


1. Introduction

One of the essential problems of the theory of irreversible
processes concerns the influence of various perturbations on the
thermodynamical equilibrium of systems. Two kinds of perturba-
tions -——  mechanical and thermal —— are generally distin-
guished in the statistical thermodynamics of irreversible pro-

cesaea1) 2,3)

. According to Kubo's terminology , mechanical per-
turbations originate in the influence of external (e.g., elect-
ric)fields, an action that can be accounted for by including a
term describing the interaction of the external field and the
gystem into the Hamiltonian.

However, there exists a vast class of "thermal" perturba-
tions, related with spatial inhomogeneities in’ the system. Their
influence on the system is not directly accessible to an inter-
pretation within the fremework of Kubo's theory. The spatial in-
homogeneities lead to the emergence of fluxes of - matter, momentum
and energy, tending to make the system homogeneous. Transport
coefficients, such as the viscosity, diffusion and heat conduc-
tivity coefficients, are the result of perturbations of this
kind.

On the microscopic level, processes involving mechanical
perturbations differ essentially from processes due to thermal
perturbations. On the macroscopic level, this distinction becomes
inessential since all the transport coefficients irrespective
of the type of perturbation can be expressed as integrals of the
correlation functions of the microscopic fluxes (by the Green-

-Kubo formulae). Within the same framework, the fluctuational-



-disgipative theorem strictly related with the Onsager hypothe-
_sis4) econcerning the shape of fluctuation decay has successfully
been extended to thermal perturbations. The hypothesis states
that the behaviour of the system (or part thereof) at non-equi-
librium (albeit sufficiently close to equilibrium) is the same
irrespective of whether its momentary state is due to the action
of external forces or to a spontaneous fluctuation. This is of
essential significance when it comes to establishing equations
describing the evolution of systems with local inhomogeneities
due to fluctuations. On the macroscopic level, non-equilibrium
system consisting of great numbers of identical atoms or mole-
cules are described in terms of equations of motion of seversl
macroscopic quantities., The form of these equations depends on
what kind of system we are dealing with and on the conditioms of
#te existence. It is at this point that Bogolubov's hierarchisa-
tion concept of relaxation times in non-equilibrium statistical
thermodynamics becomes essentials). According to Bogolubov, a
non-equilibrium system in its initial stage requires, in general,
a great number of many-body distribution functions for its des~
cription. After a short time [ (of the order of intermolecular
collisions), it attains a kinetical stage, characterized by a
single-body distribution function. At this stage of description,
kinetic equations related with the procésses occurring during
the time 7T, (of the order of the time of free motion of a mole-
cule between successive collisions) are established. Whereas
the inhomogeneities arising due to fluctuations concern a system
that is in the hydrodynamical stage (governed by the relaxation

time 7T ). In simple fluids, within the Bogolubov framework,

the relaxation times fulfill the inequality T < To KTy More-
over, no processes of energy transfer between the translational
and internal degrees of freedom are assumed to take place. In
this way we neglect relaxation effects dependent on the micro-
scopic structure of molecular fluids.

The system is moreover assumed to be sufficiently remote
from its critical point for effects typical for near-criticality
to be absent. The fundamentals of the theory of effects occurr-
ing in fluids near the critical point have proposed by Smolu-
choweki6). In recent years their theory has been considerably
developed by Kocinski7). With the above assumptions on the sys-
tem, the hydrodynamical stage is characterized by the so-called
normal distribution function of the number density of molecules,
the momentum density, and the energy density. The mentioned above
quahtities are functions of the time and positions, and determine
respectively the following hydrodynamical fields: the scalar
fields of the number dengity of molecules and of the energy (tem-
perature field), as well as the vector field of momentum density.

In simple liquids the fluctuations of the hydrodynamical
fields are typically of the order of 103 X in size and thus
greatly in excess of the intermolecular distances. They give
rige to collective motions of great numbers of molecules setting
free dissipative fluxes connected with viscosity and Joule-Len2z
heat. The regions of inhomogeneity in the medium (determined by
the size of'the fluctuatinns ) are very small compared with the
gize of the system as a whole, but are sufficiently large to
admit a description in terms of the laws of macroscopic phy-

sics: hydrodynamics and thermodynamics.



With regard to their size in space and the time-scale of
their exigtence, the hydrodynamical field fluctuations are con-
nected with a variety of phenomena occurring in the medium, Thus,
studies of these fluctuations are a source of highly essential
data concerning the system and especially the transport proces-
ses in the latter. Especial attention is given to fluctuations
in number densitya) because the spectral density of their corre-
lation function is proportional to the structural factor directly
related with quantities that are measurable (light and neutron
scattering). There are many ways of calculating the fluctuation
correlation functions of the hydrodynamical fields leading to
results of a form permitting their experimental verification.
These methods are based on equations of motion, from simple phe-
nomenological equations up to the equations of generalized sta-

tistical thermodynamics comprising effects of "memory" as well
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theoretical methods and respective experiments are due, e.g.,

to Berne and Pecorag) 10):

11)

s Crosignani, Di Porto and Bertolotti

Lallemand''? and Kielich'?),
Some years ago, a number of papers have appeared, dealing
with the spectrum of hydrodynamical fluctuations in fluids at
non-equilibrium stationary state. The results are discussed with-
in the framework of 1light scattering theory. The state of non-
~equilibrium is obtained by imposing a temperature gradient, or
a flow velocity gradient. In most cases, the authors apply me-
thods of fluctuation hydrodynamics based on determining the equa-
tions of motion for the mean value of the respective variable

13"15), whereas others use the method involving an intermediate

16,17) 18)

linear reaction or that of kinetic equation theory . All
these publications fall in two groups: in the one, the equetions
of motion are established first wherees the fluctuation corre-
lation functions are calculated néxt, as well as the experimental
consequences, In the other, & precise form of the equations of
motion is assumed at the very start, and the procedure is rest-
ricted to. the last two steps; this is justified in as much as

in either case relationships derivable from the phenomenological
hydrodynamical equations are used for calculating the correla-
tion function. This, in fact, is the Landau-Lifshits method, in-
volving linearization of the hydrodynamical equations with res-
pect to the steady state and supplementing the relationships

thus obtained with stochastic terms, containing the stress tensor
and heat flow vector. Finally, this leads to equations of the
Langevin type.
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15 our preasin
manner, the fluctuation correlation functions for hydrodynamical
fields in simple fluids. In Section 2 we introduce the generali-

t19) using the method of projec-

zed Langevin equation of Graber
tion operators. Next, on making certain assumptions, we obtain
a set of equations of motion for the fluctuations of the hydro-
dynamical fields in atomic fluids. We use a notation (underlin-
ing certain expressions) which enables us to distinguish the
contributions from the individual mechanisms. In Section 3 we
go over to variables 2,02 in our formulae and calculate the
respective fluctiation correlation functions of the hydrodyna-
mical fields. Section 3, moreover, contains a description of

the path followed by us when deriving the stochastic terms of

the correlation functions for the equations of motion. Since the



functional coefficients obtained are rather bulky in form.

Appendix A gives an appropriate tabulation aimed at abridging
their rotation. The results obtained with accuracy to terms in
q? when deriving the frequency dispersion equation are written

out explicitly in Appendix B.

2, Stochastic Functions Describing the Hydrodynamical Pield

Fluctuations

The possibility of applying Langevin-like equations to the
treatment of non-equilibrium fluctuations (non-equilibrium with
respect to local equilibrium) was first considered by Keizerzo).
Subsequently, their applicability has been considered from dif-
ferent standpoints by Hinton21),0nuk122), and Ueyama23). Gra~
bert19), on the other hand, starts from Liouville's equation and
applies the operator projection method to degive a generalized
Lengevin equation for fluctuations of macrosconie anantitiam onv
the level of géneralized statistical thermodynamios. In the case
of a simple atomic fluid of interest to us the equations take

the following form:
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with: n ——— number density of atoms, g” - momentum density

2 av(g- e 5

coordinate, e - energy density, p - pressure, Vv- velocity
coordinate, T - temperature, g - coefficient of bulk viscosity
(also referred to as second viscosity), W - dynamical viscosity
coefficient (dynamical viscosity), X -~ heat conduction coeffi-
cient, Ev” - coordinate of stress tensor fluctuation, g: -
coordinate of the fluctuation vector of the thermal energy flux,
and m - atomic mass. The superscripts v , n denote Cartesian

variables.

The above are linear equations of motion for the fluctuations

in number density of atomm bh., in momentum density 69 and
in energy density Se . The fluctuations occur in a fluid in
motion with the velocity V , at non-equilibrium stationary
state.

Let us consider a quiescent atomic fluid ( v=0)ina
weakly non-equllibrlum, quasl-stationary gtate caused by a tem-
perature gradient Earller, we had assumed the system to evolve

towards the state of complete thermodynamical equilibrium during



a time much longer than all the relaxation times of fluctuations
about the steady state. This enables us to deal with the quan-
tities of interest as fulfilling, in the steady state, relations
of the form specific for the state of equilibrium. It is our

aim to derive the fluctuation spectrum of the hydrodynamical
fields taking into account the greatest possible number of cont-
ributions, due to the effect of the temperature gradient on the
viscosity coefficients, the heat conductivity coefficient, as
well as the isothermal sound velocity (pressure). Moreover, we
shall take into account the fluctuations of these quantities
expressed in terms of fluctuations in number density and tem-
perature, Within' the above framework and for the sake of maxi-
mal generality we shall not festrict ourselves to the isothermal
approximation but shall solve the set of all the five equations

(1)-(3). In order to distinguish the individual contributions

more s2gile we have introduced the following uwudeiliuiugss
——————— termg related with the temperature gradient,

———mmeee  teyme related with fluctuations of the tramnsport
coefficients and isothermal sound velocity exp-
ressed via fluctuations in number density. and

temperature, o

—————— ~ cross terms,

non-underlined are terms related with the basic fluctuations
of the hydrodynamical fields.

To make the eqs. (1)-(3) solvable we apply certain simple
thermodynamical relatinns enabling us to express the fluctuations
in energy density and pressure by way of fluctuations in tempe-

rature and number density of atom39 )x
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where o is the volume coefficient of tﬁermal dilation, and X
the Poisson coefficient (the ratiocﬁ/cv of the specific heat at
constant pressure and at constant volume). The subscripts '"ss"
and "o" denote respectively steady state values and ones taken at
complete thermodynamical equilibrium.Moreover, we express the fluc=-
tuations in momentum density in terms of fluctuations in the rate
of flow &V : .

69": mn.bv’ (6)

The esssunption made when deriving egs. (1)-{3) enables us to write

the transport coefficients, the temperature, the isothermal sound
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for } respectively equalling 3 ’ ~L » X and C;. Whereas for

the temperature and velocity we have
Te=T, +VT7 +6T g

—
\725 (1_3) = O , (9)
PFor brevity, we introduce the following notation:
D = Aiﬁ (longitudinal kinematic viscosity),
v mMe

(10)



D.= x (heat diffusion coefficient),
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With regard to (4)-(16) and on introducing the operator nabla
eqs. (1)-(3) become
(17)
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Eqs. (17)-(19) form a set of three equations of the Langevin

type of the hydrodynamical fluctuations occurring in the atomic
fluid. The system is in a weakly non-equilibrium quasi-stationary
state due to the presence of the temperature gradient. The latter

hags the meaning of an external generalized thermodynamical force.

3. Correlation Functions of the Hydrodynamical Field

Fluctuations

The expressions (17)-(19) are linear equations, derivable
from the phenomenological equations of hydrodynamics for momen-

tary values of the hydrodynamical variables. Quite obviously,

these equations differ from those describing equilibrium fluc-

tuations in that they contain terms which take into account the
influence of the temperature gradient and hydrodynamical fluctua-
tions on the transport and sound velocity coefficients. One notes
that, in contradistinction to the terms expressing the dependence
on the temperatiire gradient, those related with the influence

of the fluctuations on the transport and sound velocity coeffi-

cients do not occur as mutually independent quantities, One more-

1



over notes that eq.(18) contains no terms describing the inf-
luence of fluctuations in the transport coefficients. This is
due to our assumption that the fluid does not flow as a whole,
and the expressions in question always occur as products of
the flow rate in the initial equation (2).

The set (17)-(19) will serve to determine the correlation
function of hydrodynamical field fluctuations. To this aim, we

re-write the equations in matrix form:

, |6 . 0 ,
MIY [=- |VEV |+ N (20)
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involving the matrices M and N:
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Prior to applying the Fourier transform to eq. (20) we shall

make an assumption, often used in quantum perturbation calculus. °
In order to ensure a slow evolution of the system towards equi-
librium via quasi-stationary states we assume the temperatu:e
gradient to be an appropriately small quantity. Thus, the diffe-
rence in temperature AT between the boundary regions of the
medium distant by L of the order of 1 cm is a quantity of the
order of 1 K fulfilling the inequality %F,—" <K 1 . Thus, we

are justified in,writing
Tes@®=T(7=0) - §Tsing ¥ » o0

ST=T. q=1 .
where qu_V'T‘, qy_L
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We consider a sample the L dimensional of which are much greater
than the correlation range |?‘ and the free path of the hydro-
dynamical modes due to the fluctuations. We thus obtain nonzero
contributions to the correlation function for IT!{{{( 1L only.

Por ¥ - values satisfying this condition, the product E-? takes
small values and (24) becomes a good approximation in (8). In
addition, the above condition enables us to neglect the influ-~
ence of boundary effects on the processes under consideration
and permits the integration of (20) in the limits (-co ,+co ),
We now obtain the Pourier transform of (20) in the following

general, compact form:

(25)
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To obtaln the correlation function for the hydrodynamical fields

we write the conjugate of the matrix (25):

[Sna V &7, ] WZ[O [EE’ LE§~~](M 1)* (26)

Next, multiplying (25) and (26) and taking the statistical ave-
rage, we arrive at the correlation functions. Our results, when

tabulated, assume the general form:

14

(Enesid GratE> ek D [REC——T
. N1 “

e S e DU T s Ve [ o B — 0 B0 ’"J

EREEDERED ST o

--'u 'X'n nB*"v]

_ 7 T

[ w“uB,‘n - 0‘41013 (5,*-'"] [0(‘“0\” T %y ‘Bﬂ?i”J
’ 7 i

[0(11 b2 — 0ty onp, ‘"‘"] [O(n A Brpn - oy o0, DTEk]

_ . .M ! " (27)
l 3£d12 i Q“QBBTk -‘u] [(XuduBz'k"—uﬂQf? T-z-li‘lz,

The terms d:i R (xzi are functions of the transport coeffi-
cients and their derivatives. On restricting ourselves to terms
quadratic in f we get the respective functions in the form
shown in Appendix A.

The 5 are corre
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stochastic terms of the equations which describe, respectively,

the fluctuation in velocity QQ and in temperature STt :
=% b= > T 3 oy
= . . (28)
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k
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Let us assume that there are no correlations between the fluc-

-

tuations of the stress tensor and thermal energy density flux
vector. Thus, the cross correlation functimnns vanish. The corre-
lation functions lgfi” , ﬁ%,ﬂy , determined in Ref.24).

similarly to the elements q% . (XS are func-

15



tions of the transport coefficients and their derivatives, de-

24)

pendent on @ and the temperature. In , the wave vectors

Kk kb ere shown to take the values

C, I:; f:naz n= 014 for B 3 o)
042:3  for (B aan

.

Thus, the above correlation functions can now be written as
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In order to write I[)(f‘$)]'z in the generally accepted
form we have to solve the frequency dispersion equation

D(E’.cf‘s)=0, | (33)
where E)(C.iis> is the value of the determinant of the Fourier
transform of the matrix rﬁ of eq.(20).

The solutions of (33) take one form or another for different
values of kg « This is so because, according to the order of
accuracy assumed, certain terms do or do not ocecur in the solu~
tion depending on the value of E o The strict solution of this
equation for the case under conslderation is to be found in
Ref.?4), For £ in the optical range, i.e., for  kx10° cm”’,
and for an accuracy restricted to the first terms in q2, we Ob=-

tain (see Appendix B):
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The corrections Gyy im1,2,...8, as well as the forms of lD(:)lz
are given in Appendix B (eqs. (B13)- (B20) and (B.34)).

(34)

The esmential.result of our work resides in the relation
(9), which summarizes the set of all possible cases of the hydrody-

namical field correlation functions.
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A similar calculation procedure has been applied in Refs.
13'15). However, their authors have not performed systematical
calculations taking into account the greatest possible number of
contributions to the hydrodynamical field correlation function,
restricting themselves to a discussion of the influence of the
temperature gradient on the velocity of sound, the coefficients
of viscosity, and the heat conductivity coefficient, and neg-
lecting the fluctuations of these quantities., Also, they do not
go beyond solving the dispersion equation with accuracy to the
second order of perturbation calculus. Applying the isothermal
approximation, they omit the changes in entropy; this leads to
a set of initial equations containing no equation of motion for
the fluctuations in temperature. Also, the correlation functions
of the stochastic terms of the hydrodynamical equations used
there are given a presentation more intuitive than resulting
from thorough calculations. All this leads to ‘the circumvention
of certain conditions which amount to specific selection rules
on the values of n' &and n'' and eliminate arbitrariness in

the construction of the final expressions strict premis.

4. Conclusion

We have been congidering a system in a state of non-equilib-
rium due to the introduction of a temperature gradient. We have
agssumed as satisfied all the conditions for this state to be
stationary. A system like this can be realized with a high deg-
ree of accuracy by surrounding the medium on either side with
reservoirs as two different temperatures giving a slight gra-
dient, decaying slowly compared with the lifetimes of the pro-

cegses taking place in the system.

18

We make use of hydrodynamical equations of the most gene~
ral form:

(1) taking into account the influence of the temperature gra-
dient on the viscosity coefficients I @and Q , the heat
counductivity coefficient X » and the sound velocity C

(ii) including the fluctuations in sound velocity and heat con-
ductivity coefficient expressed via fluctuations of the fun-
damental hydrodynamical fieldg ~—— those of temperature and
number density, and

(iiidnot restricting ourselves to the isothermal approximation,
and taking into consideration all three hydrodynamical
fields, and

(iv) performing our calculations to terms in q2.

N We have transformed the et of five equations to variables

k» w and have solved it analytically. We have expressed the
hydrodynamical field fluctuations by way of stochastiec functions
with various wave vectors, resulting from our calculations. The
functional coefficients that occur are dependent on the parameters
characterizing the medium and on their derivatives with respect
to temperature, density and pressure. The determination of the
correlation fungtion consisted primarily in solving the frequ-
ency dispersion equation and calculating the correlation function
for the stochastic terms of the initial equations. It is neces-~
sary to stress, as highly important in all cases, the dependence
on_:he E?ncrete value of the wave vectors, of the general form
k=L +n'5: (for the conjugate part, E’: E)*'n-” ). It is

egsential that the values taken by n' and n'' are a consequence

19



of form derived by us for the initial equations and are by no mesns
but an attempt at generalizing the expressions indexated by the E.
Similarly, the set of n' and n'! values occurring as indices et
the correlation functions of the stochastic terms of the initial
equations is the result of strict, methematical operations and
thus derives from a mathemetical and physical necessity rather
than from a bare possibility.
We have introduced distinctions between terms related with

contributions of different kinds:
1. contributions from fluctuetions in number density, momentum

and energy,
2, contributions appearing due to our having taken into account

fluctuations in sound velocity and heat conductivity coeffi-

cient, and

3, ones related with the presence of the temperature gradient.

arnanifia +

A omiilihreiom Flvow
’ P

icns of tho Wype
tuations, are found to occur independently. Thus cross terms, being
products of contributions of the types 1,3 and 2,3, appear as well.
In part II, now in preparation, we shall discuss the influ-
ence of the above derived contributions on the spectrum of scat-

tered light.
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Appendix B (16:(-‘2—) (BBKT;")(%) ) (B.7)
The frequency disperaion equation has the form23) .
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=(¢-1)== (D;k-D, k)
G,=(g )cgtf ( )
Sy(qo 1y 8T [l o facsk)1kd
G=4(1-%) O [3_1_) o _a__)] K

-

o~ 2 k.
G,=28T £ [1+(5~ 4)][(%)”“"@]—‘%’

h:—T;[b(Dk)ﬂnz(Dk DK+ by (D7) ()]

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)



A Tlo 3 j
G,= 67‘[1_* (_1_*_ )Jl(ag#‘) L _B_L _)_ 7 (B.17)
G= A [bq(ﬁflé)ﬁ—bj(ﬁ,k YDk + by ( ) - (8.18)

- b#DTkl (D" k'z) T~ (fDikz)q] b

=

6,= £Z [(52k - b0 53) - (b D + 6,0, a5 K3 (219

6,= =L [0, (DA + b, D" 04 ] (5.20

e ¢k

The coefficients b, , i=1,2,...11, occurring in (B.13)-(B.20) are

functions of the Poisson coefficient e and have the form

b= g (45" ~135" 195 +4) » : (3.21)
bz:E(%K -125+19) , (B.22)
b_;='—(-1Zg -19) (B.23)
b, = ei( —13‘185 -2350 g*- 365 +279) (B.24)
b = é%(%bez; -u1u2g? + 34504 -578) , (B.25)
b= —;—(21265 U2y - 4115), (B.26)
b4=1i6 (5035 - 334) , : (B.27)

=-[3¢-E-3-0-4- 057 (8.28)
b9=3 [.K (_1:_—)] (B.29)

24

bo=4(1-5)> @.30
(B.31)

The underlinings are in accordance with the convention intro-

duced by us in Section 2.
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