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1. INTRODUCTION

Strong Coulomb correlations are now considered to play a
very important role in forming the electron sPectrum in oxide
superconducting compounds (see, for example,’!” ). Anderson
was the first’?/ to note the proximity of these compounds to
the Mott-Hubard system near the insulator-metal transition.
He proposed the theory of superconductivity on the basis of
the effective exchange Hamiltonian of the form’3/ :

H=t 3 (l-n;_4)cipCjo(1-n5_0) +J £ (88 —i—nlnj) )
<4j>,0 <iy>

with <i}j> nearest neighbouring sites on a square lattice;

J =4t% /U is the antiferromagnetic coupling. The Hamiltonian
(1) results form the Hubbard model when U>>t and acts in
the subspace of singly occupied sites (i.e. in the lowest Hub-
bard subband). Anderson suggested that the exchange interac-
tion on the 2D square lattice brings about a resonating va-
lence bond state consisting of an ensemble of singlet elect-
ron pairs and giving rise to the superconductivity in the
system. At the same time it was pointed out in’% (see al-
so’%) that superconducting pairing may be caused by a kine-
matic interaction. This interaction is included immanently
into the Hamiltonian (1) through operator factors (1-n,_,)
which restrict the phase space available for an electron mo-
tion. )

In the present paper the role of exchange and kinematic
interactions is considered and their contributions to a
superconducting gap equation are investigated by the two-
time Green function method on the basis of the Hamiltonian

(1.

2. GREEN FUNCTIONS AND GAP EQUATION

A very complicated problem, one encounters when treating
an electron system on the basis of (1), is a relation between
charge (boson) degrees of freedom and spin (fermion) ones.
A coupling between these two classes of excitations is taken



into account in’% in the simplest way by applying the mean-

field approximation. This approach was elaborated in’/%7/ by
using a mixed boson-fermion (slave boson) technique/sg/ . Howe-
ver, in our opinion, the approx1mat10ns employed in?3.6,7/
ignore effects which may arise due to the kinematic interac-
tion. To avoid the difficulty just pointed out and to keep
possible kinematic effects we choose an equivalent represen-—
tation for the Hamiltonian (1) by using Hubbard operators’10/
(024 t 00 oo
0o ) Xy =Xy , X4

o0
X; =6 =i (1=n;_4),

£
Xi =Claci_a,etc.

Then we have

Hay I x‘i’°x‘}°+LJ 2 &7 -x0 X)) -3 %7, (@)
<P, o 2 ddp,o io

wh re p is the chemical potential and 0=-0. The operators

Xi (X7 ) correspond to creation (annihilation) of electrons

in the lower Hubbard subband. Concerning the nature of commu-
tation relations it should be noted that XUO X00 bahave like
fermion operators; while X99" like boson ones.

Now to take acoount of pairing, let us introduce two-com-—
ponent Nambu operators

X o= (e ) X = (X ,x%) (3)

and define two-~time (anticommutator) matrix Green function

G (t-t") = «X] (t)IX (t)>> =

(4)

<<X‘:"(t) I;(?a t")>> <<xi°°(t) lx?"_ ") >

+00 + +00 o
<< X?a(t) | X(}a (t)>> <<X(§a (t) IX?O(t’) >>

with normal diagonal matrix elements and anomalous nondiago-
nal ones. The Fourier transform of it is given by

o p ™ fw (t—1
Gl G-t = == [da G (@™ | (5)

2r _o

To obtain a quasiparticle spectrum of the system, we em-—
ploy the method of the irreducible Green functions develo-

ped in’ ey . According to thls method the equation of mo-
tion for a dynamlcal variable XY () is written as a sum of a
regular linear in X9 () part due to time averaged forces and
an irregular part % (0 due to an inelastic quasiparticle
scattering

d
L ——x{(® =[X{ (), H] . KXy ) +2] (). (6)

Here the irreducible part 21(0 of the operator X; (D is defi-
ned as an orthogonal one to the linear term EAigX(p_’(t) by the
equation

g + 0
<dZy,Xg b =0. (7

Simultaneously this equation determines the coefficients A% 5
as it will be shown below (see eq.(10)).

After the Fourier transformation (5) we obtain the follow-
ing equation for the Green function
+ O
|Xj >> (8)

+ O
G‘i’j(m) = <!Xi°. Xy b+ %Afﬂ Ga () + « Z'Z

To derlv%yan equation for the irreducible Green function
«<Z (0|§10 )>> entering into (8), we differentiate it
w1th respect to the second time t’

d

+
~i—= <«<Z{ () ,)E';(t’)» =% K‘j’g < Z{ (1 ‘;(é'(t’)» 3 <<Zf(t)|zaj(t’)>>,
dt” ?

(9)

where we have used eqs.(6) and (7). As it is easy to check

that the irreducible Green functlon <<Z ]& >3 is proporti-

onal to the scattering matrix <<Zi Z >> This matrix defines
all the inelastic scattering processes of quasiparticles and
is proportional to the second and higher order int and J
interaction terms.

In the present paper we derive a renormalized quasipartic-
le spectrum only to the lowest order in interactions, keep-
ing in (6) an (8) the linear terms, and ignore the finite
life-time effects described by the irreducible Green functi-
ons (9). This approximation can be called the generalized
Hartree-Fock—-Bogolubov approximation allowing to take into



account effects of superconducting pairing. Sometimes it is
also called the moment-conserving approximation since in
this approach the first two moments of the spectral density

: 57 718,14/
function <lX?(Q A X?(t)i> are conserved

Now to calculate the Green function in this lowest order
approximation, we should determine the coefficients K%;by
means of (7). Since according to (6) Z",=[X‘17.H] - LAY Xf,
one gets from (7) the following equations

o o A +0 g +0
%‘.Aigdkg.xl}>=<1[Xl,H],in>. (10)

Remembering that the coefficients Aqg are (2x2) matrices with
components (Afy )qB and using the commutation relatioms for
the Hubbard operators one may express from (10) the compo-
nents (Afy ) o8 through correlation functions as

oo __ 00

A 3y = —— it B <x°i°x%”>+.1%(<xgx‘ > -
<d71> £ty -
__<X(em Q?>) +u<xoia>l,
8%)gy = ——1t(<xT7X3 +<a7Q] >) - 1 <x(°x 7 >4,
<Q, >
! : i2
P3) K23
o 1 00,00 00 , 0o
(A )1g = —==1t £ <X, XEU-Xi Xy > iz
<Q‘i’>2(1)
1 0000 00,00
(A% 1g= —=—T<X{ Xj° - X{ Xy >, (14)
<Q1>
1t o= (A% ey, ==(B%)F . (15)
(Alf )21‘ (Ay );2‘ (Am)ez (Asf )u
Here QT:EX20+ X?o; the summation 2 runs over [ sites

e
nearest to the 1 site; each pair (1# ]) denotes nearest
neighbours too. Note that diagonal components (A?k)ll, (A?b)zg
are correlation functions of the normal type while nondiago-
nal ones are of the anomalous type corresponding to a singlet
pairing.

Further introducing quantities Q% and AE in the q -repre-

sentation as s
- > >
o o o ~ig(R{-R j)
Qa =(Ay )1 + JE\:D (Agy )1 e B (16)

~iq (R =R )
A =A% )gp + = (Af)pe o (17)

i)

one obtains from (8) under the assumptions made above the
matrix equation for G%(q, w)

o o o
w—ﬂg +u AE <Qy> 0
( - - ) c”(a.w>=< 5 ) (18)
(A(‘l’)* G)+Qq‘—u. 0 <Qi >

Finding solutions of (18), we obtain both normal and anomalo-
us Green functions, respectively

+ w+ Q3 -y
«x%1x% %, _«@%s —_ 9 " (19)
q,w i o . ;
m2_(E_.)2
q
= 0.) *
+ 0o +&7 o (A-&)
<< X | X >> =_<Q1> S (20)
q,w wz_(Eg)g
q
where the quasiparticle spectrum IE% is given by
o 2 o 2 o 2
(E") =(Q> - A .
q ;W +lagl (21)

By mea?s of (13)-(15) and (17) we obtain in the usual way the
following self-consistent equation for the gap A% in the
spectrum 4

o a
A E>
g 2 k k
As = =3 ——[typ +Iy> »lth(——) . (22)
q N - o, k k+q
k iﬂk . 2T
where Yy :1?*(2 sxpﬁka). The equation (22) includes both
a (=n.n.

contributions ~t! due to the kinematic interaction and ~J to
the exchange one.

Let us for a moment neglect Epe linear int contribution
and assume in particular that A>=4Ay - Then taking into ac-
count the equality following from a symmetry of the Brillouin



2
%Noou. B g
2 —ecoskath(-——)= = 3 —th— (23)
x BY eT 2 § EZ T

2 g
SR -
1= = — th(—

which coincides with that of paper/a/.

3. APPROXIMATE CALCULATION OF THE SPECTRUM
OF A NORMAL STATE

To calculate self-consistently the spectrum (21), one
needs to estimate, besides the gap A%, the normal state spect-
rum Q% in (21). According to (11), (?2), and (16) the value
of 0% is determined by normal correlatlon functions of two
types: first, the function <X g > qpntalnlng fermlon -like
operators and, second, the set of <x97 XE >, <Q7 ()g> etc.
with boson-like ones. The former may be calculated by means
of Green function given by (19) while to estimate the boson-
like correlation functlons we use a decoupling procedure of
the "Hubbard-I" type 10/,

x‘l"’(x§°+x‘§”)> ~ <Xf ><X%0 +x%">=£(1_%.),

(25)

<(X ?O

oo 00 oo 00 oo
X{ )Xy +Xy )> = <X "+ X ><XE+XE >_(1-—)
Moreover, because a possible ferro- or antiferromagnetic or-
dering in the system is not considered in this paper we as-
sume

XOGXCEU Des <S Se > 0. (26)

Finally we come to the following equation for(f’ and the che-
mical potential u

g,

qu_ E—»

Qa-?(l-——)tyq-—.?t a[1-.l_.m(
ES

N )] -nJyo. (27)

6

-1, (28)

where N = 2 <0y, > is the average occupation number.
o

Thus the quasiparticle spectrum (21) for the superconduct-
ing state is determined self-consistently by the set of equa-
tions (22), (27), and (28). It should be noted that the "Hub-
bard-I" type approximation was adopted in deducing equations
for the normal state spectrum (% and the chemical potentlal
g while the form of eq.(22) fog the superconducting gap Aa
was found without this decoupling procedure. We empha512e
also that handling with Hubbard operators up to now we have
trated the problem in terms of '"real'" electron excitations.

4. COMPARISON WITH MEAN-FIELD THEORIES’3'8:7/
Let us now compare our results (22), (27) and (28) derived

here for the '"real" electron spectrum with analogous expres-—
sions obtained in’/38:7 | To do this, we employ the slave bo-

son representation’8®’ which allows the mapping from Hubbard
operators to new fermion fia’fia and bosonb: ,bl operators
as

0o + oo’ + 00 +
X~ bt » X +rwrw,, Xl —.blb‘,etc.. (29)

with the completeness relation
biby + p Fiolio= 1 (30)

for each site i. Then the Hamiltonian (2) may be rewritten
in the form

H-t £ byvlti,t _J: I RS o SR o R, TS, oA
<ip .o 1Py tiotje + AP0 Ciolica lj-0lp io o H—glj-0o
(31)

s 315 to » 3 MThy + B 0y =13,
.o i o

where the constraints (30) are taken into account by means
of Lagrange multipliers A;.

Considering a purely fermion ("spinon") part of an excita-
tion spectrum for the Hamiltonian (31) one should first de-
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which coincides with that of paper/z/

3. APPROXIMATE CALCULATION OF THE SPECTRUM
OF A NORMAL STATE

To calculate self-consistently the spectrum (21), one
needs to estimate, besides the gap A%, the normal state spect-
rum Q% in (21). According to (11), (?2), and (16) the value
of 0% is determined by normal correlation functions of two
types: first, the function <Xi ¢ > containing fermion-like
operators and, second, the set of <X‘;’°X%a>, <Qang>, etc.,
with boson-like ones. The former may be calculated by means
of Green function given by (19) while to estimate the boson-
like correlation functions we use a decoupling procedure of
the "Hubbard-I" type/qm':

<X‘im (XEO+X‘EU)> = <X"1'J><X%0 +X%a> =8(1-8),
o 2(25)

: 0
XA = <X ex{T s xPaxfr-a-1)°

<(X?0
Moreover, because a possible ferro- or antiferromagnetic or-
dering in the system is not considered in this paper we as-
sume
00,00 t ¥
X Xy 5 <BLBT >0, (26)
j SE g4
Finally we come to the following equation for(Tz and the che-
mical potential u

Q% - u S
0% - 20 -Dityg —Bt% $ yzll- ;U—-m(—z-r‘l‘?)] - nly,. (27)

6

o ag
n 1 Q-b—u E—;

= o = I S Y. 28
e _szn o th(5e1 (28)
kK

where = 2 <ny; > is the average occupation number.
ag

Thus the quasiparticle spectrum (21) for the superconduct-
ing state is determined self-consistently by the set of equa-
tions (22), (27), and (28). It should be noted that the "Hub-
bard-I" type approximation was adopted in deducing equations
for the normal state spectrum (% and the chemical potential
# while the form of eq.(22) for the superconducting gap A%
was found without this decoupling procedure. We emphasize
also that handling with Hubbard operators up to now we have
trated the problem in terms of 'real' electron excitations.

4. COMPARISON WITH MEAN-FIELD THEORIES’3:6.7/

Let us now compare our results (22), (27) and (28) derived
here for the '"real" electron spectrum with analogous expres-—
sions obtained in’/38:7/ | To do this, we employ the slave bo-
son representation’$® which allows the mapping from Hubbard
operators to new fermion ffa, t and bosonbj , b, operators

io
as
0o + go’ + 00 +
Xi "bifio ,Xl "riarla" Xi ablbl,etc., (29)
with the completeness relation
b’ by +;zrfar“,=1 (30)

for each site i. Then the Hamiltonian (2) may be rewritten
in the form

+ ,+ + + + +
H-t & bibitiotyo +% O T £ olymc) -

<{p,o
(31

’

e T lh e+ & NOIby+ S0, =1),
o o o

where the constraints (30) are taken into account by means
of Lagrange multipliers A;.

Considering a purely fermion ('spinon") part of an excita-
tion spectrum for the Hamiltonian (31) one should first de-



. o
fine by analogy with (3) two-component fermion operators ¥, :

by fig fio
17 = ( + ) > W? = + (32)
y b fy o fio

and introduce a new Green function ?ﬁ(t—t’) as
o o to |
iﬂj (t-t") =<<¥y () [ ¥, (") > =

<<t () lr;a(t’) >> KM 11, > (33)

<] o @® lf;,(t’) >> <t , ® Hy_o (1) >>

As before we find a spectrum to the first order in interac-
tion by projecting the equation of motion for 3?-@-—t5
onto the original set of operators ¥f and neglecting the irre-
ducible Green functions which describe higher order scatter-
ing processes for new effective fermions. Then, after the
Fourier transform we get the equation analogous to (18):

o= Ao
w - fgw + i Aﬁ' ja(a’w) ) 1 0 3
(Eg)* a>+c% - 0 1 )
where
c§ = 2tyy <b b+j> -27 y_q.<f;‘a ty > =-0dvg, (35)
A3 =43 y3<tigty_g >, (36)
o= p=2 (37)

and we assumed also that the restriction (30) is satisfied
only in the average, therefore A, is independent of the si-
te i,

The solutions of (34) are

g —~
W+t €> — U
1, If;>>-am = —, (38)
& w05y
q
(A"
+ + 5 . SO (39)
S >, = Sra
w® —(E(—{)

with the quasiparticle spectrum

q 3 ~H

Finally, by means of (35)-(39) we obtain the following set of
self-consistent equations for e% 2 Aa and @ :

B i F +[73;. ™, (40)

o

g -3 E >
o _ +_J. 1 s s kv o1
e‘c_l, 2t(_1.<bibj> YQEN'%YQ[I =7 th( 2T)] nJ;O, (41)
P k
ES

1 2 k
1-7L1s,2mk), (a2)

N—i K 2T .

a ~ il 1 |
n=21i £01< -‘__f—‘i-th(—Eiﬂ. (43)
N no 2T '
k Ep

In principle, these are the same equations as deduced in/®&7/
to describe the fermion (spinon) excitation spectrum for
which according (42) the gap A% is of purely exchange origin
and does not include a kinematic contribution.

Thus we see that the method adopted here which is based
on the projection technique for the Green function is equi-
valent to the mean-field approximation used in’/267 | There-
fore, it is clear that the distinction of the quasiparticle
spectrum determined by (21), (22), (27), and (28) from that
of papers 38,7/ jg not due to approximations used for Green
functions but rather due to a different consideration of the
interaction between boson(bi.br) degrees of freedom and fer-
mion(fia, f*a) ones. The result (40)-(43) and analogous ones
derived in/878,7/ follow from a somewhat independent conside-
ration of these two classes of excitations that causes the
purely fermionic character of the Green function (33). While
treating the problem in terms of Hubbard operators by means
of the Green function (4) that describe the real electrons
in' the lower Hubbard subband we avoid any decoupling of fer-
mion and boson degrees of freedom. As a result, a kinematic-
type interaction well-known in the spin-wave theory (see
e.g.Dyson/18/) manifests itself in the gap equation (22).
Being proportional to t, it gives the main contribution in
the case of strong repulsion U >> t. Therefore, one can in
this case consider the limit J +»0 in equations (22), (27),
and (28) which bring about the result of ’#5/ for the transi-



tion temperature and other physical quantities. A detailed
analysis and numerical solutions of equations (22), (27) ,and
(28) will be considered elsewhere.

The authors are greatly indebted to Academician N.N.Bolo-

lubov for helpful discussions.
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[lnakuga H.M., WMwanxait B.K., Craciox H.B.
O ponM KHMHeMaTHYeCKOro U OBMEeHHOTO
B3aUMOJOEHCTBUN B CBepPXINPOBOLsNEM CliapHBAaHHH
3JIeKTPOHOB B Mopgenu Xab66apmna

Ha ochoBe sddexkTHBHOro o6MEHHOI'O I'aMWJIb TOHHAHa paccMOT-—
peHa cHcTeMa 3JIeKTPOHOB B HHWKHeH Xab66apdOoBCKOH MNOO30HE
IpH CHUIIBbHOM BHYTPHATOMHOM OTTanKMBaHuud U>>t . C moMombio
byHknu# I'puHa, onpeneneHHbIX Ha onepatopax Xab66appma,MeTo—
OOM MNpPOEeKTHDPOBAHUA TOJIydeH CIIeKTD Bo30yXOeHHH C yueToM
CBepPXIpOBOAAmMEro crnapUBaHHsa. [lokazaHo, 4TO Haubollee BaxHbiH]
BKJlag B yYpaBHeHHe MOl WMeJiM onpegenseTcsa KHHeMaTHYeCKHM ST
HeMHbM 1o ¢ B3auMoOeHCTBHeM, a He o6MeHHbM C J ~ tz/U,
KakK IpeajloxeHo AHOepCcOHOM U Op.
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A system of electrons with strong intraatomic repul-
sion U>>t in the lower Hubbard subband is considered on
the basis of the effective exchange Hamiltonian. An exci-
tation spectrum allowing for the superconducting pairing
is obtained by employing the projection technique for the
Green function in terms of Hubbard operators. It is shown
that the most important contribution to the gap equation
comes from the kinematic interaction being linear in t
and not from the exchange one with J~t2/U as considered
by Anderson et al.
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