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1. Introduction

The discovery of optical bistability in semiconductors such as
GaAs Vv and InSh /2 with its multiplicity of applications to all-
~optical signal processing systems for optical communications and
optical computing stimulated a great deal of theoretical and experiw
mental activity in the late few years (see /3-4/). Nonlinear optical
devices such as bistable switches 1-2 s logic gates 5-6 s etc,,
have been already demonstrated in a plane wave context, Planar opti-
cal waveguide with their inherent confinement of the light in one
dimension of the order of wavelength of light provides the optimum
geometiry of performing efficlent nonlinear interaction in general
and nonlinear optical signal processing in particular.

The key concept in which all nonlinear guided wave optical devi-
ces are based is that the local intensity of the guided wave controls
the propagation wavevector, i.e., the field profile and propagation
constant can become powenr- dependent when one or more of the layered
media is characterized by an intensity-dependent refractive index.
Two categories of integrated all-optical devices can be anticipated
on the basis of these nonlinear optical phenomena.

The first class of optical devices are those in which the non-
linear change in the refractive index is small in comparison to the
refractive ilndex difference between the gulding media. In this case
the dependence of the propagation wavevector on the power flow can
be evaluated from the coupled mode theory /1-9/ and the guided wave
field distribution (i.e., field profile) can be approximated by 1li=-
near guided modee., Devices which have been proposed and operate in
this regime include the nonlinear distributed couplers such as gra-
tings and prisms /10-11/ and the nonlinear coherent coupler /12'13/.

The second category of nonlinear optical devices are those in
which the optically induced refractive index-change is comparable
with or larger than the index differences between the guiding media,
In this case both propagation wavevector and field distribution are
powsr-dependent and this dependence can be evaluated from a more
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exact approach in which the nonlinear wave equation is solved sub-
Jject to continuity of tangential electric and magnetic fielda across
all the interfaces. Devices which have been proposed in this regime
of operation include the nonlinear guided wave optical linitera;
lower power threshold devices and opticel switching devices
Analytical solutions for the optical fields in Kerr-law media were
found by Litvak and Mironov ,» Miyasi and Nishida n 6/, Kaplan

17/ and have been seminal to much of the progress in the field of
nonlinear guided waves.

The unique features of nonlinear guided waves in planar layered
structures displaying both self-focusing and self-defocusing Kerr-
-type nonlinearities have been gtudied intensively in the last
years /18- 39/

Langbein, Lederer and Ponath /40/ have developed a formalism
that is capable of dealing with arbitrary lossless optical nonlig:;;i-
ties (non-Kerr-like nonlinearities) and authors of the works
have applied this technique which does not require analytical field
solutions to the nonlinear wave equation in order to evaluate the
power dependence of the propagation wavevector to a variety of
planar layered structures.

The question of stability or instability to prppagation of va-
rious TEm nonlinear stationary wave solution has been studied
by numerical techniques 3-50/,

Wright, Stegeman, Seaton and Moloney /51/ gtudied Gaussian beam
excitation of TE, nonlinear guided waves using the beam propagation
method., These authors have shown that for a thin dielectric film
bounded by two self-focusing media, three different field distribu-
tions corresponding to the same guided wave flux level can be excited
independently by suitable Gauesian input beams. The problem of mul=-
tisoliton emission from & nonlinear waveguide was considered by
Wright, Stegeman, Seaton, Moloney and Boardman 2/. These authors
have demonstrated numerically that extermal excitation of nonlinear
waveguide where the film and substrate are linear but the cladding
displaye & nonlinear refractive index {optical Kerr effect) can
produce sequential threshold behaviour via multisoliton emission
from the waveguide. This behaviour is similar to that predicted to
occur at a nonlinear interface 3- 54/

The effects of linear absorption on the propagation of .FED
nonlinear guided waves in an optical waveguide with a nonlinear
Kerr-law claddins have also bean investigated using the beam propa-
gation method

Only few experiments dealing with nonlinear guided waves have
been reported to date 56-57 « These authors used a single nonlinear
self-focusing medium (liquid crystal MBBA or CSz) bounding a depo-
sited dielectric film, These experiments can be interpreted in terms
of nonlinear guided waves with flux dependent field distributions.

The aim of the article is not to give a review of all the pa~
pers on nonlinear guided waves, but to select a few topicas which
illustrate in the simplest way the main physical principles of non-
linear guided waves in layered planar structures and related pheno-
mena. Our selection is dictated by the general criterium of maximum
simplicity and for all the points which are not discussed in this
paper we advise the reader to consult the recent review 58/, m
the present review we analyze in deteil nonlinear TE-polarigzed waves
guided by layered planar structures for which the exact stationary
solutions of nonlinear wave equation are available.

The paper is organized as follows. Section 2 is devoted to
the study of electromagnetic waves guided by nonlinear interfaoces.
There we discuss the basic concepts and the method used to analyze
nonlinear guided wave phenomena. The nonlinear TE-polarized waves
guided by thin dielectric films are studied in detail in Section 3.
In Section 4 we show that nonlinear TE-polarized waves can also be
guided by very thin metal films (nonlinear surface plasmon polari-
tons). In the last sectinn we briefly present our conclusions.

2. Nonlinear Electromagnetic Waves Guided by a Single Interface
2.1. Intensity~dependent refractive index and dielectric tensor

In the last few years new developments in nonlinear optics have
been centered on third-order nonlinear guided-wave interactionws
which involve the mixing of three optical fields. The nonlinear po-
larization vector of an optically nonlinear medium is

PM(w) = &, dee E: (w)E(w) Eple (2.1)
where i= Xy, 2, X(s) is the third-order susceptibility and E
is the total electric field. Note that it is necessary to take the
conjugate of one of the mixing optical fields so that the signal
output is at the same frequency as the signal input, a prime requi-
site for all optical signal processeing systems operating at a sin-
gle frequency W

If the optical field associated with a plane or a guided wave
is large enough, it can change the refractive index of the medium.



For a plane wave in an isotropic material the Pourier component of
the polarization field at the frequency w 1is:

Polwi =g, [ x5 +3 Xeo 1E; () *] Efw) 22
n

where 1.iL= Hg— 1 and b, 1s the linear part of the refractive
index. Expressing | E (w)l? in terms of the local intensity I =
Yo <& hg lEg(uﬂ|2 , the intensity-dependent refractive index can
be expressed in the form:

: (3)
3 X
h=mne+hyr L , n . = C&oniﬂ' (2.3)
where h>0 for self-focusing Kerr-like nonlinearities and hZI<(7
for self-defocusing Kerr-like nonlinearities.
Por guided waves propagating along the X -axis with Z normal
to the surfaces, the electric field is written as:

B, = ‘}_El(z)exP[L(pkox—w‘t)]»f c.c., (24

where p is the effective guided wave index and K,= uJ/’C is
the vacuum wave vector. The expression for the nonlinear polariza-
tion vector of an isotropic medium is (see,e.g. 79,594
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Por TE-polarized waves propagating along the X -axis the
electric and magnetic fields are E=(0,Ey,, O) and H=(H,,0H
iz 2
so that the only nonzero component of the nonlinear polarization vec-

tor is

RV () =cedning, |E@IPE, (=) .6

In this case only the E,y component of the nonlinear dielect-
' ric tensor enters into Maxwell's equations and this will be written
as ‘ 2 l_ 2 .

t‘/)’ = MO T d t’)'l ) ol = C_E.oho hZI - (207)

The Maxwell's equations are:

dE, _ . =
d—Zy S mlepmg HK y FK° EV = w/‘"’HE (2.8)
ﬂ_& - LFKU HZ = iwz’oé’)ﬂ/ Ey (209)

where £, is given by eq. (2.7).

Equations (2.8) and (2.9) give the following nonlinear wave
equation for the amplitude function E&CZ) :
2
d*Ey
d 2%
For real eleotric fields, eq. (2.10) has an analytical solution

/15-17/. This exact solution will be analyzed in detail in the next
section,

- Kf(ﬁ‘z**'f)ﬂ':; + K /EJI‘EJ = 0. (2.10)

2,2, Tranaverse electric polarized nonlinear
surface-guided waves

TE-polarized electromagnetic waves cannot be guided by the
interface between two dielectric media whose refractive indices
do not depend on the intensity. However, when at least one of the
two dieleotric media exhibits a power-dependent refractive index,

a surface-guided wave can exist /15,18,20 60/. In this case the
self-focusing optical nonlinearity is not regarded as being small
and gives rise to new types of waves that have nc counterpert in
the linear cptics of surface and guided waves (a certain critical
power level must be reached before a nonlinear surface guided wave
and hence a melf-focused channel is created).

We consider a nonlinear interface between an optically linear
semi-infinite dielectric medium (called the substrate) with dielect-
ric copstant £, in the region I (2<0O) and a semi-infinite Kerr-
-law nonlinear medium (called the cladding) with the dielectric func-
tion & =&, +ol ] E? in the region 1I (2>0).

The TE-polarized wave propagates along the R -axis with the
Z -axis normal te the surfaces. The ocnly nonvanighing component of
the electric field is written as

E,(xzt) = },:- Ey(X,ziexp[L(pKox—wt)]+c.c. , (2.11)

where K=PK° is the guided wave wavevector, Ko ie the vacuum
wavevector and is the effective index.

The nonlinear Maxwell's equations for the X ~-independent guided
wave fields (etationary field distribution) are:

J*el z'z.EI

d=z2 “Ke9sbky=0 , Z <O (2.12)
ZEEE i s
:,L;zy - kSq% Ey-*"‘ckoz(Ey—) =0, z >0 (2.13)

where g = ﬁz'e-s > qf= B-Ec ) &= E N Ny -



Por waves guided by a single interface that are characterized
by E (z)> 0 ag 12| > o= , 1.e., the fields decay exponentially
away from the boundary: the solutions of egqs. (2.12) and {2.13) are
well-known /15117, 61/

I
Ey (Z_) = EO QXP(KOQSZ) ’ z <O (2.14)
— i. -)
L 2 2
y (Z) ( ‘) qC{CL' [KOCLC(Z—ZC )J},Z)O.(ZAS)
A L
2 Y2 2_g \/2 0 s

where q5=(f5 ~£ ), Ci,c:(ﬁ ~€.)" and .7 O (self-focusing
nonlinearity).

Por TE-polarized waves both the field E and its derivative
JErﬁiZ ig continuous across the interface Z-= C between nonlinear
and linear media. This leads directly to the eigenvalue equation:

e =&, + .jZ,_OLC EDA (2.16)
where £, is the surface field. We see from eq.(2.16) that the
field amplitude ies fixed at the boundary because &, and Et,are cons-
tants and if the limit o{.-> O is taken in eq. (2.16), then E s+,
i.e., TE-polarized electromagnetic waves do not exist in the linear
limit for a single interface.

The guided wave power in watts per meter of wavefront is given
in terms of the Poynting vector as:

. B J E

pz%_{pRe(EXH C/“oﬂ,o

Por Kerr-law media this expression can be evaluated analytically
/18/

(2.17)

(2.18)

P =R p L5507+ 2(3.090]

where o = (é”/ﬁv)vz ( 2‘*CK°)—1'

The [ -power formula (2.18) can be viewed as the nonlinear
dispersion equation u)=u:(K,p) , i.e., the frequency (uJ) wave
number ( K} relationship for a given power level.

It is possible to evaluate the nonlinear guided wave attenua-
tion coefficient approximately from the imaginary component of the
dielectric constant by assuming that the field distribution obtained

in the lossless case will still be valid if the loss per wavelength
1s small /60:62/63/,
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A new formalism that is capable of dealing with arbitrary local
lossleess nonlinearities have been developed by langbein, Lederer
and Ponath /40/. This technique does not require analytical field
solutions to the nonlinear wave equation in order to evaluate the
flux dependence of the propagation wavevector.

As is well known the form of the dielectric function is de-
termined by the physical processes which lead to the nonlinearity.
The Kerr nonlinaarity which is quadratic in the local optical fields
g% -o |E(? arises from electronic nonlinearities, thermal effects,

etc. The dependence of the dielectric function on the electric
field is not quadratic in semiconductor materials where the nonli-
nearities are due to absorption leading to the creation of excitons,
plaemons,atc. In this case the optical nonlinearity is of the form
eV o lEl" , where 1< r<2 . Purthermore, in realistic ma-
terials. it is not possible to optically change the refractive index
indefinitely and saturation effect sets in. The values of the satu-
rated change ANy, of the refractive index varies from 1071 to 1074,
Por nonlinear interface the saturation effect is important because
the interesting flux-dependent surface-guided wave properties occur
when the optically induced change in the refractive index Ah gy is
comparable to or larger than the refractive index difference ng-ne
which exists at low powers between the substrate and the cladding.

We model the dielectric function of the nonlinear self-focu-
sing (. >O) cladding as in /41'42'60'68/:

o E
E —i,y—éze—ﬁ *E5Qf[i’pxp(- (S:f)] (2.19)
E
S P 4
e (1+ ?&;Ef) (2.20)
sat
E’»\x=€>’7= Epz = Er_"'o(c,v‘ Ey"" e A (2.21)

Note that for both dielectric temsors (2.19) and (2.20) the
meximum change in the dielectric function is £,+ , that is, for
1Bt oo , £>£ +2cat - For small fields g 4o EZ , i.e.,
the usual Kerr-law medium case. The dielectric tensors (2.19),
(2.20) and (2.21) can be writien in the general form as:

Exx=EpyTErz=E + EN(Ey (2.22)

The nonlinear wave equation for the real quantity (in the ab-
sence of loss) Ey(2) ig;



d2Ey

d z2
For surface-guided waves characterized by E)‘(Z) >0 a8 [Z|>o°
the first integral of eq. (2.23) can be written ag:

(le_iy)zzq’ (Ey,p) = Ko “[q2E; - J EL”L(E d(E‘)J (2.24)

The continuity of E.y and JE]AZ acrogs the nonlinear boundary
Z=0 between the linear substrate and the nonlinear cladding leads
to the dispersion relation

K2 [ec+eM (&) -p2]E, = O (2.23)

Ye+qc =0 (2.25)
9. .= (—i)M° (p°- EcNL)VZ (2.26)
EL
< NL 2
A T (Ey )dE)) . (2.27)

B o

where Ec is the surface field, éuw_ is an averaged dielectric
function of the nonlinear medium, Mc=;{ if a self-focused peak oc-~
curs in the nonlinear cladding and M, = 0 if there is no field ma-
ximum in the nonlinear medium.
In our case of a self-focusing nonlinear cladding (¢ >O)
a self-focused field maximum occurs in that medium (MC;L) and the
dispersion relation (eigenvalue equation) (2.25) becomes:
£
b=ttt J et ef) d () (2.28)
from which the surface field Eo can be determined. For a Kerr-law
nonlinear cladding the eigenvalue equation (2.28) reduces to eq.
(2.16). Prom eq. (2.28) we obtain the importent result that TE-pola-
rized surface guided waves can be supported by a single nonlinear
interface if dnd only if & >&c.
The guided wave power flow parallel to the interface is
P=P,+Pc . where P. nas the expression /40/,

£
p-_b "y dEy (i)""c = EydEy ] (2.29)
c T . ;a
/‘o 4 ¢ci/l
Here Mc‘-i (there is a field maximum in the nonlinear cladding),
P2 dE,/dz and E, is the field maximum evaluated from

cpc (Ey\ =0 o+ Pinally we obtain the following expression for the
total power flow [P= P, +F_

P = 4P, p%s (2.30)

dx ¢ T odx
=iPe] jo“ T + - [ [%)]}21‘ (2.31)

where Mc = 1.
Here we have

2
v Esa .
= Bt Eat + ;f[iwxp("'&m)] (2.32)
2
) = piete - Eoap + 2t g, (44 X (2.33)
%,
o) = pt-gc (h Hx (2.34)

which correspond to the dielectric tensors (2.19), (2.20) and (2.21),
respectively; (= o(c!:c is obtained from the eigenvalue equation

 (2.28) and & 4s determined from (&) =0.

For Kerr-law media we have W(x)= p<=~&c - Ly and the in-

o
tegrals in (2.31) can be evaluated analytically:
¥.
R - zm [(p*-20™+ (- 0% T (2.35)
where U= ES=2(5 &) 1s obtained from the eigenvalue equation

(2.16),
In the case of a saturable nonlinear cladding characterized by
the dielectric functions (2.19) and (2.20) there is a maximum in the

change Af_ of the dielectric constant which can be induced optical-~
ly, i.e., €2 & +& ¢t for large fields (IE| >o°) . Thus the ef-
fective index approaches its limiting value of (£, +&ga¢) Z
asymptotically with increasing power. A necessary condition for the
existence of solution of the eigenvalue (2.28) in the unknown E,,
is ¢ <¢,. t&cat o Prom the condition that CP(Eﬁ =0 we thus obtain
that <&, +8 44 » therefore the permitted p -region for non-
linear surface-guided wave is &.2 < R < (€. + £, V%2,
For a power-law cladding ( ~ # 2) we have:

]: (re2) (€5 -£c) ] Shs (2.36)
2

u

"

u

[(mz)é?f-mj 2/ 2.37)



- Y

and the power flow Ps. P are given by eq. (2.30) apd (2.31)
with ©, replaced by FPo = (f,,,//u.a)/‘2 (2%, Lot )%
Tfhe numerical results for TE-polarized surface guided waves are

ghown in Fig. 1 for Kerr-law claddings ( v =2), powerlow claddings
(~ #2) and saturable claddings.
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e 1. The dependence of the effective index P on the power flow
- fo: 'J.‘Epwaves guided by the interface between a self-focu-

-9 2

ddi ( N =1,55, N 10”7 m®/W) and a linear
:t%stgi:e (n&s =1.56). The dashed and dotted lines corres-
pond to the diele%r}c functions (2.19) and (2.20), res-
pectively (after /69/.)

The dependence of the power flux P on the effective index P was
evaluated for a nonlinear cladding oharacterized by h =1.55, Ny =
10~2 /W (1iquid crystal MBBA) at A =0.515 um (argon ion laeser)
in contact with a linear substrate with " =1.56. The values of the
nonlinear coefficients ol—c’r were chosen to produce equal miz;imum V{a;
lues of the power fluxi ol  4=4.7 X 10”7 n/V, o ,=1.75 x 10 (m/v)
o 52,3 x 10714 (@/¥)2 (aee 769/).

We see from Pig. 1 that the minimum power required for the ex-
oitation of nonlinear TE-polarized surface guided waves increases
with decreasing &, .
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2.3. Stability to propagation of nonlinear single-interface
guided waves

The reflection of a plane wave from an interface between a 1li-
near medium and a nonlinear medium was apparently studied first in
/70’17/. Following this pioneering works there have been several
theoretiocal /53,54,71/ and experimental /12/ studies of the interac-
tion of Gaussian light beams with a nonlinear interface. Numerical
techniques have been used by Akhmediev, Korneev and Kuzmenko /43/
to study the excitation of nonlinear surface waves by Gaussian light
beams. The question of stability to propagation of nonlinear surface-
-guided waves is crucial to the problem of the excitation of these
waves by external sources. It was found in that both stable and
unstable nonlinear surface waveas can be excited by Gaussian light
beams incident on the nonlinear interface at grazing angles.

Consider the nonlinear interface bgtween a linear substrate
with dielectric constant £ in the region I ( =< 0) and a non-
linear Kerr-law cladding with dielectric function & = &, +o{ |E 1%
in the region II (Z > 0). The TE~-polarized wave of frequency ¢’/ pro-
pagates along the X axis and the only nonvanishing component of the
electric field Ey is homogeneous in v direction ( = being the
transverse coordinate). The parabolic equation for the slowly vary-
ing amplitude A (x,2)=ol Y2 Ey(x,2)  is then

<
Csip B = Th et A DR IAA. Guag)
2 2

Here O(2)=0 for Z < O and ©(2) =1 for 2> 0, X%’f):,a -Ns  for

Z< 0 and XL(z)z pz—ﬂf for 2> 0. Note tha.t the usual stationary so-
lution of eq. (2.38), i.e., A(0Z] = 4, (2) can be obtained analyti-
cally (see eqe. (2.14) and (2.15)).

Equation (2.38) has two integrals of motion:

T(p) = wo [ 14152z = (R R)*P(B) (2.39)

HB) = ko | [/g—é/i KX hz)IA 1 telo)lAl iz (2.40)

and for arbitrary solutions of eq. (2.38) we thus have ‘Jr/dx =0
anddH/clx =0, Note that eq. (2.38) is a mixed-type linear/monlinear
Schrodinger-like equation with coefficients which depend on the trans-
verase coordinate Z . The absence of translational symmetry along

the Z axis means that we cannot use the elegant apparatus of the
inverse scattering method /73,74/ to solve analytically the problem.



To avoid numerical stability question we selected for the dif-
ference approximation of eq. (2.38) the Crank-Nicolson schema/75’76/.
We have choosed the grid sizes equal in magnitude K,AX = K,AZ =0.4.
The corresponding system of nonlinear equations was solved by Newton-
~Picard method (see 75/). We have found that two iterations for the
Newton-Picard method are enough in practice. This difference scheme
makes it possible to comserve the integrals of motion (2.39) and
(2.40) on the grid. The copservation of the toial power flow was
always better than 99%. Por a Kerr-law nonlinear cladding and for
B =1.5607 on the negative sloped branch (dI/4p<0)of the nonlinear
dispersion curve (see Fig. 1) the nonlineer stationary wave is un-~
stable on propagation. In this case the nonlinear surface-guided
wave is ejected into the linear substrate ag the result of the pro-~
pagation (see Pig. 2).
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Pig. 2. Evolution of nonlinear

Pig. 3. The same as in Fig,. 2,
surface wave field distri-

but for p =1.574.
bution with propagation_digtance.

Here nec =1.55, hac =10~9 me/W,

v, =1,56 and the initial field

pattern A,(z) corresponds to

F -1056°7a

The evolution of the nonlinear surface wave field distribution
with propagation distanee for B 21,574 on the positively sloped
branch of the nonlinear dispersion curve JJ%%53’O) is shown in
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Fig. 3. For this value of the propagation constant the nonlinear
atationary wave A,(Z) is stable on propagation over at leaat 300
wavelengths. To conclude thie section we point out that for the re-
lated problem of self-focusing of plane waves in infinite media
Kolokolov /11/ has shown that the solutions are stable for A;Z05>O.
The numerical results presented here for TE-polarized waves guided
by a nonlinear interface yield the same stability criterion,

i.e., djk§#>0.

2.4, Transverse magnetic polarized guided
waves at a nonlinear interface

Surface polaritons are electromagnetic waves guided by a single
interface between two semi-infinite media, or by a single or multiple
films bounded by two semi-infinite media (see /78‘79<L In sall cases
the electromagnetic fields decay with distance from the boundary
into the semi-infinite media in an exponential-like fashion, result-
ing in fields localiged near or at the surface. In the case of tran-
sverse magnetic (TM) polarization the magnetic vector is oriented
perpendicular to the plane of incidence, i.e., the plane defined by
the direction of propagation and the normal to the surface,

Consider one of the simplest case, namely that of electromagne-~
tic waves guided by a single interface between two semi-infinite 1i-
near media. The dielectric constants are &, and £ where the sub-
scripts ¢ and s refer to the cladding and the substrate. In the
linear case only TM-polarized surface polaritons can be supported by
a single interface and only if &.>0, €< 0 and &,.< |&¢| . The
effective index F: K/k, s where K is the propagation wavevector
and Ko, w/c 1is given by (see 79/):

= Es€c  _ _l&1&e (2.41)
& t& ('551 - &)

In the following we consider the effects of optical nonlineari-
ties on surface and guided electromagnetic waves in which these non-
linearities are not regarded as small and give rise to new types of
waves that in some cases have no counterpart in the linear optics of
surface and guided waves. Note that the propagation of nonlinear TM~
polarized surface waves at a plasma boundary waa apparently studied
first by Alanakysan /80/. For the TM-polarization and Kerr-like media
there were two approximations frequently used in the literature:

a) the uniaxial €xx({E;l4) approximation, in which the component of
the dielectric tensor,parallel to the surface, €xx depends on
the field component,parallel to the surface, E,;/19/ and b) the un-

13



iaxial éaz( {Ez[’-) approximation, in which the component of the di-
electric tensor, perpendicular to the purface, £:r depends on the
normal field oomponent £,

The dispersion relation of TM-polarized nonlinear surfaoe pola-
ritons guided by the interface between a linear dielectric and a
nonlinear Kerr-law dielectric medium in the uniaxial g, (/E,/°)

approximaticn: ‘
PP Exx TEx *dxx'Ex/z ‘

£.2 <€ (2.42)
was studied in detail in /19/. In this approximation, and in the case
€.>0 o £z>0 dispersion curves of TM-polarized nonline(a)r surface )
polaritons at a quartz-vacuum interface were plotted . Exact
dispersion relation of nonlinear TM-polarized waves at the boundary
between two semi-infinite nonlinear uniaxial media characterigzed by
diagonal dieleciric tensors of the type (2.42) has been derived by
Lomtev 2/ and Yu /27/. The influence of oscillations in the tran-~

sition layer on TM-polarigzed nonlinear suxface polariton specira has
been firat disoussed in /82/ in the case of uniaxial £,y (’Ex /‘Z}app-
roximation and subsequently in for the uniaxisl s, (IE5/*) ePP-
roximation:

Cux = Ex |

(2.43) |
Ezz = &g tolzz 'EEIL‘

FPor TM- waves in Kerr-law media and in the case of uniaxial
£ (1E.1?) approximation, the differentisl equation for F,(2)
field oomponent iss

2 K‘f’ éa( 3 _
j—z% - K3gPE, - ,_E‘Z;_JEX -0, (2.44)

where x:s,#,c , rafers to the subetrate, film and oladding, res-
pectively. This equation has analytical solutions /19/. Por example,
1f L. <O and o <O we have

265 \ 2 -4
£ (2)= Fj) {cL[kogs(zs—Z)]} , z<o  (2.45)

Ex(2) = (”z:’:’)%'{c‘-. [ko‘i¢<zc fZ)Jj-i . zZz>0. (2.48)
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If &£, 70 and o >0 then . ¢ch is replaced by sh. Note that, be-
cause the sign of the term proportional to oéa, in eq. (2.44) is
now negative, versus positive for the TE polarized case, the field
distributions differ between TE and TM-polarized &£.x (/Ex/*/ cases.

An alternative approach is to eliminate F,(Z) and E;(z)
from Maxwell's equations and to obtain a single equation for the
remaining field HY(ZJ. In the uniaxial ZZE(/EZ/?} approximation we
haves

dzHy 2.2 K02,§4¢Lr 3
daz ettt e Hy 2O (2.47)

This differential equation is not exactly solvable because of the
g; term in the denominator. We note that for most materials the
quantity A€ = loy Eng is smaller than 0,01 and in some exceptional
cases, €.g., InSb, it can reach O.1. The approximation £,z =&y in
the denominator of the third term in eq. (2.47) implies only a small
error in an already small term, In this limit the solutions for Hy(l)
now have exactly the same form as for the exactly solvable TE-case
with dy replaced by o, = B9 (CRESE fy)_lo(gf. Because of these gi-
milarities the uniaxial £&,(/f;°) approximation leads to similar
power dependent behaviour for both TE and TM-polarized guided waves,
TM-polarized electromagnetic waves guided by a single interface

were investigated in detail in 763/, Both &y (/E./%) and Eae (1E5IR)
approximations for TM-waves were analyzed and the guided wave wave-
vector and the attenuation coefficient versus guided wave power were
evaluated for a variety of material conditions. The nonlinear quided
wave attenuation coefficient was caloulated approximately from the
imaginary components of the dielectric constants Esr and E.7 .
Agsuming small losses it can be easily shown that

ﬁI :Q;Rp (CSTPS +é(1'/)c)1 (2.48)

where /5 7 and ,GR are the imaginary and the real part of the effec-
tive index A + Akhmediev /84/ has given a theory of nonlinear
surface TM-waves, but the analysis was restricted to isotropie non-

linear media in which the two electric field componente have equal
weight in the dielectric constant. Boardman, Maradudin, Stegeman,
Twardowski and Wright /85/ presented a numerical method for solving
Maxwell equations for TM waves at a nonlinear interface which is
applicable to arbitrary formes of dispersive nonlinearity. They did
this by transforming the infinite transverse plane into a finite in-
terval and making use of the asymptotic boundary conditioms.

15



In the following we derive exact dispersion relation of TM po~
larized guided waves at an interface between either a linear dielect-
ric or metal and a nonlinear Kerr-law dielectric 39/. This disper-
gion relation is a polynomial equation involving the boundary values
of the electric field components, the medium parameters and the qui-
ded wave effective index 5 . Note that surface electromagnetic waves
guided by the boundary between & nonlinear dielectric and a metal are
of particular interest since they correspond to the only type of
nonlinear single-interface wave that does not have a power threshold.

As is well known, TM-polarized waves exhibit two electric field
components, one parallel (Ex) to the wave vector and one perpen-
dicular ( Ez) to the surfaces. To define the effects of an intensity-
-dependent refractive index, it is necessary to first examine the
nonlinear polarization field. The electric field vector is

E(Rt) = 3[E, ()% + E,@ 2 Jexp[i (prox-ct)[rcc (2.49)

where £,(Z) and EQ(Z) are 72 out of phase with one another, i.e.,
[Ezl?= E and [E,/?=-F£° . The nonzero components of the nonli-
near polarigation vector are (Stegemaﬁgfx

PXNL(Z) =& (J(xx /Ex(z)/2+ Lxz /EZ(Z)/‘?')E!(Z) (2.50)

R (2) = 20 (ax | Ex(2)*+ Az | E(2)]%) Enl2)g 50

Thus for a Kerr-lew medium the components of the dielectric
tensor are

- I
5‘K=5K+o{xx/txlz+o(x3/t,—_l/ (2.52)

(fzz :6£+0(3x /E)(lz'f‘ O(z& /Ezlza (2.53)

where the values of the Kerr-type optical nonlinearities dé/ de-
pend on the particular nonlinear mechanism under consideration. For
electronic nonlinearities obtained from a power law expansion of the
polarization in terma of field productes we have o,y =z = 3Ky z™
=3p&,:(g;ﬁ4f whereas for electrostrictive nonlinearities ol = (=
2 Apg = gx = cg nén,r where h=#, + 7 1 s ¥ is the
linear part of the refractive index and #,r 18 the intensity-depen-
dent refractive index coefficient.

Starting from the Maxwell equations for TM polarized guided wa-
ves the electric field components £, (z) and £Ei(2)obsy
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E . :
G2 =i (fae - p2) Eg (2.54)
%‘(EZZEE) = ~ipKoExx Ex (2.55)
C&o
Hy =~ 5 &az Ea - (2.56)

The key point of our analysie ies that for guided TM waves, i.e.,
E0and d%z-’Oas Z->tgo , eq8, (2.54) and (2.55) have a first
integral which can be written as

— ~
1 (3{;}) + U(E« Ex) =0, (2.57)
where

2
V(. ) - 4 KEonER+ 4o (ptea) EX 4

2 4 4
+ 1 Ko‘zg(xg EZF - Zl‘ kf‘%xx (Ex fEZ)

2 x 2 (2.58)

as was first shown by Berkhoer and Zakharov /86/.

The solution of Maxwell equations (2.54) and (2.55) in the semi-
infinite linear substrate characterized by a dielectric constant €
(for a dielectric &> O, for a metal & <0 ) which occupies the
lower-half space Z<O can be written as:

Ex(2) = Eoexplkoys2) , 2 <O (2.59)

1, —
where ¢ = (p2-65)Al s Eox=Ex(0) ana ﬁl>55 for a dielectric.
Furthermore, in the nonlinear medium eq. (2.54) can be rearranged as:
_p dE
Eg Ko ((gag _ﬁZ) dz (2'60)

which gives
B, = LPE=z  JEx |
z . (Ez&—ﬁl) J (2.61)

—_
where Z)z is the ¥ component of the displacement veotor [a) N

Equation (2.61) also holds in the linear medium with & zz replaced
by &g . Prom standard electromagnetic theory Dz and E, must be
continuous across the interface Z=0O , Now we define Ebz = Eé/o)
and the value Enp of the =z component of the dielectric tensor at
the interface =z =0 which depends on the boundary fieldss

2 <
Enp = €z ~Azx Egox * Haz Eaz - (2.62)
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From the continuity of P, at the interface Z=O we obtain
the following relation between the boundary values of the fields:

Fox = {25 (&, daxEon + Aps Eor ) Eog - (2.63)
REs :
In the limit of weak fields eq. (2.63) reproduces the usual relation
between the boundary values of the fields., Purthermore by using the
firet integral (2.57) we finally obtain the following eigenvalue equa-
tion for /5 /39/3

4 A 2/ 4 4
ﬁ4[2 554&he - Sxeszéfe — £ E - Zo(zonz(zs 45,,5)— (2.64)
4
. z 2 2
- ol xg tui 5526»:2] -+ /_0,2[6‘ te Ene + A zz Eaz Es€ne

2 3 _2 4o < / 2 2.4 -
* oyz Eogs'gs Ene — &5 Eﬁf_) - 20(23 Eoz &s Ene 0.

Note that the particular case of an isotropic nonlinear clad-
ding, i.e., €x=82 = €c , o, ALz = Axz =olax =% was studied in
detail by Akhmediew /84/. In this case the eigenvalue equation for

F has a simpler form:

2 i
2 &stue (255'6,,[4}_(_)___
f c2(38,0-8) - ES (suet o)

’ (2.65)

where Ene = & + odc (Ege-F2)  1a the value of the dielectric
constant of the nonlinear Kerr-lew cladding at the interface = =0.
Given the material parameters, equatioms (2.63) and (2.64) al-
low the boundary values of the electric field components inside the
nonlinear medium to be determined as & function of A (&t least
numerically). Equations (2.54) and (2.55) can then be integrated
using the boundary values to give the field distribution in the non-
linear medium, The field distribution in the linear medium is eimple
exponential (see eq. (2.59)). Once the fields are obtained, the gui- !
ded wave flux can be caloulated by integrating the time-averaged ‘
Poynting vector over the depth X . Finally we have P = P+ »
where

" L2
ps = _&ne Foz (2.66)
4/“0(")ﬁ1555
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£l

p. =_ Ko _/ &,y (2) E:(g)o/g. (2.67)
2/40 w,g 7 £Z
A first survey of the field patterns and the permitted p -
regions can be obtained from the inspection of the so-~called "phase
trajectories" of the nonlinear surface waves (asee /‘0'84/). Let us
consider various particular case for an isotropic nonlinear cladding
with &, =£&; = & and oL, = odpz =Ayxz T Kax = L .
8) £.>0 , A >0 apmd £5<0

a) »
. “«n n Fig. 4. Dependence of the dimension-

. leas power flow P/P,of the
" surface wave on the effective index p
- , . for four different cases. For the me-
‘ . dium with positive dielectric constant

( & or €5 ) we choose the value ¢ =

=2.,25. The values of the dielectrio

e’ o
| i constant of the adjoining medium are
\ -t an indicated above the curves (after /84/).
o N -
=\ \eard \\
KRR

W'-r RO T T Y ) 22 W 1 A

S

The depsndence of the dimension-~
s ) less power flow P/F, on the effective
index F> for ¢ = 2,25 and several
values of £5 1s shown in Fig. 4a. It can be seen that by increasing
the effective index f s the guided wave power increases up to some
limiting value and then decreases to zero. This is related to the
fact that, in a medium with negative dielsctric constant, the power
flow and the wavevectior have opposite directions and in some region
of p values the power flow ia decreasing with increasing effective
index /5 « We note that the magnetic field for this solution attains
its maximum at the interface between two media. In this case the
effective index for the nonlinesr surface wave is greater than the
value pp= [ e 5] (1&1- e '] Y2 , corresponding toc a TM-polariged
linear surface polariton.
b) €. <O ’ A. >0 and & >0,

Pig. 41 shows the dependence of the dimensionleass power flow
P/Po on the propagation constant for 65- 2.25 and several va-
lues of &. . In the present case the surface wave exist in a boun-
ded raenge of variation of 7 and the effective index is grater
then the value (¢ = [leclts (12| ~&s) " 1%, Let us note that as
in the case a) there is @ maximum power which can be transmitted,
) E.<O , de<O mnd &550.,

Por the present case Fig. 4c shows the F> ~dependence of the
dimensionless power flow P/Po « We see that for ﬁ: F{’ the power
flow is equal to zero and increases the infinity as J.’> approaches
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hg= &;/2’ « We remind that in the case that &£ > [E.| TM-polarized
linear surface polaritons do not exist. As we can see from Pig. 4c,
TM-polariged nonlinesr surface polaritons can exist in the case

&s > [¢<[ when the power flow exceeds some threshold value (the
ourves for &, = =2.1 and ¢ ==1.45).
d) &0 , dc <O 4, &5<O &

Pigure 44 shows the p ~dependence of the dimensionless power
flow P/P, for & = 2.25 and several values of &¢ . Thus for nega-
tive nonlinearity, i.e., the casea c) and d), as the power flow inc-
reases, -the effective index f decreages from the value F= Pe
corresponding to the TM-polarized linear surface polaritons.

e) £70,A>0 , £ 0.

In this case the "phase- path diagram" end the fleld pattern
show that the magnetic field attains its maximum in the self-focusing
nonlipear cladding ( <{c > O ) and not at the interface 2 =0, Thie
nonlipear wave can be guided by the interface between & self-focusing
dielectric cladding end a linear dieleotric substrate, provided that
the power threshold is exceeded and in this sense is similar to TE-

"polarized surface polaritons at & nonlinear interface (see /18,20,60/ e

For the present cese Fig. 5 shows
e ‘ the p ~dependence of the dimension-
2 less power flow P/Po for £, =2.25
™ and { = 2.5. This TM-polarized wa-
' ve has no an analogue in the
al linear optics of surface-guided
waves

In fig. 6 we present the p -
dependence of the power flow P for
the nonlinear self~-focusing dielect-
ric-metal interface for both elect-

v M n 2 f

Pig. 5. Dependence of the
energy flux P/Fo oi a

surface wave on the effective oLy = DA

refractive index P in the case ronic, %xx xz (ourve a) and

when & =2.25, £, 2.5 and & >0 electrostrictive, o, =Axz (curve b)

(atter /847, nonlinearities. Pig. 7 shows the
traneverse distribution of the electric field component £ x for the
electronic nonlinearity and for several values of the propagation con-
stant P . Note that for both electronic and electrostrictive self-’
-foousing nonlinearities there is a maximum power which can be trans-
mitted and the effective index P is greater than the value f*e cor~
responding to a TM-polarized linear surface wave.
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Pig. 6. Dependence of the power

flow P on the effective
index foi' parame ter value
Wx3.66 X 1072 radxgl,é abm Egm
82,405, Eqm=2.5,0oxxmolzzm 6,4x1012
meV=2 and (a) o, = 3 <z
(b)o(lx' dxz .

Pig. 7. E x versus transverse

coordinate z for the
case (a) in Fig, 6 and (a) P=9s
(b) [ =13, (¢) P = 25,

3. Transverse Electric Polarized Nonlinear Optical
Waves Guided by Thin Dielectric Films

3.1. Nonlinear guided wave propagation in three
layer structures with Kerr-law media

A gulded wave is an electromagnetic field that is guided by
media of high refractive index. A dielectric slab is the simplest
example of an optical waveguide; it is actually employed for 117ht
guidance in integrated optica circuits (see, for example /87-89 ).

A slab waveguide is & thin dielectric film of thickneas d and ref-
ractive index /7, surrounded by media of lower refractive indices:
the substrate with refractive index #»s and the cladding with ref-

ractive index V. ., Por thin-film waveguides and TE waves (polarized
along the Yy axis) the only nonvanishing component of the electric
field is

EyI(z) = ES Q)(P (KOQSZ) ’ Z <0 (351)
Eg(Z) - E( cos (ko?(z —‘-PS{) , 0< z<d ) (3.2)
E;j(z): EC@(P[»KOQC (Z*c()] ) 2751; (3.3)

where 9s = (ﬁz' ”‘52)4/2, (l(:(”(z‘/%z)vz; Qe= (ﬁz- ncz)yz.

Prom the continuity of Ey and ‘JE%IZat the interfaces X =0
and Z=d we obtain the dispersion relationt
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(gs+ (3.4)
(koGed ) = 9+ (3stqe) . 3.4
i (k- (g€ -959<)

Bquation (3.4) can be rewritten in the form (constructive in-
terference condition):

KoQed = Rp+ Ppemir m =012 ... (3.5)

where tﬁ‘ikf =qs/9¢ and R = 9</%¢ .+ Solutions of
eq. (3.5) can exist for a discrete number of values of b and are
labelled TEm (  =0,1,2,...). Note also that we have the following
relations for the field amplitudes:

E (n\( E (H.f /5 ECZ(”.;"”C) (3.6)

It remains to relate the amplitude coefficient Ef of the elect-
romagnetic field to the power carried by the mode. The guided wave
power flow is obtaeined by integrating the x component of the

Poynting vector: otz
i ﬁ (/‘_\_Z) Efc/(‘(f ’ (3.7)

4 -1
where chq( <dy &a$)4ﬁﬁﬁ)ia the effective thickness of the thinfilm
waveguide. Therefore, from eq. (3.7) we can find the field amplitude
Ef as a function of the power flow P and the effective index g .
There are also transverse magnetic (TM) polarized modes with
the magnetic field polarized along the Y -axis, i.e., f4y #0 and

with £,.4 O and E # 0 (see /87/) Thus TM-polarized waves exhibit

two eleotric field oomponenta, one parallel ('E,) to the wave vector
and one perpendicular (t to the surface (a complication for non-
linear optices). Note that the dispersion relation for TM-modes of a
linear saymmetric waveguide is given by eq. (3.4), with g, replaced
by ?J/%B s where Y =35, f, c . A guided wave version of the slowly
varying phase and amplitude approximation has been developed for
guided waves and is known as coupled mode theory/7'8/. This method

is useful for analyzing the generation of new waves and for intensity-
-dependent refractive index phenomena. 'If the optical nonlinearitiea
do not alter significantly the field distribution of the guided wa-
ves the ocoupled mode theory can be used to calculate the intensity-
-dependent wavevector or phase shift /9/. In the case that the opti-
cally induced refractive index change is comparable with or larger
than the index differences h¢-"c , ¥y -5 which exist at low-
-powers between the dielectric film and the bounding media, both the
field profiles and propagation conatants are power-dependent;and coup-
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led mode theory which ie essentially a form of first-order perturba-
tion theory is inadequate to obtain even qualitative resulis. In
this case an exaot theory must be used. For Kerr-law media and TE
surface guided waves the nonlinear wave equation can be solved ana-
lytically.

The asymmetric dielectric layered structure we consider con-
sists of an optically linear medium with refractive index hg (the
substrate) occupying the half-space z < (O (region I), a dielectric
form of thickness < with refractive index “¢ 1in region II
(0<zed) and a nonlinear Kerr-law self-focusing cladding descri-
bed by the dielectric function € =& +olc IE{ d>01n the region
111 (z2>d),

The Maxwell's equations for the x -independent guided wave
fields are:

d2Ey
d 22

_f I
LE (2 (p-g) By =0, O<zed (3.9)

I e
kZ(p*-es)Ey =0, Z2<0O (3.8)

Sy 2t e ) B e kIES 0, 254 (3.0)

The exact solutions of egs. (3.8), (3.9) and (3.10) for L. >0
(self-focusing optical nonlinearities) and p<<h( can be written as:

EYI(Z) = ()% K exp (KoqsZz) , z <O (3.11)
Ey (2) = (&Y &A[cos(f(ag,lh .sm(Kosz)] o<z<d (3.12)
Y
Ey'c2) = (%)%, {ch[kogo (2- 2. )7} L zsd,  (3.13)
where

- 1 i _
A= [2 (f*\)&)J /‘a@( [CﬂS (Ko?(‘l) + % Sth (Ko(i(C/)] ! (3.14)

v=thl kg2, d)]. (3.15)

The dispersion relations are obtained from matching the tangen-
tial electric and magnetic fields at the interface /30'90/1

tg (10qed) = Pe(9s ~vge) (3.16)
(97 + v9:9.)
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This result is very eimilar to the linear case with the excep-
tion that 9. is replaced by (-V4.). When <. > O , thenZ>-2°, V>-1
and we obtain the dispersion relation of TE polarized modes of the
linear asymmetric thin-film waveguide (gee eq. (3.4)).

For p>n¢ the exact solution of Maxwell's equations (3.8),
(3.9) and (3.10) are:

EYI(Z) “LT" R enp (koqsz) , Z <O

(3.17)
Fgltz) = u % B[‘i_if%p(x Go2)+ Le,so(xoz, )| e
I ocz<d
and Ey[Z)is given by eq. (3.13).
Here (f( (Ig h )/2_ and
B = [2(1-v3) ] %QC[CL(KD/?}J) v I

sh (Kof(d)]_i (3.19)

-0
»

The dispersion relation obtained by ensuring the continuity of
Ey and "'E)'AZ across the interfaces < =0 and Z=d is

thikogd) = Aelie ds),

(‘}f - VY%s Qc)
V 1is given by eq. (3.15).

The guided wave power per unit length along the \/-axie is ob-

tained in the usual way by integrating the Poynting vector over the
depth dimension Z

p. B [ EM®dz =R 4Pa P

(3.20)

where

2¢ o —m (3.21)
For p< h¢ we have (see /91’92/)1
i P F _A_z
2 'o (3:22)
A ié L cin (koqed)
P; = 21 PUFAL{K"J(i * 1’} ) * T¢ st KeGe . (3.23)
x [(1_ %:é )COS(KQ?((J) + 2% Sih(KaCL\ccj)_]S-
t
= 20 pge(14v) (3.24)
For F)h‘ we obtain
Sz
P, = é R)P Tig (3.25)
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- 2
P~ 5 Poﬁgzikoc’(f )
T if) chcegcd) + 2% sh(qd)]|

and PC is given by eq. (3.24).

We consider the 1iquid crystal MBBA ( h. =1.55, h, =107 m?/w)
as the nonlinear cladding medium deposited on a glass waveguide
(hy =1.61, hg=1,52). The existence of the nonlinear cladding af-~
fects the cut-off conditions for an asymmetric film waveguide. As
is well known, a linear asymmetric optical waveguide ( ». # hs) can-
not gupport guided waves below a critical thickneas clc,, (see, 0.8,
/87 ,88/)'

%;3"("“?(4) X (3.26)

In the case of an asymmetric nonlinear optical waveguide there
is a power threshold for TEo wave propagation for film thicknesses
d<dc, (see Pig., 8 for d/\ =0,1). This phenomenon can be used as a
lower power
threshold devi-
ce, 1i.0.,, One
which beging to
60 transmit above
a certain mini-
mum power. A lo-
wer power thre~
shold device can
also be achieved
with a saturab-

501

40L

304 le self-focus-
ing cladding
20| provided that
the saturation
, ) , , value Vst is

1,63 B

1,56 1,57 o8 1,59 1,60 1,61 1,62 not too large.

Pig., 8., TBo guided wave power versus effe tive

index + Here . = 1,55, Vi3 =10-
", =1,52, hy =1.61, ) -0.515/&1.

ml/wW,

The dependence of the guided wave power on the effective index
p ie shown in Plg. 9 for d = 2pm, A = Mgs 1,55, =102 n?/w,
he =1,57. The unique features of the TEo solution are the existence of
wave propagation for s> n_f and of the local maximum in the guided wa-
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ve power. For

2 TE, wave shown

" in Pig. 9, the
- value of p ne-

00 |

b ver exceeds /s

o] /3,88 apnd there is en

absolute maxi-
mum in the qui-

oL

5 ded wave power.
I e Moreover, the

“r . TE , branch ter-

0

minates at some
value of p< he
(see Pig. 9).

1552 1556 1,560 (564 1568 1,572 157 1,580 584 158 P

Fig. 9. Guided wave power vgrsus effective index f# . Here nc= hs=
=1,55, bh2c I-;.(170--9 mslw, Ngm1.57, 4 -2/Lm, A -0.515/:m
(after /93/).

The evolution of the TEo and Tey field distribution with inc-
reasing P is shown in Pig. 10. This illustrates one of the charac-
teristic features of nonlinear guided waves, namely power dependent
field distributions. As shown in PFig. 10, as ﬁ increaaes, the TEo
field maximum gradually nare
rows and moves into the non-
linear self-focusing élad-
ding. With increasing £
the TE ;, field maximum near-
est the nonlinear cladding
shifts into that medium,

N[>

N N
-

A \ rig. to.
/ \J/ Pield dietrivutions associa-
- ted with TEo snd Te4 non-

linear guided wavee. The
field evolution with increas-

TE, TE, ing p is shown (after /14/).

The variation in the guided wave power with propagation constant
P for 4/A = 6 shown in Pig. 11 illustrates that the higher order
TEm ( » > 1) branches all terminates at some values of f<'"¢, For a
self-focusing cledding there ie an absolute maximum in the power
which can be propagated in any TEm ( m>1) guided wave, For all film

thickneses, the lowest order TEo branch degenerate at high powers
into a self-fo=
cused surface

wave guided by
zeotP
the nonlinear
240, interface bet-
ween the film
200 and the clad~
d/h=6 ding media.
1e0 Clearly, these
120] nonlinear gui-
ded waves can
80 * be used for
optical limi-
40] <€ 1€
. 2 ters in a vari-
A2 ' ‘ ety of applica-
1552 1556 1560 1564 1568 1572 157 1580 1{58L 1588 1592 P tions.

Pig, 11. Guided wave power versus effective index F o

Here M= "sa 1.55, .= 1077 mé/W, n,=1.57, 42 =6 and
A=0.515/“m.

The limiting action for the case of a self-focusing nonlinear
cladding hae been demonstrated for TE; waves experimentally (see/56/).

In what follows we consider a symmetric thin-film waveguide
which consists of a dielectric thin film of thickness < &nd refrac-
tive index h¢ bounded on both sides by identical self-focusing Kerr-
~law media ( Ms= " and d4;*%70), The dielectric film fille the re-
gion II (~9%2 €Z <€ d/2 ) and the two nonlinear dielectrices fill the
nalf spaces I ( Z<-9%2 ) and III ( Z> 9% ), respectively. The Max-
well equations for TE-polarized waves are:

2L r

T - k2 predby 1kl (Ef)P=0, 2T Gan
2p it _

j__zEz - KE(PPee)Ey =0 iz P2 (3.28)
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2p m i o
‘isl _ K:(F,z-gc E)’ + K3 G(C(E}’ ) , z > /2 (3029)
The exact solutions of differential equations (3.27), (3.28) and
(3.29) in the case <.>O (self-focusing optical nonlinearity) aret

4, . -
EF @) - () g eh Dage (a2} 2 - 0

A, cos [Ko (Z-Zg)J B <y
Ey ()= ’ (i( g 4y 2<% (3.31)
A.ZCL‘ [koq,f (z-z¢)] P>y

-1
() - (;C)'/‘q( Leh (kaele-2z0TY 7, 2 5% . o2

Prom the boundary conditions we are left with an equation for
the unknown Z¢ 1

(1 2002w (-2 b [ (4120 -
2 (3.33)
_{1'{7:-t‘42 [Kozi( (.% +Zf )7]} CL» [Ko(fi((% ’Z()J:O )

where %1 = q"/‘{,c .
Equation (3.33) has & unique solution Z,=0 for all f> he . The
solution (3.31) for which Z¢ =0 corresponds to the symmetric wave
(S) of the symmetric three layer planar structure. In this case the
i field distribution is symmetric to the center of the waveguiding
thin film and Z.=-Z5 . The eigenvalue equations for the aymmetric
I branch are:

th [ kego(F+ 2 )] = batg(reg, L) p<re  (3.34)

th [koqe (2 420)] =8, th («‘,qu) , p>hg,  (3.35)

} where Q Qf/q,c .

Note that if d.> O , then Z >+9% and eq. (3.34) reduces to
the well-known dispersion relation for the symmetric (even) modes
of the symmetric dielectric waveguide:

tq(koq¢$) = %_i. (3.36)

Por the symmetric solution (S) the amplitudes of the electric
field inside the dielectric thin film are given by:

f i‘t?[‘i‘:’s(“"‘ffz)l [i gfj (Kotifz)]’ p<ve (3.37)
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2

A= 2 qllehng, )] T4 B0 G D] pone .39)

Next we obtain the dispersion relations for the antisymmetric
wave (AS) of the symmetric thin-film waveguide. For this purpose we
write down the second solution of Maxwell equation (3.28) inside
the film layer:

w {Bi Sih [KOCL((Z_Z{)] ) F) <hg
E (Z) - B,Q SL [KDE{\‘ (L-Z()] ’ Iz)) Ny - (3.39)

In thie case the equations for the unknown Z, have the form:
ﬂ i- chfaszo%{(%‘zfu}5"“2[“01((% +Z{ﬂ - (3.40)
- {1- £fctjz[,<a¢i((34z()1} s‘u\z[xofi((‘% ‘Zf)}

for 534 ng and
[1-8idh roqe(-20)f sk [k o (44 26)]
1 E BTG Al e (320 < 0.

for p>w;.

(3.41)

It is easily verified that eqe. (3.40) and (3.41) have the so-~
lution Z; = O, This solution corresponds to the antisymmetric wave
(AS) of the symmetric layered structure., We notice that eqs. (3.40)
and (3.41) have also solutions Z{i 0, i,6., the asymmetric wave (A)
propagating in a nonlinear symmetric layered structure. The asym-
metric wave only exists above a definite power threshold /23/. Prom
the boundary conditions we get the following dispersion relatioms for
the antisymmetric wave (AS):

th[kqe(d+2)]=- bl (ke ), pene (3.42)
—tL [Ko.;tc(%fz<)]:~gicﬂ\ (Ko’é((é)) P>M( . (3.43)

If 4.> 0, then Z.>+o° and from eq. (3.42) we obtain the dis-
persion relation for the antisymmetric (odd) modes of the linear sym-
metric waveguide:

cty (qcG) = - % : (3.44)
.F

The amplitudes 51 and 52 of the electric field inside the li-

near medium in the case of the antisymmetric solution are given by
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Bia R % g% [sin (Koefé)yz[j—ﬁlzctjz("&l(%”; p<vg (3.45)

2_ 2,2 ~ 472 22, ~ dy (3.46)
B - i 9e Lsh(xog B T[1-8edh¥ (kg eZ)[ , pone:
In the case of the symmetric wave (5) the time averaged total
guided wave power in watts per meter of wavefront is expressed as

+(Zc , <i -2 Lh(ku d)
P%R,F‘ic(i*'z){i 5 (1 Vz)[wS(Ko‘L(zﬂ [*‘v"*s qe ” (3.47)

for F <h¢ and

- r =~ J\T2r L (k.G d)
P-4B pgc (1) 44+ Fe(teg) [ch (v 4T? Koo + D20 beS
' { Attt L Pe ! (3.48)
for P V¢ .where
b th(g.3) s btk d) (3.49)

Equations (3.47) and (3.48) give us the dependence o = cu(p,P),
i.e., the dispersion relation for the nonlinear symmetric
wave (S). We remark that for P =0, eq. (3.47) gives 4-v; = O, i.e.,
the dispersion relation of TE~polarized symmetric (even)modes of the
symmeiric linear waveguide. It is also easy to verify that as d» oo .
eq. (3.48) yields double the energy flux of the surface waves at a
nonlinear interface (gee Section 2).

In a similar manner, making use of eqs. (3.45) and (3.46) we
obtain the power flow in the nonlinear antisymmetric solution (AS):

P=4Rpg.(t-t) {14 %(4+ta[_si~(mczf%>J‘2[—55"%j—(“—‘“+h4]} (3.50)

for F< h, end

P- éﬁ,pqc(i-m{b % (1+ t;)[sl‘(“o‘if% )sz[ i{ﬁ’“‘LJJ— Koﬂ} (3.51)

dor P ?N¢  where
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b Lotg(ngd). G

Here, too, it is easily seen that at P = 0, eq. (3.50) reduces to

1- tz. = 0, i.e., the dispersion relation for antisymmetric (odd)

modes of the symmetric linear waveguide, while as d— oo , eq. (3.51)

gives double the power flow of the nonlinear surface waves.

For a material system with complete symmetry, i.e., h. = hg

and h,. =N, > 0 (self-focusing nonlinearities) one expects that

at high powers self-focused fields can occur in one or both boundary

media, The dependence of the dimensionless flux P/ , on the propa-

gation constant is shown in Fig. 12 for a symmetric layered struc-

ture with the parameters: N = 2,0, . = hom 1.5,d/\ =0.6 (see /237y,
. Branch S exhibit field distributions

symmetric with respect to the film

center (symmetric TEo branch).

tﬁ‘éid‘"("o‘ﬁ%)

Fig, 12,

Normalized power flow /P, versus
effective index for a symmetric
layered structure. Here h.-2.0,

hem n= 1,5,d/A = 0.6. The curves are
marked as follows: S- for symmetric
TEo branch, A - for asymmetric TEo
branch, AS - for symmetric TE, branch,
B - for asymmetiric TE , branch

(after /237),

In this case with increasing power flow a field minimum develops in
the center of the film and two symmetric field maxima move into the
cladding and substrate media, Branch A only exists above a power
threshold and the associated fields are self-focused in either the
cladding or the substrate (asymmetric TEo branch). Por curve AS the
field distributions retain symmetry with respect to the center of
the thin film (eymmetric TE 1 branch). This branch evolves from the
ugual low pcwer 'I'E1 mode with field extrema in the film, to a high
power 'l‘Ei branch with symmetric field maxima localized in the two
nonlinear bounding media., Curve B has a power threshold and is si-
milar to that labelled A since the field distributions are asymmet-
ric with respect to the film center (esymmetric TB, branch).

In what follows we will derive the exaot dispersion relations
for TE polarized guided waves in a planar structure consisting of an
optically linear dielectric film embedded in dissimilar optically
nonlinear unbounded media. The three layer waveguiding structure con=-
sists of a nonlinear substrate characterized by the Kerr dielectric
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function & =g, +°(S'E|2 in the region I ( 2< 0), a thin dielectric
film of thickneas 4 with dielectrio comatant & ¢ in region II

(0<z<d) and a nonlinear_*cladding characterized by the Kerr di-
eleotric function £ =£.+«c(E (¥ in the ragion III ( Zz>d )., The Max~
well equations for TE polarized waves propagating along the x axis
with effective index f' are

T —
HEy (gt e)ES 4 Kds (E5)3- 0, 20 (3.53)

dz%
i _

Z%Ey - K (e E = O 0<z<d  (3.54)
i _ _

rf;_iy fKOl(ﬂz.g()E%*"j"(C(EyL”)s:O L zvd . (3.55)

For the nonlinear substrete medium the field solutions are

1 -4
Ey (2) -(f;) ‘g {eh [k9s(25-2)] 17, zc0 (3.56)
for o(s >0 (self-focusing nonlinearity) and

/ -
E,I(z) '—(i') 275 {sh[Kotzs(zs—z)Jj i’ z<0 (3.57)

1
for «£s<0 (self-defocusing nonlinearity ), where 9s= (/62—65) /2 .
The fields inside the optically linear dielectric film are
written as

Eyﬂ(z) = Eyﬂ(o) {COS(K"%‘Z) + 72: [tl‘ (Ka?; Z )] -;‘151'"/‘(::?{1)}! (3.58)

~ 1Y) + .
where O<z<d , q,=(¢,-£)" and the 1 signs refer to the cases
As>0 end A,<0 , respectively.
For the nonlinear cladding medium the nonlinear wave solutions
are

] 2\ % -4
£,) <(2) 5 ek [xoge (ze-2) T , z>d (3.59)
for >0 and

- Y 4
EYM(Z): (é!)l‘ic {ot [’(OQf(ZC‘Z’J} , z>d (3.60)

4,
for £ <0 , where ge = (p-20) 2,

The dispersion relations are obtained from matching the tangen-
tial electric and magnetic fields at the film-cladding interface

(z=d} 1
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+
tg (koged) - 90 (Vigs + e tgl) (3.61)
((if ﬁVSti Vctiisgc)

where v, = 1 (“O’iszs) vy, = th [A’o‘ic (J-zc)] end %1 signs

refer to self-focusing and self-defocusing nonlinearities, respec-

tively. This result is very similar to the linear cs&se with the ex-

ception that ¢. and ¢, are replaced by Vgties and vﬁ‘q( s, Tres-—

pectively. When #->0, okc >0 , then Zs>+0°0 , Z > -0, > +1 ,

Ve= +4 and from eq. (3.61) we get the dispersion relation for

TE polarized modes of the linear asymmetric waveguide (see eq. (3.4)).
For p>ne the analytical solution of Maxwell equation (3.54) is

E;T(Z) = Eg(o) »{ CA(Kaé;Z) + ,%[tl'(K"'f;,zs)]tig[n(;(a?fz)}’(J'62)

where 0<Z<d . %T/ﬁz‘lf)%and the ¥1 signs refer to the cases A0
and As<0 , respectively.

Continuity of the magnetic fields gives the dispersion rela-
tion for P>ty 1

~ 4 14
th fafd) = - Belgere 3 (3.63)
(32 + wv"g:9:)
The guided wave power per unit length along the \/-axia is
P- R+F +F-, where

Py = fie (4-v') (3.64)

kohZnas

R (4-vtt) (3.65)

2
Ko V¢ h2c

- ?;?_ + ;zsi'z
- L% (4- vﬁ){m(u i‘eé )+

Kohg Pys

Mﬁfi) f\)siz B . 1{73\5’1[‘ )
+ 2, [(j_— (Z?—f— )e slkeged) 2 . s h(l(o?fJﬂ (3.66)

for FZW and

2 :vvtz
ot (1wt fud (1 B
Kolls Mas Be (3.67)

oG cd 222 N vt -
PR B o 2 T sk

¢
for_ffbn* (see/93/).
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Since the constants of integrations =, and Z. in eqs.
(3.56), (3.57), (3.59) and (3.60) are related via the boundary con-
ditions and are dependent on the power carried by the nonlinear gui-
ded wave, then the propagation constant 3 obtained by solving the
dispersion relations (3.61) and (3.63) becomes power dependent.

Next we show that a knowledge of the field shapes is not neces-
sary, however, in order to determine the diaspersion relations of the
problem /29,9, 95/. The Maxwell equations (3.53), (3.54) and (3.55)
integrate to

2
(457 - 2 (phen) (617 + B3 (eh) =0

(3.68)
(d EY) ;(P1_5{>(Ey1")z = C¢ (3.69)
LEY i (pe (£ Mk (E) 0 o)

because Ey(Z) and JE}’AZ are required to vanish as Z—=> t oo ; here
C¢ is an integration constant. Suppose that the electric fields at
the boundaries Z =0 and Z = of the wavegulding film are ED

and EA s respectively. It is also useful, at this stage to define
the quantities ¥s = (p%-25-%LEZ) %2 ana g~ (prec-3AES) T2,
so that the gradient of the field at -~ = 0 and Z-4 can be written
as T it
’{im C{E—y**KXE '{,im (‘Jf—‘~+
= 1K, = + K.Y Ey - .71
z s o i gy CIZ Xc ) (3.71)

Then by using eq. (3.71), the integration constant < can be
expressed as

_ 2
Co- k(g ryd)ES- 5“2(‘15*392)54 : (3.72)

After some manipulation, it can be shown that the electric
fields Eoz and Ej at the boundaries of the waveguiding layer are
related to each othsr through the following equation for a conic
section (a hyperbola or an ellipse):

a(.»(c

_:(,ic_ ~ ke
(e 5 et ¢ )< ’(5 (""Z o )( e ) 1 G

where 4. =Ec-E5, b =Ec-Ec .
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Depending on the specific material parameters of the three layer pla-
nar structure, for a particular value of Eb’z , there may exist two,
one or no values of Ef . It may be noted that for a purely symmet-~
ric waveguide, i.e., 5. =S5 , e =olg , the conic section reduces

to atraight lines which are perpendicular to each other:

(EEN[ (2e75) - F (E2+ES)] =0 - (3.74)

This implies that there exist both symmetric ( £, - Ed ) and anti-
aymmetrio ( E,, = 'EJ ) waves in the symmetric layered atructure.
The third option is the asymmetric wave for which Eol# tj' 3

Z Er-Es) ‘
E;= 22 2 (3.75)
d ~ £
This asymmetric wave cannot exist in the linear limit (aee/23’29/).

The four eigenvalue equations for nonlinear guided waves ( F> <hg )
in the asymmetric layered structure are:

_ (if’ib/s ¥e)

[(3708) (97 k)]
for even parity solution for which £, and E{; have the same sign
(E>0 , E4»0, or E,<O , Ey<0 ) ana

s (Koed ) = (TS I y (3.77)
L( y ") )(Z( @) ] *
for odd parity solutions for which E and E,/ have opposite signs
( £,70 ,E(<0 or E<0, E;>0 ) where Ye (e 2)1
Por nonlinear surface wavea ( JB>V’( ) the eigenvalue equations
are determined from egqs. (3.76) and (3.77), i.e.,

(_ (Z\(l 1 (Y)XC

Ccos (Kp‘i{,d) (3076)

ch (koq,d) = (3.78)
TR I
for even parity waves and
(88 4w:x) (3.79)

eh (koq +d - — .
bl = e g e
for odd parity waves,

Hext we follow the elegant analyasis of Boardman and Egan /23/
to calculate the guided wave power flow without knowing the optical
fields in the outside nonlinear media. The atarting point of the
analysis is again the firet integralas (3.68), (3.69) and (3.70) of

Maxwell equatione.
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After differentiation with respect to = egs, (3.68) and
(3.70) bvecome:

I
,CL 4 ‘!_EX- - l(,;lo(s T
dz ( Ey J2> % (Ey)? (3.80)
A £ dEM L ke T2
(E‘”d ) 1;——(&), ) . (3.81)
Taking into account eqs. (3.80) and (3.81) and using
. d Ey
ton JE_;I Jz = Fels (3.82)
_
Liv., L. dEY (3.83)

- - Koi<

rif

—Z st £ JdZz
after some manipulation we can calculate the power flows fi; and fi
in the nonlinear bounding media:

Zo 4/ “i
- 2( ) Pak) T (9% ¥s) (3.84)
o 4/ -
2 ()7 (k) B (gt ) - (3.85)
In the linear waveguiding film we have
T 12 . 4 : d /¥ JE
[E/ @] S okiql [cr -5 (8 jzy )] (3.86)

80 that by integrating with respect to the depth variable X we ob-
tain the following contribution to the total power flow:

p - &P j[gy Y@\ dz -
H (3087)

cg, cd - (Ef 4E £ IE -
2 k2 4 z.[ ( 4 (J ) 7 Jd 2 )
Purther, by using eq. (3.71), the power flow in the linear film
can be expressed as
cE 2
Pr= Sof — 2 [ k(a2 )ESd 7 koY EJ [t Y E [ (3.88)
2 2K 7
The total power flow in the planar structure is /= F;+f}-+ c )
where Is and . are glven by eqe. (3.84) and (3.85), respecti-
vely, and P; 1is given by eq. (3.88). Since E is expressible in
terms of EZ and, through the eigenvalue equation, Eoz is a function
of the effective index F: , then the power flow / can be varied
with P for & particular value of the frequency w .
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As & specific example consider the case h, >0 and .0,
i.e., both bounding media exhibit self-focusing nonlinearities. This
case contains by far the richest set of new phenomena /93/. We see
from Pig., 13 that when "c=hs but hy # W, , i.e., the optical non-

. linearities are dissimilar, the nonli-

1585 near wave golutions evolve into two un-
connected branches A and B. If, further-
- more W # N5, the curves shift and dis-

tort with respect to the power axis but
no new features emerge.

13715

Pig. 13.

TEo guided wave power versus effective
index for {4 A m- e m 1 55,
he =1, 57. hz(- 21 0-7 n?/¥W n

25 w 75 00 = io -9 2/\»/ (O'F'te'"/gy’

The branch B in Pig. 13 exists only above a certain power level. The
branch A which evolves from the linear case, exhibits field localiza-
tion in the more nonlinear medium of the two (the cladding), i.e.,
degenerates at high powers into the corresponding single interface
purface wave, The second branch in Pig. 13 (branch B) starts with a
field extremum in the medium with the smallest nonlinearity (the sub-
strate) and terminates with field maxima in both nonlinear bounding
media. Nonlinear guided waves in the lower branch A are excited until
the maximum is reached. A further increase in guided wave power can
only be achieved by switching to the upper branch B on which the
field distribution and hence the attenuation are different from those
corresponding to lower branch A. Therefore, switching between the
two branches should be accompanied by a change in the transmitted
intensity. A subsequent decrease in guided wave power on upper branch
B leads to switching back to the lower branch A at a much lower power
than for the switch-up. Therefore, a hysieresis loop or bistability
could oocur

In the case of a Kerr~law waveguiding film the field solutions
of Maxwell’s equations are expressed in terms of Jacobian elliptic
functiona/16 24,95~ 98/

In what follows we consider an egymmetric planar layered struc-
ture consisting of an optically linear medium (the substrate) with
dielectric constant &¢ in region 1 (z<0), a Kerr-law dieleciric

1870 |

£ilm of thickness d described by the dlelectric function £=£.+olf/EI*
in region II ( 0 <¢ Z<a ) and a linear medium (the cladding) with
dielectric constant &£ in region III ( Z>cl ). The Maxwell's equa-
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£2 cn? (Kotd +0/m) (3.105)
9

In order to find the magnitude of the power flow P for each propea-
gation conatant F , we compute numerically, using eqs. (3.101) apd
(3.102), the dependence of P on the modulus ' of the Jacobian el-
liptic functions. FPor the material parameters used in /95/, i.e.,
he < Mg hg , all the branches TEm ( > 0) sre induced by the self-
-focusing nonlinearity sc that nothing ie propagating until a cer-
tain power threshold is reached (mee Fig. 14). This threshold beha-

c = POF“‘

pip viour was first shown numerically in
.,{ /96,97/ o1 higher order TEBm ( 3 1)
branches.
9
Pig, 14.

Nonlipnear power flow P/ Po for TEo,TE4
and TE,; waves guided by & self-focusing
dielectric film versus effective index
f « The curves are labelled by kod.
Here &y m2.45, £,=2,3 apd & =1 (after

95/).,
The authors used a different set of ma-
terial parameters which allows g linear

156 159 162 155 P

limit for TEo branche.Since two different values of the propagation
constants can exist for the same power level and power thresholds
exist, this nonlineer layered structure is of potential interest as’
a lower threshold device and eventually, as an optical switch,

3.2. Nonlinear thin-film guided waves in
saturable media

In what follows we will investigate the effect of saturation
on the power-dependent wavevector and field distributions of nonli-
near thin-film guided waves. We consider first a dielectric planar
layered structure consisting of a linear substrate with dielectrin
constant £. in region I ( - < 0), a linear dielectric film of thick-
pess d and dielectric constant &; in region II (O <Z<<d ) and &
nonlinear self-focusing cladding in region III ( z >/ ) characteri-
zed by the dielectric tensor (2.19) where the parameter E,¢ is the
maximum change in the dielectric function, i.e., € >&_ +Csat for
large field intensities. -

For TE-polarized waves we have £ = (O, E,,O) and Fy is a
real quantity in the absence of loss. The Maxwell equations ares
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jfE - k& (p? Ss)Ey = , z<0 (3.106)
‘jE - KoZ(PZ'S{‘)E;I‘; o) , o<z<d (3.107)
d’fy B MET) ] EW, .108)
Jzz - k[ i e ()5 =0 z>d . 3

The first integrals of eqa. (3.106), (3.107) and (3.108) sre:

qu:(jE) = kg (/a es)t, , 2<0 (3.109)
F - (j’%) k(P -£0)Ey *C( y 0<z<d. (3.110)
F. - (‘J [(/5 zc)t / 5“{5 )d(E 2]/2»/,(3.111)

where C y: is the integration constant.
Por TB-polarigzed waves both the fields L_y and their derivativesn

a,Zy are continuous across the interfaces 7= O and z=d . Next
we get the following relations between the integration conmatant C¢
and the fields [, and [ at the interfaces 7 = 0 and Z=d , res-
pectively Ed
2 N/~ 2 <
K’L (2{ ES)E _(zf c L:] —oj £C (by)C/(Ey) (3.112)
o —
12

Since "Liy = CPf and taking into account that the integration

over the film can be written as:

£y —
f J—t,; = d (3.113)
£ P /40/
finally we obtain the dispersion relation for the TEm waves ]
Te(9s +2c) (3.118)

0@ed) = 5=
tg (K9 ) (42 :%?C)M
Here 9. = (p2,)", ez p%, go= (1) (F-tem
and 2

Ecm T &E * / <°,NL(E )J(E ) (3.115)

We have M.« 1 if a self-focu.sed peak (real field maximum)
occurs in the nonlinear cladding medium, otherwise Mc » 0 (virtual

7
)
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field maximum). It is to be noted that when a peak cocurs in the non-

linear cladding medium the field amplitude Ey is evaluated from
HB(E,B)=0 .

Por J >hy the dispersion relation is:
th(koGed ) = - M) . (3.116)
(35 +9s9c)

This dispersion relation has eolution ﬁ> hy 1f and only if there

is 8 real field maximum (self-focused peak) in the nonlinear cladding,

- v
l.e., Mc= 1 and g = - (B2 5.am)2Q If there is no self-focused

peak in the cladding medium ( M. = 0), then we have 3.2, :[Wu)]yz,

where Y(u) is given by eqs. (2.32) or (2.33). Thus by using eqs.
(3.112) and (3.113) we obtain:

2 2
dpeu (2:%9F)
= zhPq, (9% + ¢f) (3.117)
=z i ((i("z{ i C f+ :
Pe= 4 Ppu[Ked T{ﬁt + _% + 3k %f%%{ G.118)
-1 dx .
R-3FEp) Lo (3.119)

2
where U =< E;

In the case of a Kerr-law nonlinear cladding the integral
(3.119) can be evaluated analytically and we get

R-2Rpl(p ecrFu)re- (ps)”]- (3.120)

Por a self-focusing cladding ( . > O ), & field maximum can
ocour in that medium et sufficiently high powers, i,e., M. =1

end J.="9. , where q_ :[Wu)]yl with 'P(u) given by eqs. (2.32)
and (2.33). In this case the results can be summarized in the form:

2 ks 2
Pe = iPoF’“ [rd i(‘:i( o, L aiea ]

e % 9 gFigz 1 Go2n
u [V
-4p o x _ _dx
P( 2 OP [ Jo [-(p{")ly_2 [ﬂ [‘P(x)]'/)' I (3.122)

and P; is given by eq. (3.117).

For a Kerr-law self-focusing cladding the integrals in (3.122)
can be evaluated analyticelly and we have

Po = 2Bp[(prect Su)ey (p2e)™ |- (3.123)

Por F’> Vl{_- we finally obtain
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) u 92-§2 (3.124)
p.S:ZPquJ :._'q-:;‘z ~

] (3.125)

and pc is given by eq. (3.122).

We conasider the case of liquid crystal MBBA ( h.= 1.55,", =
10~ ©%/W) on a glass waveguide (v =1.57, d =2mm) with a substrate
chosen such that V= k1. =1,55, We have performed numerical calculations
of the effective index }3 a8 function of the total power flow P. The
numerical results for TE-polarized waves quided by a planar layered
structure with a nonlinear cladding described by the dielectric func-
tion (2.19) are shown in Pig. 15 for several dimensionless parameters
€sat + It i3 to be noted that comparing to the Kerr-law case (&, O°)
the characteristic behaviour of TEo and TB, nonlinear wave solutions
are preserved provided that the saturable value n = (. +Ecnt )VEV,C
ie not too small (i.e., for &, ¢ 20.1256 or /1, ,=0.04 in Pig. 15). The
absolute meximum in the TE.' guided wave power depends strongly on the
saturation value and for » ., too small (i.e., for &£ ¢ =0.0155 or
ot =20,005) no absolute limiting action is predicted, Por the TEo P
branoh the propagation constant f approaches the value =(L(+£5a0/1'
asymptotically with power (see the curve corresponding to €catm0.1256
in Pig. 15). Thus the

158¢ | 4 Egarr® characteristic featu-
Esar= 01256 res of the TEm bran-
1580( ches are retained pro-
\575 vided that Nyt is much
! less than the low power
1572| refractive index dif-
ferences (h{: -nc) or
1568 €4 01-0.062 (n¢-n.) . The impor-
B € 5qr* 01256 Esqre 0.062¢ tant concluaion to be
) drawn from these calcu-
15601 € 4at- 0,015 lations is that the sa-
turation effects, if
1556 too large, can alter
52, and in some cases eli-
. ) minate the more inte-
20 40 60 80 100 120 W0 160 18QP resting power-dependent
Pig. 15. The propagation constant P ver- features of nonlinear

sus power P for a self-focus-
ing cladding, where )\ = 0.515)«m
(sfter /100/).

guided waves,
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Por two self-focuming saturable bounding media (i, # nyc)
the effects of saturation on the two separate (unconnected) TEo bran-
ches is quite dramatic (see /100/). In this came the switching cha-
racterigtice are quite different when saturation is included in
both the substrate and the cladding. This should be important for
applications of nonlinear guided waves to all-optical switching
devices.

We consider now a three layer asymmetric structure consisting
of & linear substrate with dielectric constant &5 , a thin dielect~
ric film of thickness d with dielectric constant £, and a nonli-
near melf-defocusing {d( <C?) cladding characterized by one of the
two types of saturated nonlinearitiess:

JEY
Exx TEyy Ttz :Efqgsaf[ 1-enp (_ Ii&m—ty)] (3.126)

EZ,
';(c_f_z__i , (3.127)
{+ Il £2

& sat

We remark that both dig%ectric tensors (3.126) and (3.127) are
Kerr-like, i.e., E>E. -k /£y  for small field intensities and re-
veal a common saturable level (£.-&:,t) . In the case of & gelf-
-defocusing cladding the field pattern reveals a virtual field maxi-

mum in the nonlinear cladding (M. - O} and the dispersion relation

1e  9+(9s+49¢)

Exx = &yy = &zp =€ ~

tg (thlftl) ) Q{Z - 9<9c (3.128)
woere 9.=[p(u)]% o, w=/i4/Ej  end
2
wu)= pLectesat- £t [ 1 epp (- 2, ] (3.129)
E4
PlU)= p? -2+ 2sat — Esat u (3.130)
P > u /b’ (1+ Zsa-()

corresponding to the dielectiric tensor (3.126) and (3.127), respec-
tively.

The total power flow is F-= E;*F}* F. s where &,FL and [
are given by eqs. (3.117), (3.118), and (3.119). We have performed
numerical calculations of the effective index fg as function of the
total power flow P for several dimenaionleas parameters &4+ . The
numerical results for TE waves quided by a multiple quantum well
(MQW) GeAl As | , structure are shown in Pig. 16 for both dielectric
funotions (3.126) and (3.127), Por Kerr-law (&.,(= o) self-defocu-
sing cladding with WM. >/ there is a maximum in the power which can
be tranamitted. Por a realistic saturable nonlinear c¢ladding, optical
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1z is

& 0.01).

limiting occurs, provided thet ng,e =t - (Ec-Esar)
large enough (mee Pig. 16 for 2, = 0.0676, i.e., #,

Pig., 16.

Effective index P versus power |

for a self-defocusing cladding. Here
”E = 3,390, h. .= 3.385, h ==2x10"
me/W, ho= 3,380, d =1.07um, A a=0.82/m.
30lid and dashed lines correspond to
dielectric temsors (2,19) and (2.20),
respectively.

385 |

8%

13852

We see from Pig. 16 that for a self-defocusing cladding medium the

effective index ;3 decreases monotonically with guided wave power

and for h,>n. cutoff occurs at a finite power. This phenomenon can
be used for upper threshold optical devices in which the cutoff po-
wer cen be tuned, for example, by using A thin film of bulk GaAlesF
with variable refractive index h.{x]

A

3.3. Stability to propagation of nonlinear slab-quided waves

The question of stability to propagation of varioua TEm nonli-
near guided wave solutions has only recently been studied by numerical
techniques /44'46'50/. Analytical stebility enalysis is complicated
by the fact that the system under study is of Hamiltonian form (see
/44/). As the eigenvalues of the linearized system all lie on the
imaginary axis the usual stability arguments associated with the dis-
gipative systems do not apply (unless one deliberately introduces
losses into the system).

We treat first the specific case of a TE-~polarized guided wave
in a symmetric nonlinear planar waveguide consisting of a linear
guiding film with refractive index 1, bounded on both gides by iden-
tical self-focusing Kerr-lew clsdding and substrate layers, i.e.,

Me=hs amnd hy.= Nz s (see Pig. 178). The dependence of the po-
wer flow P on the propegation conastant ﬁ is shown in Pig. 17b
for a symmetric layered structure with the following perameters:

hew hgm1.5, h.= 2,d/A = 0.4, In Fig. 18 we present the results of
the evolution of the field distribution with propagation distance
taking a8 initial data the electric field distribution immediately
before and after the bifurcation point on the symmetric TEo branch (S).

At p-1.89 <FT the symmetric wave is stable to propagation over
at least 180 wavelengths (see Pig. 18a) while at = 1.90> £ the 5-
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a)
Fig, 17, &) Sketch of the planar waveguide geometry;

b) Nonlinear dispersion curves for a gymmetric planar
waveguide, Hore n,=»2.0, h. = h.=1,5,d/\ =0.4, The curves Bare marked
as follows: S - for symmetrio wave, A - for ssymmetric wave. Beyond
bifurcation point £-{x>~1.89 both branches (8 and A) are unstable
(dashed line). The doubly degeneyat7 A-wave becomes stable on the
positively sloped region (after 744/),

wave breaks symmetry after only 18 wavelengths (see Fig. 18b). In
this case the wave starts to drive into either the substrate and
cladding layers. Therefore the symmetric TEo branch (S) loses stabi-
lity on the positively sloped branch of the dispersion curve (see
Pig. 18b) at the bifurcation point (oritical propagation constant
)3/‘ Bc*21.89) where the double degenerate asymmetric wave A appears

/44

X =180

x.24 | 1

e TN I
lk X2 ”\
[N\

X=0 ' X=0

-053 0 06) 2 — -0,63 0 053 2 —

a) 6)

Fig. 18. Evolution of the field distribution with Propagation dis-
tance for the symmetric wave (S) juat below a) p -1.8?
and beyond b) B =1,90 bifurcation point f&: FC (after 744/),
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Next we consider an asymmetiric three layer planar structure con-
sisting of a linear substrate with dielectric comstant £ = n§ in re-
gion I (z<0O ), a thin dielectric film of thickness o with dielect-
ric constant E;=Hf in region II ( 0<z<d ) and a nonlinear self-
~focusing cladding characterized by the diagonal dielectric tensor
(2.19) or (2.20) in region III ( z>d ). The TB-polarized wave of fre-
quency Lv propagates along the x ~axis and the electric field is homo-
geneous in the Y direction ( 7 being the transverse coordinato).

The only nonvanishing component of the electric field EY(P‘,t) is
given by eq. (2.11). Then in the usual slowly varying envelope app-
roximation we obtain the following equation for the amplitude
Alx,z)= AR Ey(X,2)
2ipko 22 =?§§2- ¥¥2) k2A + BEYKE{(1AR) A . (3.131)
Here B(2)= 0 for-oo¢z <d and O(z)a 1 for z>d ; ¥¥z)- p*-n3

for z <0, x¥2)- F,2~ n%¢ for 0<z<d, YXz)- szﬂ n? for > and

2
EOINT) = Ecat [i - exp ( fg/:a’f H (3.132)
|AL
£ (148 3 (3.133)
(1+2L)

corresponding to the dielectric functions (2.19) and (2,20), respec-—
tively. Note that for a Kerr-law medium we have +{/A/’) - JAIZ

The parabolic equation (3.131) is a complicated mixed type li-
near/nonlinear Schrodinger-like equation. The X -independent solu-
tion of eq. (3.131), i.e., A (52)- Ao(Z) represents stationary non-
linear guided waves whose effective index is subject to & nonli-
near dispersion relation F—= ’E(P) » Where P is the power flow.
Equation (3.131) has two integrals of motion: 1((5) given by eq.
(2.39) and

i 2 2
HEE) - & “%”;, 1Ry AT k0Ll (I Tz a1
Here we have AR

q (1A = Jo FOa2Yd (1AT), (3.135)

when f (iMl) is given by eqs. (3.132) or (3.133). Por Kerr-law me-
dia we obtain 3({A|1) = 5 JA1Y and for saturable media 3([“2) bhas
the following expressions
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g3 = fasa[ 1oexp (- AT ] 4 (3.136)

Esat
2
GUAY) < £ st [ (40 BL YT P (3.137)
corresponding to the dielectiric functions (2.19) and (2.20), respec~
tively. Note that for arbitrary solutions of eq. (3.131) we thus heave
CLIZJ()(?Oand dH/~0.

The stability of the stationary nonlinear thin-film guided wa-
ves was investigated numerically. For the difference approximation
of eq. (3.131) we used the Crank-Nicolson scheme., The corresponding
system of nonlinear equations was solved on the succesive steps in

x by Newton method combined with a matrix tridisgonal inversion
along Z . We have chosen the grid sizes equal in magnitude K,AX =
= KoAZ = 0.4. This difference scheme makes it possible to conserve
the integrals of motion [(g) and H(E) on the grid. The conservation
of the total power flow FP(p) was always better than 99%. Unstable
stationary waves are defined as waves whose field distribution along
the depth coordinate # changes with propagation distance X . Other-

wise, the stationary solution is called stable.

For a Kerr-law nonlinear cladding the stationary wave is un-
stable on the negatively sloped region of the nonlinear dispersion

curve f- F{P) and starts to drift into the nonlinear medium. In

this case the emission of a single soliton, i.e., a self-focused chan-

nel (see Fig. 19) was found to be a route by which unstable nonlinear
04 guided waves decay /47’49'52/.

it In a case of a nonlinear saturab-

02 le cladding described by the dielect-
0. ric tensor (2.19) with &.20.1256, the
80 00 TEo wave on the negatively sloped
branch of the nonlinear dispersion cur-
so ve (see Pig.15) is unatable/SO/. Nume-
rical propagation over the first 400

70

50

wavelengths is shown in fig. 20 for
o 40 \ P’=1o5585.
30 \\
0_ j¥
///,—~ Pig. 19.

10 \\, Evolution of the TEo nonlinear guided
\\_ wave field distribution with propaga-

o

tion distance for a Kerr-law cladding.
10 00 2,0 40 50 The initial field pattern A,(z)cor-
z responds to ,5-1.5685.
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Evolution of the TEo nonlinear guided
wave field distribution with propaga-
tion distanoe for a saturable clad-
ding described by the dielegtric func-
tion (2.19) with é}at'°‘1256'

In thie case the instability ie weak,
tbe field remains confined to the wave~
guiding film end the field maximum os-
cillates aperiodically back and forth
between the film boundaries. The evo~
lution of the TEo nonlinear guided
wave field distribvution with propaga-

tion distance for the case of a satu-

rable cladding described by the di-

electric tenmsor (2.19) with & ,=0.1256
is shown in Pig. 21 for 13 =1.58 on

the positively sloped branch of the nonlinear diepersion curve

B= p(P). Por this value of the effective index the nonlinear sta-
tionary wave A,(Z) is stable to propagation (see Fig. 21). Bumeri-
cal propsgation of the siationary wave oonfirme that the TEo nonli-

0,50
A o2
70
60
S0
=
40
» /
20 /
10
0 ;
00 20 40
Pig, 21. z

The same as Fig. 20, but for
P =1,58.

near guided wave in an asymmetric
layered structure in which self-focu~
sing occurs in only one of the two
boundary media is stable on the posi-
tively sloped branch of the nonlinear
dispersion curve

In the presence of dissipation,
the Kramers-Kronig relation dictates
that at least linear absorption muet
accompany nonlinear refraction. The-
refore, we must include in eq. (3.131)
an absorptive term:

2
—,ZiFKor%é = %_gz 'XZ(ZJKDIA +

+ B KEF(IARA+ (PR TTE)A -
(3.138)

where | [7)is the absorption profile.
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The effects of linear absorption on TEo nonlinear guided waves
in an asymmetric wavegulde with a Kerr-law cladding have been inves-
tigated in 55/ by using the beam propagation method /101'102/. It
was shown that is preferable to fabricate nonlinear asymmetric opti-
cal waveguides with lower absorption in the waveguiding film. It is
cf interest to mention that the beam propagation method (incorpora-
ting a split-step fast Fourier tramsform) providee a unified treat-
ment of various guided and radiation field problems subjected to
paraxiality,

4. Transverse Electric Polarized Nonlinear Surface
Plasmon Polaritons

4.1, Kerr-law bounding media

In the last years considerable interest has been raised in the
theoreticnal /78,79/ and experimental /103,104/ study of surface pola-
ritons. As 18 well known the boundary between two linear dielectric
media cannot support a TE-polariged surface polariton. However, if
one or both of the media exhibit an intensity-dependent refractive
index, it has been predicted (see/15’18’20'6°/)thnt TE~-polarized
surface polariton ehould exist at powers exceeding a threshold value.

Additionally to the well-investigated nonlinear guided waves
which can be supported by a linesr dielectric film surrounded by at
least ene mgdium (cladding or substrate) with an intensity-dependent
refractive index new waves have also been predicted for metal films
bounded on one of both sides by nonlinear media /105'108/. Nonlinear
TE-polarized waves guided by very thin metal films surrounded on both
sides by nonlinear media exist only for power levels above a threshold
that depends on the material parameters (see /106/). Lederer and Mi-
halache /107/ demonstrated that nonlinear TE-polarized gurface plas-
mon polaritons also exist in planar configurations with either a non-
linear cladding or & nonlinear substrate. Por this asymmetric layered
structure thes nonlinear dispersion curves exhibit a definite power
threshold and a limited range for the permitted propagation constants
as well.

In what follows we will investigate the characteristics of non-
linear TB-polarized waves guided by an asymmetric three-layer confi-
guration consisting of a linear substrate with dielectric constant

€, in region I ( Z<0), a very thin metsl film with dielectric cons-
tant £, =-[g,//<0 in region II (0« Z<d ) end a nonlinear self-
~focusing Kerr-law cladding in region III ( =z >d )., The field dist-
ribution in the substrate, film and cladding regions, respectively
is given by:
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Ej#) = Egerp(egs2) , 2¢O (4.1)
™ ~ ~
(F) = o+ ~ 4,9 -

L) Eo[%; eap (i e 2) + _ZL% W("Ko‘i(z)] s

o< z<d

i -1

Ey:r(z) :(,2(":)4/2(1,( &CLI [Kofi,c(z"zc)]} , 2 >d, (4.3)

where ¢, = ({&LS;)VL , @\‘: (F:2+ f& el )Vz and 4. l(§2~éc) Vz'

Here the surface field £, is given by

~ ~ -2
%ﬁfz{i’uqn%%ﬂﬂﬂﬁﬁﬂdﬁgfﬂﬁﬂﬁﬂwmn
F
dE
As a result of the continuity requirements of Eiy and f/{z
at the interfaces =z = O and Z=<d the effective index F is sub-

ject to a dispersion relation
7 g thlogez ) 358

g, d)= (4.5)
theded) {%fwgacﬂ[k,q((zad)ﬂ

This dispersion relation has a solution if and only 1if wg >N
and Z. > d , 1.e., a field maximum must always be situated within
the cladding region. The power per unit distance along the wavefront
carried by the wave is given by

-2
= i O‘——'—c to (4.6)
PS -2 R’ﬁ ?s
2
{ l{ sy, % sL(Kaq{J)x (4.7)
P{flpoﬁ"(ch KO‘J(i Z{f» ¢

ST ATICIRER RS

s 2fopge b4 o th [koge(ze T (4.8)

-4 o /2

where P, - (2dcke)F (Eofu) V2, _
The numericel calculations were performed with the following para-
meterat V.= 1.55, W, = 1072 ma/w, £ = =10 and A= 0.515/«m (argon
ion laser).

The dependence of the propagation constant on the guided wave
power P 1is shown in Pig. 22 for different refractive indices of the
substrate (see /107/). As in the symmetrical configuration gtudied in

51



Pig. 22,

Propagation constant [> versus gui-
dgd wave power for K.=1.55, 17 =10-9
me/w, £¢ ==10, /\-0.515/4m and Jd=
0,005 mm. Solid curves:’ hs indicated
at the curves and h;, =0. Daghed cur-
ve: Ngm M<-1.55.er4:10“9 me/W,

7106/ we found a definite power thre-
shold where the nonlinear TE-polari-
zed surface plasman polaritons start.
This threshold increases with the
refractive index of the substrate. The deshed curve in Pig. 22 corres-
ponds to the symmetrical planar structure with the following mate-
rial parameters: hy= h, =1.,55, N = h, = 10~9 m2/W. We gsee from Fig.
22 that in the case of an asymmetrical configuration with g 7 e
and h, =0, two different values of the propagation constant corres-
pond to the same value of the ocontrol parameter p and an upper P
limit ocecurs additionally to the lower one which is determined by
h¢ ., The upper ﬁ)-limit is due to the impossibility of field match-
ing at the metal film-dielectric substrate interface. The field
distribution for P near its lower limit W shows that the elect-
ric field penetrates deep into the substrate region and for ﬁ app~
roaching the upper 1limit the field energy is mainly concentrated
within the nonlinear cladding which is favourable for diminishing
absorption losses in realistic metal films. S0, a possible switch-
ing between the upper and the lower branch of the dispersion curve
is accompanied by a transition from a high transmission state to a

low one.

4.2, Non-Kerr-like bounding media

We consider an asymmetrical configuration consisting of a li-
near dielectric substrate with dielectric constant €5, a thin me~
tal film of thickness o with dielectric constant €, =-18¢[<0
and a nonlinear self-focusing cladding characterized by one of the
dielectric temsors (2.19), (2.20) end (2.21). We use the formalism
developed in /40 to investigate the power dependence of the effec~
tive index for both saturable and power-law dielectric tensors
(non~Kerr-like media).

The dispersion relation of nonlinear TE-polarized surface plas—
mon polaritons is given by -

th (keged) = 21(@_%) s (4.9)
Te ~ 95 %c
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1, 0 1/2 _ 2
where Eif: (/Z}HS,‘IY& 1 G = (,&LZS) /2 , Ge © L w)] L usl By
where L[/ is the electric field at the interface z=d and Plu)
ia given by eqs. (2.32), (2.33) and (2.34). The dispersion relation

(4.9) has solution f3>#s, if and only if ¥ s> Hc and in this case

a field maximum (self-focused peak) must be situated within the self-
-focusing cladding medium. The total power flow per unit length is S
P=Pst Py v Pe where P, is given by eq. (3.122) and P and /%
are given by eqs. (3.124) and (3.125), respectively.
The numerical calculations were performed with the following
parameterss hn, = 1,55, V.= 1()"9 m2/w (1iquid crystal MBBA), &, ==10,
ngmleb, d = 1073 m and A-0.515/4 m. The p ~power plots for the
cage of a self-focusing cladding characterized by the dielectric %en-
gors (2.19), (2.20) and (2.21) are -Iagv;m in Pig. 23. As in the sym-
metrical oconfiguration studied in we found a definite power
threshold where nonlinear PE-polarized surface plasmon polaritons
start. The upper }&-lmit that oce\ui-s additionally to the lower one
(p: hs) 1s determined from U=kly = 0, 1.e., Pi= F=0 and
p+ 0 (see termination points A, B in Pig. 23).
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For effactive index ﬁ approaching the upper value, the optical
field will mainly be concentrated within the nonlinear aelf-focusing
cladding. We mee from Pig. 23 that the minimum power required for
the excitation of nonlinear TE-polarized surface plasmon polaritons
inoreases with decreasing €.t . Purthermore, the effective index 2
approaches its limiting value of (&.+&ca¢ )2 asymptotically with
increasing power, The conclusion to be drawn from these calculations
is that the ssturation effects can alter the specific power-dependent
features of nonlinear TE-polarigzed surface plasmon polaritons in con-
figurations with Kerr~law media.It should be noted that the combina-
tion of the very thin metal film thickness required, the losses
usually associated with surface plasmon for small | &| and the large
changes in refractive index required will probably make such nonli-
near waves difficult to observe experimentally.

5. Conclusions

We have shown in this review article that the use of media
with nonlinear refractive indices enriches considerably the phenome-~
non of guided wave propegation in planar structures. Thus if one or
more of the media bounding a dielectric or metal film exhibits an

intensity-dependent refractive index, the number of nonlinear guided
wave solutions, the propagation waveveotor, the field distributions,
the attenuation coefficient and the wavegulde cut-off and cut-on
conditions all become power-dependent, We have discussed a number of
potential applications to all-optical signal processing of nonlinear
guided wave phenomena in planar structures. Planar optical waveguides
are primarily of interest for @serial, rather than psrallel proces-
ging systema.

The power-dependent field patterns can be used for switching
and thresholding operations in & waveguide context whereas the power-
~dependent wavevector used in conjunction with a distributed coupler
can lead to devices such as optical limiters, etc. We have shown that
lower threshold devices that only pass optical pulses above a thre-
shold power are possible baped on self-focusing nonlinearitiss. Thus
& planar optical waveguide with a nonlinear self-focusing dladding
and & linear waveguiding film whose thickness is less than the TEo
cut-off thickness at low power, can become transmitting at high power
levels. Nonlinear guided wave limiters cen be obtained if one or both
of the media bounding the waveguiding film are characterized by a
self-defocusing nonlinearity, Optical sewitohing action can potential-
1y ve achieved if both the cladding and substrate media exhibit self-
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focusing nonlinearities. Moreover 8 combination of controllable thre-
gholding and limiting actiona can be used to fix a range of power
ljevels transmitted down by the nonlinear optical waveguide.
Purthermore, the same type of phenomena should occur in channeli wave-
guide which would reduce the waveguide volume and power op?rating le~
vels considerably. Por example, since most materials exhibit tEe sa~
turated change in the refractive index Anr,,in the range of 10 = to
10'4, power limiting action in the range of a few mulliwatts would
be expectad for 1 mm wide light beam propagating in a planar wave-
guide. If one can extrapolate linearly with waveguide wid?h to ch?n-
nel waveguidea, then by using nonlinear guided waves, optical limit-
ing action might be obtained at a few microwatts power leYels.
Materials in general limit the experimental realizations of
all the nonlinear guided wave phenomena predicted to date. The.fact
that the refractive index differencea hy¢ -~ Mc and Wh¢- hg which
exiat at low powers between the film and the bounding media must be
less than the saturated change in the refractive index AW,¢ putas
severe limitations on the material combinations which can be used

for making @ nonlinear planar optical waveguide. There is a neigjfgrw
new materials with optical nonlinearities ",r greater than 10 m</
and with attenuation coefficlents less than 1 cm”° in wavegulde for-
mats. The optical nonlinearities should be large enough that the va-
rious nonlinear devices can be implemented at milliwatt power levels.
3ince the nonlinear waveguide phenomena will be used primarily for.
serial signal processing, it 1s also necessary that, once the opti-
cal signal is turned off, the nonlinearly induced polariza?ion should
relax in the picoseconds range (the "turn-on" of the nonlinearities
is usually instantaneous). Some candidate materials for nonlinear
third order integrated optics devices 8such as GaAs/GaAlAs multiple
quantum well structures, semiconductor doped glasses aéd nonlinear
organic media (for exasmple, polydiacetylene films) satisfy the above
criteria slthough not all optimally. We look forward over the next
few years to both the demonstration of more all-optical signal proces-
8ing operations using currently available materials and to the deve-~
lopment and utilization of new highly nonlinear materials with res-
ponse time in the picoseconds range which will lead to meny nonlinear
guided wave devices for optical logic and gignal processing.
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S

Muxanaxe [, Hasmurmmos P.I., Gensmm B.K. E17-88-66
HenuHelHEBIe OTIYECKNE BOMHEI B CIONCTBIX CTPYKTYpax
PaccMaTpHBaeTcA COBpEMEHHOE COCTOAHHEe MpoGieMel pacnpo-
CTpaHEHHA HeJIHHEHHBbIX ONTHYECKHX BOJIH uepe3 AHIJeKTPHYECKHe H
MeTANIHYECKHE CJIOHCTBIe CTPYKTyphl. OOCYXHAIOTCA OCHOBHLIE
KOHLIEMIHH U TeopeTHYeCKHe [MOAXOAbl, HCIIOJIb3yeMble I[IpU aHaH3e
HeJIMHEHHBIX 1ToBepXHOCTHLIX BoaH (HIIB) u HenpmHeliHbld BOJIHOBO-
pix Mon (HBM), aMmiuTyabl KOTOPBIX ABJIAIOTCA PpelleHUAMH
OlpeNeNeHHOro Kiacca HejMHeldHoro ypaBHenusa llpenusrepa c
ko3(pUUHEeHTaMH, 3aBUCALIMMHA OT IONEepedHoil KoopanHatel. MeTo-
IaMH UMCJIEHHOTO aHajli3a NPOBEIeHO HCCIIeOBaHHe YCTOMYHMBOCTH
HIIB u HBM. IIpennosxeHb! BO3MOKHbIE IIpii1oxxeHUA asnenusa HIIB u
HBM mina cosaanma npubopoB HeTMHENHON HHTEerpalbkHOM ONTHKH,

Pabora BrmmonueHa B JlaGopaTopun TeopeTHueckoil (H3IUKH
Oousu.
INpenpuut O6benMHEHHOrO HECTHTYTA ANEPHLIX rcenenopanmii. [yGua 1988

Mihalache D., Nazmitdinov R.G., Fedyanin V K. E17-88-66
Nonlinear Optical Waves in Layered Structures

Modern status of the problem of propagation of nonlinear opti-
cal waves through dielectric and metallic layered structures is revie-
wed. The basic concepts and theoretical approaches used to analyse
nonlinear surface and guided wave phenomena in planar structures
are discussed. The amplitudes of these waves are obtained as special
solutions of a nonlinear Schrodingerlike equation with coefficients
that depend on the transverse coordinate. The stability of these new
nonlinear optical waves to propagation in two- or three-layered planar
structures is also numerically analysed. Sorhe possible applications
to integrated all-optical devices are suggested on the basis of these
new nonlinear surface-guided waves.

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.
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