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I. INTRODUCTION

Resonance fluorescence of two-level atoms in the presence
of a strong laser field has received a great deal of attention
in recent years[1-10] . In the work[1] by Mollow, & three-peaked
fluorescence spectrum in the interaction of a single two-level
atom with a single-mode coherent state driving field has been
predicted. This spectrum, a "dynamicel stark" spectrum, was
first obse}ved in the work[2] by Schuda et al. Resently, the
spectral(7,8,101, statistical[9,10] properties and nonclassi-
cal effects as squeezing, violation of the Cauchy - Schwarz
inequality[11-14] in the collective resonance fluorescence have
been discussed.

In this paper we consider the problem of collective reso-
nance fluorescence of N two-level atoms driven by an intense
coherent field in the presence of an additional incoherent field.
This incoherent field is typically a Gaussian chaotic field and
can be & thermel black-body field. In the case of intense ex-
ternal field the stationary solution for the density operator
of the atomic system is given. Expansion of linewidths and asym-
metry of a spectrum caused by a thermal black-body field are
shown. Influence of the thermal field intensity on the photon
statistics of spectrum components, cross-correlation between them
and on the violation of the Cauchy - Schwarz inequality is in-

vegtigated.
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IIL. BASIC EQUATIONY

Let N two-level atoms be concentrated in a region small
compared to the waveslengh of all the relevant radiation modes
(Dioke model). The aloms arve driven by o single-mode coherent
fleld of the frequenoy (), nnd coupled to a reservoilr contain-
Ing all modes of the radiation field. In treating the external
fleld olnpslonlly and using the Markov and rotating wave Appro=-
ximation for describing the coupling of the system with the

thermal reservoir, one arrives at the following master equation

for the reduced etomic density operator ¢ [15]

L 02 (L -5 G L) g

ot
=& (;’—f!)(‘];.aj;zf—.];,_f.ﬂ‘ + H-C-)
-ER(LJLt?—LIszfH-C-)E Lf j (1)

N

where é = o.}a_. uJL is the detuning of the laser frequency wy
from thevatomic resonance frequency w,, (w, = W, .ag; b= 1)).

(6 _J‘. E, is the resonant Rabi frequency; ¢ is the radi
ative spontaneous transition rate from the excited level |2 to
the ground state [1D> ; n= % (wy) = Lexp(w,, /kT)- ‘f]‘lis
the mean photon number in the broad-band thermal field provided by
the reservoir at the atomic frequency o, ; J‘:J‘ (‘:,j= le)

are the collective operators (angular momenta) describing the
etomic system and having in the Séhwinger representation[9] the

following form:

J-ij = C;"Cj (i,j = f,Z) 3

; +
where the operators cl and CJ' obey the boson commutation re-

lations

E Ct') CJJ - JIJ

and can be treated as annihilation and creation operators for
atoms populating the level li> .

Further, we restrict our consideration to a strong laser
field or to a large detuning (f so that the Rabi frequency.(l

satisfied the following relation
182, 65" >N "l
—Q = ( 4—.- J + G ) )> ) ‘ (2)

After performing the canonicel (dressing) transformation

C, = Queasy + Quiny ’ (3)
€ = -Qsing + Qo cosy )
where ‘fe_ltp = 20’/5 y]

one can split the ILiouville operator appearing in equation (1)
into the slowly varying part and the terms oscillating at fre-
quencies 2 and 4 L) . Since we assume that the Rabi fre-
quency {) is safficiently large according to the relation (2)
the secular approximetion[7] is justified and we retain only
the slowly varying part of the Liouville operator and the master
equation (1) reduces to
~ ~ L ~p2
29 .y R, pl+BI2RR R PR
ot
~ ~ ~
+ X‘ (lku__f' Ru - Rz' R‘lf = f RZI Rll)

+ X2 (2 Ruf—' Ry - er Ru j;’.- fRnRu) y (4)

~
where f = Uf U’ , Where U is the unitary operator represent-

ing the canonical iransformation (3)

Ry = R.a - R, ) (5)

B:b’(r—x-k%)sinﬁfwj"lf ) (6)




XK= & (el catp + Lhgin% (7
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X2

1

T (het) sinto + L5 cos (8)
E_(vw).smﬁpfrnw:gf )

T .
RIZJ' = Ql- QJ (l,j=1,2) are the collective ope-
+
rators of the dressed atoms. The operators (Ql and 6% satisfy

the boson commutation relation

£Q;, Q"] = & ) 9)

so that

LRy, Rijr Tz Rije & = Rij &y : (10)

The exact stationary solution of equation (4) tekes the form

N
n
§ o= 22 X" In ><n,l ’ (1N
+ n=0
where
X = ﬁ_: (n+1) costyp + R’y , (12)
X2 (n+1) sinty +A cocty '

N+l

Z = X _ 4 Y fay
X .4 )

the state lh,) is the eigenstate of the operators R“ and
R,y *Riz . The solution (14) allows one to calculate all the
stationary expectation values of the atomic observables. Some
of the results that will be needed for our further consideration
are given in Appendix.

In the case of the exact resonance cosﬁp = é. the solution

(11) reduces to

N
~ 4
L, # (N+1) 2. IM>< n| . (14)

n:=0

The solution (14) is independent of the mean photon number

of the thermal field and has the same form for the case when

the thermal reservoir is in the vacuum state (i.e. 1 = 0). Con-
sequently in the exact resonance case all the one-time expecta-

tion values of the atomic observables are independent of n.

III. FLUORESCENCE SPECTRUM

In this section we consider the effects that may arise
in the collective steady-state fluorescence spectrum due to the
thermal reservoir.

Following the works [6] , the steady-state spectrum of the
fluorescent light has been calculated as the Fourier transform

of the atomic correlation function

KL )Ty 2 = lim <L, (40T, (00> (15)

to
where <...;} denotes an expectation value over the steady-state

(11).

By using the transformation (3) one finds

Ja-n (t)= Sl.)'i(pw.flﬂ 23 )+ Cﬂfllf 22, (t)- J;;nl(f ng (t) . (16)

The equation of motion for < Q;J (f)) can be derived by using

the master equation (4) and have the following forms:
.i_t (RS> = _2 (X, +X;) <R (DS
- (XZ-X,) <P_;z(f)>+ (Xg-XI)(Nl*ZN) ) (17)

% <Ry (B)> = . 2000 <R (£)7- (484X, +X:)< R (DD
~4 (G- X) < RO, R D> g
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I <Ry () = (i. <Ry (8)) 9

where {Rgl‘ ) R} } z Rg RJ + ,23 P.J ‘

Equations (17-19) are so fer exact. They contein, however,
terms with the products of operators which make them unsolvable
in the general case.

For the one-atom case one can use the operator relation

R;J- R"j': R,-J-'S‘-IJ- ([,j,i;j': $,2) (20)

then equations (17)-(19) reduce to the linear, exact solvable

equations

%<R3(t)>:_2(X.+Xz)<R3{t)>+2(xz-x,) , (e

4 KRy )= 2002 R D, (4B 4K+ )R, (D)) ,(22)
ar

d
o < R () = % ¢ Ry ()" _ (23)

Equations (21)-(23) are in agreement with the previous work [6]
by Hildred et al. concerning resonance fluorescence of one
atom in the presence of the thermal reservoir.

For the case of exact resonance (o8¢ = 1 we have X, =JX|
and the terms with the products of operatorszvan_ish; then all
equations (17)-(29) reduce to the exact solvable linear diffe-
rential equations.

For the off-resonance case, according to the worksf8,10] ’

we use the decorrelation scheme

<{Rg, R‘J}>=2<23>SR‘J ¢ (24)

By using the density matrix (11) one can show that in the

case of large N the decorrelation (24) yields a small error

—

e

(with an order of N-w ) in the celculation of the steady-state
fluorescent spectrum. With the approximetion (24), equations
(17)-(19) have simple exponentiasl solutions.

Applying relation (16), solutions of the equations (17)-
(19) end using the quantum regression theorem[16] , one obtains

the following expressions for the correlation function (15)

{7y (G.)J,'l 2= Sin*g KRy Ry exp (Lo, 22¢)
+eosty <R, R, 2 exp ([e+2iQw)

+Sintyp costy (KRIX . Ie ) exp (-Fw) (25)
+Sinp cos’p Te

where

E: 4B+X,+X,_+ (Xz-X1)<R3>J
¥ (h+l )(1+26ar‘viv'b"l/)+z' (s )RS, 5 (26)

= 2(Xi+X )+ (Xa-Xy) <R
=20 (n i%)(wﬁ(f +S£;n‘*y)+£'({fnl‘f_ Cﬂizlﬁ)(&% , (27)

Ie = L (o' - oty ) (W 1 20) <K% /T . (28)

The expressions for the weighting factors of the particular
exponents { R, 2212;' <Rz, Q”)J,, <RJ¢)S and value (PJZ’ are
given in Appendix.

The steady-state spectrum of the fluorescence is proporti-
onal to the Fourier transform of the correlation function (25)

and takes the form




S(w) = %Re{ ST @ % exp Lilw._w,)e] dzj

= costy < RyRy D —
(W_ow, +20)+0,?
+ s‘fw*(p <R,,_ RU)S [
(wow +2Q )%+ [}*
tsinyp eagty (<R> .Ie)_ o (29)
£ ol o (- 'y
* z—-slm’ow.ry Ze d‘{w_wL) .

As for the case when the thermal reservoir is in the vecuum
state[8] , the steady-state spectrum (29) contains three spec-
tral lines centered at frequencies (J = W ch'_i- 281, 1In
the off-resonence case COSL(f # z" the centrel line contains
the elastic component with the intensity L being proportional
to N* (which venishes for the exact resonance case) and the
Lorentzian shaped component with the linewidth ’: ar'ld intensity
Sll'n"lp wS"lf (<R31>S = Ie) . The two sidebands are Lorent=
zians of the linewidth f; centered at frequencies w=w, - 20
and @)= w‘_+2.Q » and having the intensities which are pro-
portional to Sl'nl’q (R Ry, >_; and wllrv {Ry, By, 2‘- res-
pectively.

As is seen from the relations (26),(27), in the general
case the linewidths of the three inelastic components are expand-
ed due to the presence of the thermal field. The expansion of
the linewidths ra 5 E, are sufficiently large for the case of

n>> 1 and exact resonance when the collective part

f_%' (Sl‘r:"(f - w,("q: ) <R3 >SJ of the linewidths vanishes. For the

off-resonance case and N>>1  from relation for <Pg>‘ given
in Appendix one finds

L ¥ (sintyp- sty )R D =X N lsinip- easty |

2 + 72

) . (30)

!} ws # % .

Thus, for the case of NJ221 and w.‘a'Ll{ 1#.11 the collective
pert of the spectrum linewidths is independent of A ‘and do=-
minantes over the other one-atom parts of the linewidths. Conse-
quently, in this case the spectrum linewidths are approximately
independent of the thermel field intensity 1N .

In contrast with the spectrum line widths, the intensities
of the spectrum components are independent of A for the exact
resonance case. In this case, the elastic component vanishes and
intensities of the three inelastic components have the super-
radiant behaviour ( ~ N/* ). For the off-resonance case ws'y #5_'.
the intensities of the spectrum components strongly depend on
the thermal field intensity. The dependence of the intensities
of the spectrum components on the thermal reservoir is shown
in figs. 1,2 where the relative intensities of the sidebands
(fig. 1a,b), i.e., the quantities L.(/N = COS’(f CRuyRy /M
(solid curves) and I“ /N: 40341{ <Ru Qn, >/’V " (dashed curves)
and of the central line containing the elastic and inelastic
components (fig. 2a,b), i.e., the quantities I,///z_-:

S'l:nLL(wSL(f <Q$l>.( /N? are plotted as functions of
the parameters Co.&"lf for various velues of M and M . As
is shown in fig. 1a,b, in the case of N = O (the curves @ )
the intensities of the two sidebands are equal and spectrum is
gymmetric. In the case of N #0 (the curves @) the
intensities of two sidebands are quite different for the off-
resonance case oos‘(p‘#i!_ thus spectrum agsymmetry is substan-

tial. Analogous conclusions for the resonance fluorescence from
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a single etom in the presence of thermal reservoir has been made
in the work[6] by Hildred et al. Using the relations for

<Rz| R‘l >S) (2'1 2“ ).'i and (R;ZG given in Appendix, one can
show that for a large number of atoms N>>1  and off-resonance
case the intensities of the spectrum components are strongly de-
pendent on the thermal field intensity »n and the fluorescence
spectrum is quite asymmetric while the spectrum linewidths are

independent of no.

IV, STATISTICAL PROPERTIES

In the recent works[9,10,13] , the statistical properties
of the collective resonance fluorescence in the case when the thex
mal reservoir is in vacuum state have been investigated. The an-
ticorrelation between sidebands and central spectrum componentsfs)

and the nonciassical correlation (violation of the Cauchy -

Schwarz inequality) between two sidebands [13] have been predicted.

In this section, we discuss influence of the thermal re-
servoir on the statistical properties of the fluorescence field.
\'lt;. consider independence of the photon statistics of the spect-
rum component and nonclassical correlations between them on the
thermal field intensity h .

It is easy to see from the previous section and relation
(16) that the operators - sin'y Rn. : 5‘.”‘{ coslp RS and

ws‘v Rz; can be considered as operator-sources of the
spectrum components of the fluorescence field at frequencies
W, - 20 y W, and W +2.Q-, and for simplicity these opera-
tors will be denoted by S_: ’ S':. and S;+ , respectively.

As Loudon(17] , we define dht degree of second-order cohe-

rence between the spectrum components SI and S:, in the form

12

Gf < SELGES

g (i)5= 0,+1)
<SSy <8 %

(31)

Since the operator S[ does not commute with the operator *8

in the general case, we have
) )
G[.}J- +* G:/ .

It

CEY D

(e8] .
The correlation functions CTL'/L' (L =04+ 1) describe the

photon statistics of the spectrum components S¢ and the corre-
lation functions G")(j:) describe the cross-correlation between
the spectrum components S[ and Sj o

By using the steady state density matrix (11) and commuta-

tion relation (9),(10) one finds the quantities @
in the form

Gog = <RID /<R ,

gi (L =0,41)

(32)
(2) (2)
CT4,1 = le,-q = < Rn. Qn_ pz; P;_,; 7 <R, /eg., >J)z ’ (33)

where the values ¢ le)_s ) (/2; >S) < l?n. p;z Pz; '?2, }) (Plz pz,?;

are given in Appendix

For the one-atom case, by using the operator relation (20)

one can show

Gor = SRigtRe> /(<R +R 2 =

(34)

@) )
Gy = Lty = o) (35)

thus the photon statistics of the centrel component remains Pois-
sonian; the sidebands have sub-poissonian statistics and photon

statistics of all three Mollow's spectrum components are inde-

pendent of the thermal field intensity n

13



Contrary to the one-atom case the photon statistics is
strongly dependent on the thermal field intensity W ; as is
@)

. . a
shown in figs. 3,4 where the correlation functions G’,, o) 3
4

are plotted as functions of the parameter CMII( forfixed N =50

and for various values of M . It is clear from figs. 3,4 that

except for the point of exact resonance ws‘(,a = _i s, the thermal
2

field intensity n plays an important role in the photon statis-

tics for Mollow's triplet of the collective resonance fluorescen—

ce. By an analogous approach one finds the cross-correlation
@)

functions Gi,j (l' ;tj) for the single-atom case in the fol-

lowing form

2y €2) @) @

Go1 = Gf,o z by oz Gap =t ’ (36)
>

Gyoy = X#1 >4 (37)

@)
G-4,4 1+ 2 >4 s

X (38)

Thus, for the one-atom case the central component S:, remeins

"

uncorrelated with the sidebands S'_“ in spite of the presence

of the thermal field while the cross—correlation between the side-

bands is directly dependent on the thermal field intensity n .

For the collective case N2 4 , by using the steady-state
density matrix (11) one can show that except for the point of
exact resonance COSLU.: 4/3L , the cross-correlation function

CTS? (¢ #\j ) is strongly dependent on the thermal field
intensity.

Further, we fix our attention on the correlation between
the sidebands and discuss the influence of the thermal field on
the nonclassical effect-the violation of the Cauchy - Schwarz_
(C-S) inequelity [17-227) that has been predicted for the collec-

tive resonance fluorescence in the work [13] ©

14
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Fig.3. The quantity ) gy
as function of COS"(pO’O
for the caseN = 50,
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Fig. 4. The quantity 614,14 as function of w.(zy for the

case N = 50. The curves @-@correspond toh =0

0.2; 1.0, respectively.
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We speak that the violation of the Cauchy - Schwarz inequa-

lity holds for the correlation between the spectral components
$; end §; if the following condition[13 Jis satisfied:
() 2

)/((n <A1 "

(2)

L)} = (G{.L

(39)

The factor K‘:IJ‘ describes the degree of the vielation of
the Cauchy - Schwarz inequality.

One shows by the relations (34)-(38) that K.‘jJ' = 0
(i#y j i)_j = 0/ 41 ) for the single-atom case. It means that
the C-S inequality is violated for any two spectrum components
from Mollow's triplet as in the case when the thermal field in-
tensity W is equel to zero.

For the collective case ( N7/ 2), as for the case of
n = 0[13] , the violation of the C-S inequelity is presented
only for two sidebands of the fluorescent spectrum while the
factors KA)_‘, and K-U1
violation of the C-5 inequality between the sidebands St4 ,

, describing the degree of the

is dependent on the thermal field intensity A . One can write

the factors K,}_, and K-‘;" in the following form:

K4 , 2 (Ru R)l .Rﬂ P,z ZY <Rz R R Qzl >_r > (40)
=1 =
(< Ru Qn, Ezl 242 >,s )2

Koie = Ry Ry, Ry R < R R, R, B
(<Ra Ry R Ry X )

p) (41)

where the expectation values ¢ Ky, Qz,, E,z P;z_ >_y) (R P,z Pz, PIZ>

(R,;_ P,l R, pz,) and </2;z, Rz, k}z 23_,2; can be found in Appen-
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dix. The behaviour of the factors qu, and Kb“ as functions
against the parameter cosﬁf for N = 50 end various velues

of n is plotted in figs. 5a,b, respectively. As is seen from
fig. 5, the thermal reservoir reduces the factors K‘b’ and Kb-g

describing the degree of violation of the C-S inequality.

V., CONCLUSIONS

We have considered the problem of collective resonance fluo-
rescence of the small system of N two-level atéms driven by an
intense coherent driving field in the presence of an additional
incoherent field. In the case of an intense external field the
stationary.solution for the density operator of the atomic system
is given. We have shown the expansion of linewidths and esymmetry
of the collective resonance spectrum ceused by the thermal field.
It has been shown that except for the point of exact resonance

coslq = f. the thermal field intensity W plays an im-’
portant role in determining the photon statistics of the spect-
rum component, cross-correlation between them. The thermal reser-
voir reduces the degree of the violation of the C-S inequality

for the correlations between the sidebands.

APPENDIX

In this Appendix we give the explicit expressions for the

steady-state averages of the atomic operators that can be calcu-
lated with the use of the density matrix (11)

CRyaSs = 27 TNX"2 e DX" S X/ (X Kt}

+2
RE>w 27T (2wt 2 ) X"
4+ 2
e (V) Xl xx1/ (x 1) ooy
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(R Doz 2T LN (SM 43N 30 +1)X
+ QN 6N 4 X" (N3N 53N 11X

+ XPpax X 3/(x- 0t (4.3)
(Rt = 2TCNEX™ T (4Why 40 GNP+ 6N XS
W (ENOL 12NN 2N #4)X 7S
C(apt e 2NNz ) X (W 40P
2 6N e v DX XY/ (X1 @y
CR3Ds = N-2<&RuZ (A.5)
<R3L>J = 4 ( quz T - 4” (041>S *f-NL (A.G)
R Ry D = - R+ (M41) <Ry X (A7)
<, Rn_>5: = (»Q”Zz. + (IV-4)(Q,,4>:+IV (A.8)
CREXY = 16 CRADe. 320 <R + 242 <R,22
S 8W Ry + N (4.9)
R Rip Ry Ry 3= <Ryt D - 2me2) <R
+ (W2 545D Ry 2 = (VB3N +2) <Byy X (4.10)
CR2yRug Ry Ry Y= SRt > - (2W-4) (R
C (VEFNESIER, 2+ BN FH+2) <R, D, (A.11)
s 2NE_2N
{RyR,, Ry Ry 3 = (/2,,4>J - (2w-2) (p,;‘)J
t W% 4w+ DR + (245 VIR y Do +H* (A12)
SRRy Ry Ry 2 = SRS D5 - 2(wr)c? >,
N (7)n <Rt X (A.13)
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Jle Xour Jlan, A.C.llymoBckuit, Yan Kyaur E17-88-753
KonnekTHBHasA pes3oHaHcHas &IyopecueHIHs

B MIPUCYTCTBHH TeEILIOBOI'O TepMocTara

O6cyxmeHbl CNEKTpallbHble H CTATHCTHUECKHE CBOHCTBA KOJI—
JIEKTUBHOM pe30HAHCHOH ¢nyopecneHiuuH B IPUCYTCTBHUH TeIJIOBO-
ro tepMocrara. [loka3zaHo BIHMSAHHE MHTEHCHBHOCTH TEMNJIIOBOTO
MOJNIA Ha pacuMpeHHe CIEeKTPAaJIbHBIX HMHPHH H Ha aCHMME TPHI0
cnektpa. HM3yueHpl GdOTOHHAsg CTATHUCTHKA CIIEKTPAJIbHBIX KOMIIO—
HEHT, KPOCC—KOpPPEeJIAIHA MeXOy HWMHM W HapymeHHe HepaBeHCTBAa
Komu — llBapua /KlII/ B 3aBHCHMOCTHM OT HHTEHCHBHOCTH TeIJio—
BOI'O IIOJIf.

PaBGora BbmosiHeHa B JlaBopaTopuu TeOopeTHUeCKOM (U3SUKH  *
Ondn.

MpenpunT O6BenMHEHHOrO HHCTUTYTA ALEPHBIX HecnenoBanuii. [ly6ua 1988

Le Hong Lan, Shumovsky A.S., Tran Quang E17-88-753
Collective Resonance Fluorescence in the
Presence of a Thermal Reservoir

Spectral and statistical properties of the collective
resonance fluorescence in the presence of a thermal reser

voir are discussed. Influence of the thermal field in-

tensity on expansion of the spectrum linewidths and on

symmetry of the spectrum is shown. Photon statistics of
the spectrum components, cross-correlation between them
and violation of the Cauchy - Schwarz (C S) inequality

in the dependence of the thermal field intensity are

investigated.

The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988




