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1. Introduction

Recently, the properties‘of the electronic and vibrational
spectrum of the dynamic models of one dimensional
quasicrystals (1D QC) [1,2] are the subject of extensive
studies [3,13].

So far, various thermodynamic properties of these systems
having the singular continuous spectrum' of elementary
excitation [4,6,7] have not been investigated in detail.

In this paper we report the numerical results concerning
the temperature dependence of the heat capacity € of the
one-dimensional Fibonacci-type gquasicrystals (1D FQC).

The harmonic models describing the vibrational motions of
atoms are used and the next-nearest-neighbour interactions of
atoms are taken into account.

The spectrum of the 1D FQC containing F18:2584 < N g

F,,=10(946 atoms is obtained numerically and uwused for the
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calculation of dependencies of the heat capacity € on the
'reduced'temperature TRED in the wide range of TRED'

Moreover, the dependence of the results on the variations
of model parameters is studied in detail.

The péper is organized as follows. BSpecification of the
studied models in Sec.2 is given. Sec.3 contains the basic

equations. The numerical results and concluding remarks are

given in Sec.3.
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2. Specification of the models

Let us briefly specify two one-dimensional models
considered in this paper.
Model (1). Quasiperiodic binary alloy
The quasilattice (QL) of the ° one-dimensional
Fibonacci-type quasicrystal {1,2] is defined by the set of
points {xn} given by

xn:n+f3+[n/‘l’+0t]/’!" (1)

‘where o , 3 are the real numbers, T is a golden ratio equal
to ( 1+ 7 5 )/2 and [y] denotes the integer part of y.

We decorate 1D QL placing two types of atoms in the midale
of the points given by (1) ( with «a=3=0 )7 i.e. the

equilibrium position of n—-th atom having the mass

mn:mo(l + q([(n+t1)/T3-[n/7])) (2)

is
ln: ( a1
where q=z/7 is the so-called parameter of quasiperiodicity.

+x /2 (3)

In this chain ( see Fig.1 ) we have: (1) two types ?ﬁ
nearest-neighbour (NN) spring constants kHL and kHH i (2)
three types of next-nearest-neighbour (NNN) spring constants
&y o e i

In +this paper the 1D harmonic binary chain with
quasiperiodic distribution of masses but constant isotropic

forces .. (4a)

Ko

gHH: gLH:gLL:g o
is studied.

(4b) .
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Fig.1. The harmonic interactions of nearest-neighbour
(kHLand kHH) and next-nearest-neighbour (gHH‘gHL and gLL)
atems in the model (I);. the asterisks (%) indicate the points
of 1D QL, the letters H and L denote the atoms the masses of
which are mo(1+q) znd m respectively; in the parenthesis

the dimensionless distances between atoms are given.

Mode:l (Eg). Pure Fibonacci chain
We decorate QL of 1D QC placing atoms having identical
masses (mizmO for all 1 & i ¢ N ) at the points given by (1)
with a=3=0.
We assume that the strengths of NN and NNN harmonic

interactions depend on average lattice distance between

atoms. We have chosen kn.n+l and € 42 in the following
forms ( see also Fig.2):

kn,n 4 1:ko(1+Q(1_dn,n " 1)) (5)

€n + Z:go(l+q(2_dn.p + 2)). (6)
where

dn,n + i:[(n+i)/T]*[n/T] 11,2, ... (7).
From (5)-(7) it follows that the large values of {kn n+1}

and {g 2} correspond to the short distances between NN

n,n+
and NNN atoms in the chain.
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Fig.?. The harmonic interactions of nearest- -neighbour
(kL:ko , kS:kO(l+q) ) and next-nearest-neighbour
(gS:gO(1+Q) = ) atoms in the model (II); in the
parenthesis the dimensionless distances between interacting

atoms (indicated by asterisks(*) ) are given.

Notice, that (2),(5) and (6) define the Dbinary
quasiperiodic sequences whose properties have extensively

been studied recently by Aviram [14,15].

3. Basic equations
The quantim-mechanical equation of motion of the systems

under consideration is

N N )
2- z
_ h 5| 1 . )é
om . d . o 1 vl M i+l
- i
i=1
N
1 5
- “ - E q -0
+ N gl i+2 ( i T Y42 ) ¥ (8
i=1

The Schroedinger equation (8) can be diagonalized by the

normal coordinate transformation (NCT) @=M @ which also

diagonalizes the classical equations of motion (see helow)
[161.
Using this NCT the equation (8) can be decomposed into N

independent. equations for the linear harmonic oscillators

" d 1 n o
-t Qi—Ei ¢.1(Q.l)=® (9)
and the total energy of the chain consisting of N atoms is

E = g h wy ( n, + 1/2) ni:1.2 3. .. (10).

The harmonic frequencies ws appearing in (9) and (10) can

be obtained from the classical system of equations [16]

d uy
Mz e (e T R e (8 )
T8y yp (Wp Ty ) T8 0 (B -y ) (D)
i=1,2,...,N ¢
Introducing mass dependent variables qi:1 m,ouy, i=1,2,..N
and the notion of normal modes qi(t):qz exp(i w t), the

classical.system of equations takee the form

2 _
Qray =oga; ¥ 1959+ B4 4
(12)
i 0T V40 440

i=1,2...N,



where the dimensionless eigenfrequencies ©? and the strength We have diagonalized numerically the dynamic matrix D
of the next-nearest neighhour interactions are given by 0% using EISPACK routines for the number of atoms F18 SN FZl'

2 } ~ S i} where F,.= 2684 and F,.= 10946 are the Fibonacei numbers.
m{_)wo/k0 and hﬁgo/k0 , respectively and 138 21

The obtained numerically eigenvalues Qi have been  used

further to calailate the heat capacity

Moo Kiio1 Kiier Bo o €5 iez Bili-z
™ + + + (133 X
a ko ko kc: gy £o C(TRED) vy 'si/TE’ED 2
C( Ty, )= ——————— = g [ ] yo1&)
l\i+1.i "o N kB i=1 N 1- 4
Piar® ~ e (4 - =0 /O v,z expl-£,/To) T, o2k, T/E and
ko ¥my Py where =, =2, /&2 - ¥yT =XPUEMpen’ 0 TREDTR Tmax
E _=hQ ywhere Q denotes the maximal value of Q..
max max max i
Eivz.1 Mo 100
- — S E‘
YT h ” (15) C
3 m. m. .
o i i+Z
The harmonic frequencies Qi are the eigenvalues of the NN -
101
symmetric band matrix D of width five if the free boundary
conditions are applied ( ki 1:g.1 i:O if i or j lie outside
the range 1 to N inclusive ) 10-2
D q = QZ q- (16)
i 25.0 100
where 3r 500
_ ) w 10°] 0 .
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Fig.3. The heat capacity € of the model (I) plotted as a
""""""""""" function of the reduced temperature TREID for the indica-
2 o 3 ¥
"Nz Pz Snez Pner T ) ted values of z( 1.0,5.0,10.0,25.0,50.0 );  h=0 and the
o] 2
0 “N-1 ‘RN 1 N-1 TN number of atoms N in the chain is qu:4181; for ==1.0 the
L ?’N ng O‘N J ‘ p

results obtained for N=F 19 and F,Z'1 are presented,too.
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4. Numerical results and discussion

The temperature dependencies of the heat capacity € and the
difference of € with respect to TRED in Figs.3-6 for the
model 1 and in  Figs.7-9 for the wmodel 11 are

presented, respectively.

8

From the results of mur computer simulakions the following
facts and trends concerning both Lhe models are  immediately
apparent. .

1. At sufficiently low temperatures the heat capacity €
is a linear function of the reduced temperature. There exists

the magnitude of TRED below which

C(T y=T'(z,h) T

RED RED '

where I is a constant depending on the model parameters z and

h (cf.Figs.3-9).
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3 2(
N A
=N
M- In Figs.4-6 and in Figs.8-9 the calonlated values of I are
R presentéd for the models I and 1I, respectively. The plots
F’ 0
—~ O % show that I' is almost independent of temperature at T . &
P @ FED
Q -2 . . o
% é 10 . Moreover, in Figs.4-6 and 8-9 the beginming (TE) and
— 0 oo
~ ¢ © the end (") of each platean is indicated bv the  calculated
L o : E
A 1 ITTEN B iy w
O O O ™ =] ¥, values of ', Notice that in the region of plateaun the
~ @ N ) i
N N N N parameter
i B2 (Tp - Tp) / (Tp+ Ty (20
dezoribing the relative slopes of I° iz less than 0.3 %.
10 *
11




2300 I

3423621 Z\-I0.0 %1029&

27651452 XZ =50 27725673
2 2 23967425
@2m3606 [ %720 \

301

2200, 21743403 21173739

2100

A =10 o
[eniam TVl ‘
20 > 170087. Pz 1773871 ’ 19885869 19919264
- 2170087 £7.00 ALL‘ SO :
[ ] 20948997 Z(X)O_ j_ VA
2
h-510
1900|
10 L L 1 . " FE R | _
10 107 102 10" Taeo ,
ac ’ 1800
Fig.8. The difference I's ———— plotted as a function of s 8 L
ATgED :

: 1.?%374;5 1733821
Tpgp for indicated values of z( 0.0,1.0,2.5.5.0,10.0 ):  h=0 ,
1700} \sio2

and the number of atoms N=F for 2z=1.0 the results

19°

obtained for N=F .. NeF;q ( ¥ Jand F (o) are )

20 P

presented, too.
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2. At high temperatures, i.e. at TRED 3y 1 the heat

Lt
capacity € approaches the value given by the Dulong-Peti

law.

3. The variation of the models parameter z and h leads to

the quantitative changes of € and . The heat capacity

increases with. z (of. Fige.3,4,7.8 ) and T diminishes  with i Fig.9. The same as in Fig.8 for N:F19 and 0 < h < 0.35.
increasing of h {(cf. Figs.5.9 ). In addition we ohserve that ,J,

the temperature region in which € depends lirearly on Tpo. i We have studied also the finite size effects in € and I'.
shifts to a lower regicn of the reduced temperature if the "t Comparison of the caloulated results for various numbers of
parameter iz growing up (cf.Figs.4,8). atoms N in the chain in Figs.3,6 and in Figs.7,8 for the

12 ! 13
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models I and IT are - shown, respectively. Az has been
expected the linear dependence of € on TRED is observed in
the wider low-temperature region for the larger values of N.
These results confirm our first comment given above.

Finally, let us interpret the obtained numerical results
in terms of the integrated density of states G(a‘?).

In the framework of both the studied models we find that
[17]:

Al. In the optical region of vibrational spectrum (VS)
G(a‘-?) exhibits the self-similar structure corresponding to
the singular contimwus spectrum ( Cantor set ).

AZ. In acoustic region of VS the number of gaps and their

2
sizes tend to zero and G( s;) looks like as that of.the ideal

perlodlc chain.i.e.
(2(&‘)— (J(zah) &, (21)
1 1

where G(z,h) is a constant depending on the model parameter
[173. Our findings are in agreement with the results of the

previous investigations {3-9]. In addition, we find that

G(z,h) increases with z and diminishes if the parameter h " is
v -

growing up [17].

For these reasons we can conclude that the obtained
temperature dependencies of the heat capacity of the studied
harmonic models. of 1D FQC behaves identically as for the

periodic chain [18].
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