

сообщения
объединенного
ИНСТИTYTа ядерных
исследований
.дубна

E17-88-880
W.Salejda*

THE HEAT CAPACITY

OF THE ONE-DIMENSIONAL FIBONACCI-TYPE QUASICRYSTALS
*On leave of absence from Institute of Physics, Technical University of Wroclaw, Wybrzeze Wyspianskiego 27, 53-407 Wroclaw, Poland

1. Introduction

Recently, the properties of the electronic and vibrational spectrum of the dynamic models of one dimensional quasicrystals (1D $Q C$) [1,2] are the subject of extensive studies $[3,13]$.

So far, various thermodynamic properties of these systems having the singular continuous spectrum of elementary excitation $[4,6,7]$ have not been investigated in detail.

In this paper we report the numerical results concerning the temperature dependence of the heat capacity \mathbb{C} of the one-dimensional Fibonacci-type quasicrystals (1D FGC).

The harmonic models deseribing the vibrational motions of atoms are used and the next-nearest-neighbour interactions of atoms are taken into account.

The spectrum of the 1 D FQC containing $\mathrm{F}_{18}=2584 \leqslant N \leqslant$ $\mathrm{F}_{21}=10946$ atoms is obtained numerically and used for the calculation of dependencies of the heat capacity \mathbb{C} on the reduced temperature $T_{\text {RED }}$ in the wide range of $T_{\text {RED }}$.

Moreover, the dependence of the results on the variations of model parameters is studied in detail.

The paper is organized as follows. Specification of the studied models in Sec. 2 is given. Sec. 3 contains the basic equations. The numerical results and concluding remarks are given in Sec. 3.

2. Specification of the models

Let us briefly specify two one-dimensional models considered in this paper.

Model (I). Quasiperiodic binary alloy
The quasilattice (QL) of the one-dimensional Fibonacci-type quasicrystal [1,2] is defined by the set of points $\left\{x_{n}\right\}$ given by

$$
\begin{equation*}
x_{n}=n+\beta+[n / \tau+\alpha] / \tau \tag{1}
\end{equation*}
$$

where α, β are the real numbers, τ is a golden ratio equal to $(1+\sqrt{5}) / 2$ and $[y]$ denotes the integer part of y.

We decorate 1D QL placing two types of atoms in the middle of the points given by (1) (with $\alpha=\beta=0$), i.e. the equilibrium position of n-th atom having the mass

$$
\begin{equation*}
m_{n}=m_{0}(1+q([(n+1) / \tau]-[n / \tau])) \tag{2}
\end{equation*}
$$

is

$$
\begin{equation*}
l_{n}=\left(x_{n+1}+x_{n}\right) / 2 \tag{3}
\end{equation*}
$$

where $\mathrm{q}=\mathrm{z} / \tau$ is the so-called parameter of quasiperiodicity.
In this chain (see Fig. 1) we have: (1) two types of nearest-neighbour (NN) spring constants k_{HL} and k_{HH}; (2) three types of next-nearest-neighbour (NNN) spring constants $\mathrm{g}_{\mathrm{HH}}, \mathrm{g}_{\mathrm{LH}}$ and g_{LL}

In this paper the $1 D$ harmonic binary chair with quasiperiodic distribution of masses but constant isotropic forces

$$
\begin{align*}
& \mathrm{k}_{\mathrm{HL}}=\mathrm{k}_{\mathrm{HH}}=\mathrm{k}_{\mathrm{o}} \\
& \mathrm{~g}_{\mathrm{HH}}=\mathrm{g}_{\mathrm{LH}}=\mathrm{g}_{\mathrm{LL}}=\mathrm{g}_{\mathrm{o}} \tag{4b}
\end{align*}
$$

is studied.

Fig.1. The harmonic interactions of nearest-neighbour $\left(k_{H L}\right.$ and $\left.k_{H H}\right)$ and next-nearest-neighbour $\left(g_{H H}, g_{H L}\right.$ and $\left.g_{L L}\right)$ atoms in the model (I); the asterisks (*) indicate the points of $1 D Q L$, the letters \mathbb{H} and \mathbb{L} denote the atoms the masses of which are $m_{0}(1+q)$ and m_{0}, respectively; in the parenthesis the dimensionless distances between atoms are giver.

Model (II). Pure Fibonacci chain

We decorate QL of 1D QC placing atoms having identical masses ($m_{i}=m_{0}$ for all $1 \leqslant i \leqslant N$) at the points given by (1) with $\alpha=\beta=0$.

We assume that the strengths of $N N$ and $N N N$ harmonic interactions depend on average lattice distance between atoms. We have chosen $k_{n, r+1}$ and $g_{n, n+2}$ in the following forms (see also Fig.2):

$$
\begin{align*}
& k_{n, n}+1=k_{o}\left(1+q\left(1-d_{n, n}+1\right)\right) \tag{5}\\
& g_{n, n}+2=g_{o}\left(1+q\left(2-d_{n, n}+2\right)\right) \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
d_{n, n+i}=[(n+i) / \tau]-[n / \tau], i=1,2, \ldots \tag{7}
\end{equation*}
$$

From (5)-(7) it follows that the large values of $\left\{k_{n, n+1}\right\}$ and $\left\{g_{n, n+2}\right\}$ correspond to the short distances between $N N$ and NNN atoms in the chain.

Fig. 2. The harmonic interactions of nearest-neighbour $\left(k_{L}=k_{o}, k_{S}=k_{o}(1+q)\right)$ and next-rearest-neighbour $\left(g_{\mathrm{S}}=\mathrm{g}_{\mathrm{O}}(1+\mathrm{q}), \mathrm{g}_{\mathrm{L}}=\mathrm{g}_{\mathrm{O}}\right.$) atcoms in the model (II); in the parenthesis the dimensionless distarces between interacting atoms (indicated by asterisks(*)) are given.

Notice, that (2),(5) and (6) define the binary quasiperiodic sequences whose properties have extensively beerı studied recently hy Aviram [14, 15]].
3. Basic equations

The quantum-mechanical equation of motion of the systems under consideration is
$\left\{-\sum_{i=1}^{N} \frac{\hbar^{2} d^{2}}{2 m}{ }_{i}^{2} d u_{i}^{2}+\frac{1}{2} \sum_{i=1}^{N} k_{i, i+1}\left(u_{i}-u_{i+1}\right)^{2}\right.$
$\left.+\frac{1}{2} \sum_{i=1}^{N} g_{i, i+2}\left(u_{i}-u_{i+2}\right)^{2}-\mathbb{E}\right\} \Psi=\mathbb{D} \cdot(8)$
The Schroedinger equation (8) can be diagonalized by the normal coordinate transformation (NCT) $\vec{U}=\mathbb{W} \vec{Q}$ which also
diagonalizes the classical equations of motion (see telow) [16].

Using this NCT the equation (8) can be decomposed into N inderendent equations for the linear harmonic oscillators

$$
\begin{equation*}
\left\{-\frac{\hbar^{2} d^{2}}{2 d Q_{i}^{2}}+\frac{1}{2} \omega_{i}^{2} Q_{i}^{2}-E_{i}\right\} \phi_{i}\left(Q_{i}\right)=\mathbb{D} \tag{9}
\end{equation*}
$$

and the total energy of the chain consisting of N atoms is

$$
\begin{equation*}
\mathbb{E}=\sum_{i=1}^{N} \hbar \omega_{i}\left(n_{i}+1 / 2\right), n_{i}=1,23, \ldots \tag{10}
\end{equation*}
$$

The harmonic frequencies ω_{i} appearing in (9) and (10) can be obtained from the classical system of equations [16]

$$
\begin{gather*}
m_{i} \frac{d^{2} u_{i}}{d t^{2}}=k_{i, i-1}\left(u_{i-1}-u_{i}\right)+k_{i, i+1}\left(u_{i+1}-u_{i}\right) \\
+g_{i, i-2}\left(u_{i-2}-u_{i}\right)+g_{i, i+2}\left(u_{i+2}-u_{i}\right) \tag{11}\\
i=1,2, \ldots, N
\end{gather*}
$$

Introducing mass dependent variables $q_{i}=\sqrt{m_{i}} u_{i}, i=1,2, \ldots N$ and the notion of normal modes $q_{i}(t)=q_{i}^{\circ} \exp (i \quad \omega \quad t)$, the classical, system of equations takes the form

$$
\begin{array}{r}
\Omega^{2} q_{i}=\alpha_{i} q_{i}+\beta_{i-1} q_{i-1}+\beta_{i+1} q_{i+1} \tag{12}\\
\quad+\gamma_{i-2} q_{i-2}+\gamma_{i+2} q_{i+2} \\
i=1,2 \ldots N
\end{array}
$$

where the dimensionless eigenfrequencies Ω and the streneth of the next-nearest neighbour interactions are given by $s^{2}=$ $m_{0} \omega_{0}^{2} / k_{0}$ and $h=g_{0} / k_{0}$, respertively and

$$
\begin{align*}
& \alpha_{i}=\frac{m_{0}}{m_{i}}\left(\frac{k_{i, i-1}}{k_{0}}+\frac{k_{i, i+1}}{k_{0}}+\frac{g_{0}}{k_{0}}\left(\frac{g_{i, i+2}}{g_{0}}+\frac{\varepsilon_{i, i-2}}{g_{0}}\right)\right] \\
& \beta_{i+1}=-\frac{k_{i+1, i} m_{0}}{k_{0} \sqrt{m_{i} m_{i+1}}} \tag{14}\\
& \gamma_{i+2}=-h_{1} \frac{g_{i+2, i} m_{0}}{g_{0} \sqrt{m_{i} m_{i+2}}} \tag{15}
\end{align*}
$$

The harmonic frequencies Ω_{i} are the eigenvalues of the $N * N$ symmetric band matrix \mathbb{D} of width five if the free boundary conditions are applied ($k_{i, j}=\varepsilon_{i, j}=0$ if i or j lie outside the range 1 to N iriclusive)

$$
\mathbb{D} q=s^{2} q
$$

where

We have diagonalized numerically the dynamic matrix using EISFACK routines for the number of atoms $\mathrm{F}_{18} \leqslant \mathrm{~N} \leqslant \mathrm{~F}_{21}$, where $F_{18}=2584$ and $F_{21}=10946$ are the Fibmacei rumbers.

The obtained numerically eigenvalues 32 i. have been used further to calculate the heat capacity

$$
\begin{aligned}
& \mathbb{C}\left(T_{\mathrm{RED}}\right)=\frac{\mathrm{C}\left(\mathrm{~T}_{\mathrm{RED}}\right)}{\mathrm{N} \mathrm{k}_{\mathrm{B}}}=\sum_{i=1}^{N} \frac{v_{i}}{\mathrm{~N}}\left[\frac{s_{i} / \mathrm{T}_{\mathrm{RED}}}{1-w_{i}}\right]^{2}, \quad \text { (18) } \\
& \text { where } \varepsilon_{i}=\Omega_{i} / \Omega \Omega_{\max }, v_{i}=\exp \left(-\varepsilon_{i} / \mathrm{T}_{\mathrm{RED}}\right) \quad, \mathrm{T}_{\mathrm{RED}}=\mathrm{k}_{\mathrm{E}} \mathrm{~T} / \mathrm{E}_{\max } \text { and } \\
& E_{\max }=h \Omega_{\max } \text {, where } \Omega_{\max } \text { dernotes the maximal value of } \Omega_{i} \text {. }
\end{aligned}
$$

Fig. 3. The heat capacity \mathbb{C} of the model (I) plotted as a function of the reduced temperature $T_{R E D}$ for the indicated values of $z(1.0,5.0,10.0,25.0,50.0) ; h=0$ and the number of atoms N in the chain is $\mathrm{F}_{19}=4181$; for $z=1.0$ the results obtained for $N=\mathrm{F}_{19}$ and F_{21} are presented, too.

$0.0,0.5,1.0,2.5,5,0,10.0,25,0,50.0 ; N=F_{19}, h=0.0$
4. Numerical results and discussion

The temperature dependencies of the heat capacity © and the difference of (C with respect, to $T_{\text {RED }}$ in Figs.3-6 for the model I and in Figs.7-9 for the model IL are presented, respectively

From the results of oure computer simulationgs the frullowing facts and trends concerning both the monels are immediately apparert.

1. At sufficiently low temperatures the heat caparity is a linear function of the reduced temperature. There exists the maenitude of $T_{\text {RED }}$ below which

$$
\begin{equation*}
\mathbb{C}\left(T_{R E D}\right)=\Gamma^{\prime}(z, h) T_{R E D}, \tag{19}
\end{equation*}
$$

where Γ is a constant depending on the model parameters z and
h (cf.Eigs.3-9).

10

In Figs.4-6 and in Figs.8-9 the calculated values of Γ are presented for the models I and II, reaprotively. The plots show that Γ is almost independent of temperature at $\mathrm{T}_{\mathrm{FED}} \leqslant$ 10^{-2}. Moreover, in Figs.4-6 and 8-9 the begirmine (Γ_{B}) and the end (Γ_{E}) of each plateau is indicated by the calculated values of Γ. Notice that in the region of flateau the parameter

$$
\begin{equation*}
\theta=2\left(\Gamma_{\mathrm{E}}-\Gamma_{\mathrm{B}}\right) /\left(\Gamma_{\mathrm{E}}+\Gamma_{\mathrm{B}}\right) \tag{20}
\end{equation*}
$$ desmibine the relative slopes of Γ is less than 0.3%.

Fig. 8. The difference $\Gamma=\frac{d \mathbb{C}}{d T}$ plotted as a function of
$T_{\text {REL }}$ for indicated values of $z(0.0,1.0,2.5,5.0,10.0) ; h=0$ and the number of atoms $N=\mathrm{F}_{19}$; for $z=1.0$ the results obtained for $N=F_{18}, N=F_{19}(\vee)$ and $F_{20}($) are presented, too.
2. At high temperatures, i.e. at $\mathrm{T}_{\mathrm{RE}, \mathrm{I}}$ \% 1 the heat.
capacity \mathbb{C} approaches the value given by the [nlone-Peti" law.
3. The variation of the models parameter z and h leads to the quantitative changes of \mathbb{C} and Γ. The heat varaity increases with z (of. Figs. 3, 4, 7.8) and Γ diministhes with increasing of h (of. Fige, 5,9). In addition we observe that. the temperature region in which \mathbb{C} depends linsarly an "EED shifts to a lower region if the reduced temperature if the parameter is growing up (cf.Figs.4,8).

We have studied also the finite size effects $\operatorname{in}_{\mathbb{1}} \mathbb{C}$ and Γ.
Gmparison of the calculated results for various numbers of atoms N in the chain in Figs.3,6 and in Figs.7,8 for the
models I and II are-shown, respectively. As has been expected the linear dependence of \mathbb{C} on $\mathrm{T}_{\text {RED }}$ is observed in the wider low-temperature region for the larger values of in. These results confirm our first comment given above.

Finally, let 1 l interpret the obtained numerical results in terms of the integrated density of states $G\left(\varepsilon_{i}^{2}\right)$.

In the framework of both the studied models we find that [17]:

A1. In the optical region of vibrational spectrum (VS) $G\left(\varepsilon_{i}^{2}\right)$ exhibits the self-similar structure corresponding to the singular contimuus spectrum (Cantor set).

A2. In acoustic region of VS the number of gaps ard their sizes tend to zero and $G\left(\varepsilon_{i}^{2}\right)$ looks like as that of the ideal periodic chain,i.e.

$$
\begin{equation*}
G\left(\varepsilon_{i}^{2}\right)=G(z, h) \varepsilon_{i}^{2} \tag{21}
\end{equation*}
$$

where $G(z, h)$ is a constant depending on the model parameter [17]. Char findings are in agreement with the results of the previous investigations [3-9]. In addition, we fird that $G(z, h)$ increases with z and diminishes if the parameter h is. growing up [17].

For these reasons we can corclude that the obtained temperature dependencies of the heat capacity of the studied harmonic models. of 1D FQC behaves identically as for the periodic chain [18]

Acknowledgments

I would like to thank N.M.Plakida for valuable discussions. I am grateful to T.Paszkiewicz for useful
commerits. J.Malek helped with some of the rumerical work. Computations were done at the Laboratory of Computirge Techmiques and Automation of the Joint Institiate for Nuclear Researioh.

References

1.D.Levine, P.J.Steinhardt, Phys.Rev.B34, 596 (1986)

2.J.E.S.Socolar, P.J.Steinhardt, Prys. Rev.B34, 617 (1986)
3.J.F.Lu, T. Odagaki, J.L.Birman, Phys. Rev.B33, 4809 (1986)
4.F.Nori, J. P. Rodriguez, Phys. Rev . R34, 2207 (1986)
5.J.M. Luck, D. Petritis, J.Stat. Phys . 42, 289 (1986)
6. M. Kohmoto, J. R.Banavar, Phys. Rev. B34, 563 (1986)
7.M.Kohmoto, B. Sutherland, Ch. Tang, Phys. Rev.B35, 1020 (1987)
8.Y.Liu,R.Riklund, Phys.Rev.B35, 6034 (1987)
9.M.C.Valsakumar, G.Ananthakrishna, J. Phys.C20, 9 (1987)
10.S.E.Burkov, J.Stat.Phys.47,409 (1987)
11.H.E. Roman, Phys. Rev.B37, 1399 (1988)
12.D.Wurtz,T.Schneider, A. Politi, Phys.Lett. 129A, 88 (1988)
13. H. De Raedt, T. Schneider, Z. Phys.B71, 287 (1988)
14. I.Aviram, J. Phys.A19, 3299 (1986)
15. I.Aviram, J. Phys.A20, 1025 (1987)
16.P.Dean, Rev.Mod.Phys.44, 127 (1972)
17.W.Salejda (in preparation)
18.N.W.Ashoroft,N.D.Mermin, Solid State Physice,

Holt, Rinehart and Winston ,New York 1976; Chap. 23.

Received by Publishing Department on December 21, 1988.

