quantity
which is more complicated in the case of compound tones is the one
describing the dipole contribution (see (31)). But its frequency
dependence is the same for compound tones and for overtones. Its

magnitude is proportional to ratio (11).

V. OVERTONES AND COMPOUND TONES WITH DEGENERATE VIBRATIONS IN
POINT GROUPS Dy, Cu, Dh

V.1. Point group D,
This is the point group of some crystals with strong optical

activity such as quartz15

. Their overtone spectra is slightly diffe-
rent from that of point group CB‘ The degenerate vibrations in Dy
correspond to two-dimensional representation [, in the previous ca-
ses we choese circular normal coordinates lr3r> and |r3l>. The sym-
metry of the products of the wave function of totally-symmetric
representation |r1> and of z-dipole-active representation |r2> are

given in Table 2. The following invariants appear in the operator

of energy of separate molecule (see (27), (8)):

(3) _ 3 3
AH 2 AgplTy>I T3 > T >*A, (1, >7+1,5,>T) (ua)
() _ 2 3 3
AH = Aygliry> {r3r>|r31>+Au1(|r1>|r3r> +|r1>|r31> ) +
s Ay cr, . >3 fr>2 >, (41)
42" 3p 3l u3l®2 3r” i3

14

Table 2
Symmetrized products of the basis functions

in point group D3

iry> fry> T3> Iry>
fry>  frp> tr,> lry>  Irg>
|r£2)> |r,> [ry> (T3> ITy>

Ir3> iry> g Iry> [ry>
(T3> [ry> ryp>  [ry> fry>
Let us replace the wave functions by the corresponding normal

coordinates in the second quantization representation (for
|r3r>,|r31> see (1), for |r1>,[r2>see (35)). We calculate the con-
tribution of cubic anharmonicity (40) using the theory of pertur-
bations, and keep the anharmonic terms which preserve the number
of phonons with close frequencieszu. So we obtain the following an-

harmonic parts of the hamiltonian

+

anh _ + + +
Hn = h(Alblnbln*Azbznbzn)(brnbrn+blnbln) +
+2.2 +2 2 + +
+ A3h(brnbrn’blnbln) + A“brnbrnblnbln ’ (42)

+ . P .
where bln’ b are creation and annihilation operators of one quan-

in

. +
tum of the totally symmetric vibration |r1> on molecule n: b2 s D

n
the same operators for one quantum of z-dipole-active vibration

2n

+* + + .
|r2>. Overtones brbrl0>’ b;bl|0> of degenerate vibrations, and
compound tones containing one quantum of the vibrations |r1> or
|r2> and one quantum of degenerate vibration, e.g. [ xT

T xT

3" Tt
give the same contribution to dielectric permittivity ‘11(“):552(“)
and to the gyration tensor €41 = €92 o§3+o§§ as the overtones and
compound tones in point group C3 (compare Tables 1 and 2:-in Dj the
quantity P2 = 0). The overtone b:b3|0> is described by Green func-

tion (22b), but its symmetry |r1> corresponas in D3,to the dipole-
inactive excitation. Thus it does not contribute to the component

c33(w).

-



V.2. Point group Cu

As in C3 degenerate vibrations in Cu form, a pair of one di-
mensional complex conjugated representatians, r3(r) and ru(l) in
Table 3. It is seen in the same Table that th; symmetry of overto-
nes b;b;|0> and b1b1|0> coincides with that of representation T,.
Hence, they do not contribute to dielectric permittivity, nor to
the gyration tensor. The symmetry of omertone b;b1|0> is r, and it

gives contribution to the components e..(w), p = and p
P 33 11 22 12

(but not to 933). Compound tones (rixr3, r1‘ru) and (rzxr3, rz‘ru)

are degenerate and contribute to components €41 % €225 Pgq T Pags

Pyp and pa;3-

Table 3
Direct products of the irreducible

representations in point group C,

1 2 3 4
ry,(z) ry, r, r; r,
r, r, r, r, I,
rs(r) ry ry, r, ry
r, r, ry ry 1,

The anharmonic part of the hamiltonian of a molecule, includ-

ing normal coordinates 3, I, can be represented as follows:

(3 _
AH -A3ol'l'l' + AT

2 e
1Faly 31F2T3 * AgqToly (43)

2
(W) _ 2 2 2
BH™" = AygTyTaly * AyqTal gl + Ay Tyloly +
* 2 2.2 N v y
AyaTaToTy + Ayalaly * Ay T3 + Ay,T, . (4%)

Using the same procedure -as the one with calculation of the
anharmonic part of hamiltonian (see Sections II.1 and V.1), we oOb=-

tain the expression
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anh _ + + L N S
AR = n(Albinblr.i"AZbanZn)(brnbrn"'blnbln) *

+ . +2.2 42,2 +2.2 +2 2
* AP P nPinPyn Ay (Brbr #P 1 P1n) ¢+ Agb Dy + Agby b,

(48)
Anharmonic terms with constants A1 and A2 renormalize two-pho-
non compound spectra, while those-with coefficient A3 govern over-
tone spectrum b;b1|0>: Gee (20b), (21b), (22b)). The last three ad-
dends in (45) affect the overtones b;b;l0> and b;b1|0> which are
aipole-inactive and do not contribut to IR and VCD spectra. These
overtones may be studied through other methods, as for example Ra-

man scattering. It is our intention to obtain the equation describ-

ing the spectrum in the case of hamiltonian

q o= T A + * * T + + = .
H= T w1 OB, OB, ) (K)+(A, /N)r,l:klkz,K bl 1(kydby 1 (K-ky)
+ +
. br'l(kz)br’l(l(-kz)ﬂ(A5 IN)k i X br(kl)br(K'ki)bl(kz)bl(K'kZ) +
1°72?
+ h.c.}. (46)

The two-phonon wave function is expressed as a linear combina-

tion of the type

pre

3 - + +
"(K) = ::,1 !r'l(k.K)br'l(k)br’l(ﬁ-ﬁ)|0> (v7)

%

Solving Shr¥dinger equation HY = EY we obtain the following
equation for two-phonon spectrnm (see the similar procedure in

Ref. 1)
[1 - 28,5;K,@111 - 24,5, (R,)] - 8[A %S (KIS (Ryw) = 00 (48)

where w = E/h and

. : 2yt
sr’l(K,u) = (/M) [w-w (F) - ur’l(I -3} R (u8)

n B
Because of relation (14), equation (48) is even on K and the two
sums (49) differ by the quantity of cagnitude (11). If the con-
stants of anharmonicity [A,|, |Ag| are essentially larger than the
gyrotropic parts V:: of intermolecglar interaction, it is possible

to neglect the cifference Letween the two sums (49) when solving

17



equation (48) for frequencies w outside the bands (28). The equa-
tion (48) is factorized at Sr(K,u) ~ Sl(K,u) =-S°(K,u).and we ob-

tain
(1 - 2(A+|Ag]) S (K,@)1L1 - 2(A-|Ag[w)S (R,0)] = 0- (50)

The levels of bound two-phonon states are governed by two different
constants of anharmonicity A t|Ac|, therefore a doublet of discrete
levels appears. The two components of the doublet may be conside-
rably distant. The terms with constants A5 in (45), which govern
the above mentioned biphonon doublet, are nonvanishing for the

crystals of tetragonal symmetry.

V.3. Point group D4

The crystals, in which VCD was observed (Ref. 2), belong to
this point group. Table 4 contains information about the symmetry
of products of basis functions in Dy» corresponding to the follow-
ing one-dimensional representations ri, rz(z) (dipole-active),

Pys Ty» and to the circular basis of two-dimensional representa-
tion Tg« AS may be seen, overtones PgxTg are dipole-inactive, since
the symmetry of the products »f their wave functions is either ry
or the symmetry of a linear combination of excitations of represen-

tations Ty and r,. But all compound tones with degenerate vibration,

Fgxl ,a21,2,3,4, are dipole-active and contribute to the components
€44 T €555 Pyq * Pygs P33y (See Sections II, IV (py, = 0 in D).

The following anharmonic invariants containing circular coor-

dinates are nonvanishing:

S(3) _ 2 2
AH = Ayl > rg 2T > + Agg(r>[rg >° + [r>lrg;>% +
2 2
+ A3M(|ru>|r5r> + |ru>|r51> ) (s1)
(4) _ (3) 2
AH = Au1|r1>AH + ALLlr> |r5r>|r51> +

+

2 2
Au3|r3> |P5,>lF51> ALl T Tg > ¢

+

2 2 " "
Ayglrg >irg) > + Au6(|r5r> + ir51> ]. (52)

18

Table 4
Symmetrized products of the basis functions in

point group Du

|r1> |r2> |r3> |ru> |r5r> |r51>
iry> Iry> Iry> qrp>  rp> |r5r> T rgy>
|P2(=)> |r2> |n1> jr,>  Iry> |r5r> |r51>
iry> iry>  ry> Irp> [r,> |r51> |r5r>
ir,> Iry> Iry>  rp> > rg> Irg,>
Irg.> Irg> Irg> ITg;> |Tg> Irg>-ilr> |r>
Irg,> irg,> Irg;> Irg> Irg> Iry> [rg>+i|r,>

As in other point groups, we find the model for the anharmo-
nic part of hamiltonian

b aab b, +A bl b, +ALDT bt b

san
AHn 1¥"1n"1n “272n"2n '3 3nb3n’Au 4n un)

bl b, ) + ADb b_bl b, +
1n"1ln Srn"rn 1n 1ln

+2 +2. 2 +2 2 . +2. 2
Aﬁ(brnbrn’blnbln) * A7bmbln * A7Dlnbrn’

(b b+
rn rn

+

(53)

where 1 = 1,2,3,4 in b;n’ bin corresponds to nondegenerate vibra-
tion of symmetry r;. The last three terms in (53) govern the struc-
ture of spectra for overtones of the type b;b;|0>, b1b1|0>, as in
point group C, (see (48) - (50)).

Circularly polarized compound tones of the type b;b;10>,
b;b1|0>, i=1,2,3,4 influencing IR and VCD spectra in two-phonon
region, are described through Green function of type (3%). The pre-
sence of a large number of dipole-active circularly polarized com-
pound tones explains the considerable effect of VCD, measured in

Ref. 2 for e.m.w. propagating along optical axis.

VI. CONCLUSION

Our study of overtones and compound tones with degenerate
vibraions in uniaxial crystals is closely connected with the group

theoretical treatzent of fundarental and two-quanta vibrational
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spectra. While the theoretical modelling of overtones of nondege-
nerate vibrations is unifiedl’u, degenerate vibrations need a spe-
cial study in each point group for finding the symmetry and contri-
bution of different combined vibrational states, the anharmonicity
and the structure of two-phonon spectra (with their many-particle
bands (28) and one-particle levels-biphonons). The éaper offers a
description of the following general featurs of IR and VCD spectra
in uniaxial gyrotropic crystals:

(a) the influence of crystal chirality on intermolecular in-
teraction and on phonon dispersion éurves wr(;), wl(f);

(b) the possibilities of a large splitting (resulting from
different constants of anharmonicity) for discrete hiphonon levels
with electric dipole moment perpendicular and parallel to the opti-
cal axisj

(c) two’contributions (25b) and (31), with different frequen-
cy dependence, to the component P3zs which governs VCD and VORD for
e.m.w. propagating along the optical axis and

(d) a relatively large contribution to IR and VCD spectra of
compound tones (see Sections IV, V).

Using the general connection between our basis functions, that
is "mechanical excitons" - and Coulomb states (see Ref. 17, Chap. I,
IV), it is easy to find IR and VCD spectra in the two-phonon region
for arbitrary direction of sum wave vector X. The properties of

dipole~inactive overtones, such as the states b;b;|0> in D D

3’ 4
* + +* + - -
or brbr|0> + b1b1|0> in C,, D, may be studied through Raman scatter-
ing or nonlinear optical phenomena.
In investigations of overtone spectra
*he theory suggested here can be further elaborated in the follow-
ing cases: (i) for crystals with more than one structural unit in

unit cell; (ii) in the treatment of situations with different point

groups of the molecule and of crystal ordering, and (iii) in the

20

consideration of overtones of low-frequency vibrations with wide
phonon bands.

The natural continuation of our study will be the investiga-
tion of polariton Fermi-resonance in uniaxial crystals, that is the
influence of overtones on ordinary and extraordinary polaritons

6,8,1 and in nongyrotrppic7 crystals. Our knowledge of

in gyrotropic
pelariton Fermi resonance may be important for our understanding the
optical phenomena in nonlinear optical crystals such as KDP5 or
LiNbo 21222,

APPENDIX

The aim of the present appendix is to clarify the derivation
of some of the results based on group-theoretical analysis.

AS is well known the symmetry of systems, invariant under
the time reversal operation @, is described by the "gray" magnetic
(or Shubnikov) groups Gx@ and by their corepresentations DI, (see
e.g.23).Here we use the tables Of the irreducible corepresentations,
the corresponding basis functions and the Clebsch-Gordan coeffi~

25

cients published inzu, for C“xe and D x6, and in for C3=e and

Dyxe. There are only two Wigner type "€" corepresentations from all
those that are of interest in our discussion: in group C3xe, the
corepresentation Drz is engendered by the two nondegenerate complex
representations I, and Iy = r; of €3 while in group C,x6, the co-
representatién Dry is‘engendered by Iy and I = r; of C,. In all

the remaining cas?s every DI‘° of Gxo is engendered by a single Te

of G. That is why, for the sake of simplicity, we use the well
known terminology of the theory of linear representations and the
corresponding symbols, followingl3. The basis functions |r°.10> of
the nondegenerate (co) representations y, 6 = 1 are denoted with

{r,>, and those with dimension two (in D5 and D), with IPu’r> =
[r¢’1> ~ x+iy and |r&’1> ~ x-iy respectively for right and left cir-

cularly polarized vibrations. We also want to stress that we are in-
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terested only in symmetrized (with respect to permutation) products
of basis functions, containing at least one factor of dipole-adive
vibrations.
The results in tables 1-4 were obtained by means of the sym-
metrized formula for vector coupling
= z P28 JEN + Y Y
ITen> Irsvg 'r]73>{(r171’r]7]|rk7k) +
Y; Y
1,3
* (er" riYiIrkYk)l’

where the Clebsch-Gordan coefficients are taken from the tables
in2u,25

The cubic invariants in the anharmonic parts of the hamilto-~

nian are obtained using the tables of 3D-symbols, published in26

(3D symbols are symmetrized Clebsch-Gordan coefficients, analogous

to the Wigner 3j-symbols):
Fi Fj Fk
>(Y- )

r,>,. = b >[r.y.>|r.y 3
1'r i'1i i3 i Yj T T

Y

k'k
Yi’yj’vk

where ry is the identity representation. The quartiec invariants

are obtained by a repeated use of these formulae.
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of basis functions, containing at least one factor of dipole-adive
vibrations.
The results in tables 1-4 were obtained by means of the sym-
metrized formula for vector coupling
= z 25 SRV <Y
it ne> Irsvs R FTAARA FRLIN SYLIN IR
Y Vs
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* (ryvge Tyvglnen i,

where the Clebsch-Gordan coefficients are taken from the tables

1n2%»25

The cubic invariants in the anharmonic parts of the hamilto-

nian are obtained using the tables of 3D-symbols, published in28
(3D symbols are symmetrized Clebsch-Gordan coefficients, analogous

to the Wigner 3j-symbols):
r. r. 1'k

( t )
> ,
Yi

> = F >T.y.>|Tey.>
iT9>p Iryvy>irges>ir YyYr

KTk
Yi '?J iTk
where I, is the identity representation. The quartiec invariants

are obtained by a repeated use of these formulae.
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IV. Overtones of Degenerate Vibrations

Two-quanta anharmonic spectra, namely overtones and comf
paund tones with degenerate vibrations, in uniaxial gyrot-
ropic crystals from point groups of symmetry C , D , C ,

D , are investigated, with due account taken of the time
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gyration tensor is studied too.
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