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I . INTRODUCTION 

There are several cases in which phase transitions are 
described by coupled Ising models. For example, in molecular 
crystals the orderings are of two types: translational and 
orientational orderings. They characterize the crystal phase, 
whereas the rotational ordering is broken in the plastic pha
se which takes place under some thermodynamic conditions/1/ • 
Recently, the study of these crystals was resumed again/2/ • 
The solid-plastic and the plastic-liquid phase transitions 
are described by two lattice gas models (Ising models), re
presenting the translational (t 1) and the rotational (r 1) 
degrees of freedom at any site i with usual couplings in one
constant approximation (J1. = J), and a mixed t-r coupling of 

J • 
the type l t 1 r 1 • There are arguments that under some clrcum-
stances one of the degrees of freedom, (t1 or r 1 ), can be 
considered as frosen variables and this leads to a simple des
cription of the phase transitions in systems as NH 4Cll2/. In 
r"Y'"' .......... - .... 1 ~1-. .... ~, .... ~.._.: .... _ ................. ... t... ..... - ..... .... - _.,_ ' .J." --..l-- - -
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= 0, may disappear /3-5/ , and then the solid-liquid transition 
remains to be investigated. This is a case of interest in 
the present study. In fact, our consideration is somewhat 
more general. It may include a few other examples. 

Several phase transitions in liquid solutions and binary 
alloys can also be studied by coupled Ising models. In this 
case the t~r coupling is more general, l 1jt 1r 1 , and obvious
ly, t 1 and r 1 have another meaning/61. It is out of question 
that the investigation of coupled Ising models is of use for 
other complex systems as, say, some magnets/7,8/ and ferro
electrics/9/. Besides, theoretical results from such type of 
models might be of principal interest for the theory of phase 
transitions. They are related with results for phenomenologi
cal mean-field or fluctuation free energies ("Hamiltonians") 
with two coupled order parameters ("fields"). 

In this paper, using mean-field and renormalization-group 
(RG) theories, we consider the model 

1 -
H/T = - - l ( ~ .t. 
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where i,j = 1, ••. ,N, N is the number of molecules ("spins") 
in the lattice, r 1 and t 1 take valu~s ~1. The original coup-
ling constants are given ,l>Y J ~·/ = .~ :jr /T, and H = h ofT. 
It is assumed here that 11• r = 1 ~·.r are symmetric matr1ces. 
In some cases the results will bJ1 given in the one-constant 

• • ( t r t,r f . . ) approx1mat1on Jd = J or any 1,] • 
We present in section 2 a mean-field treatment of this mo

del. The fluctuation Hamiltonian and the RG analysis are dis
cussed in section 3. The results are summarized in section 4. 

2. MEAN-FIELD TREATMENT 

Using the well-known rules/10/, the free energy f 
is obtained in the form 

(F/N) 

a a 
C = T{:..Lt2+ _r_r2+ hrt -ln2cosh(a

1
t + hr) -ln2cosh(arr + ht)l, 

2 2 

where t =< t 1 >, a~d r = <r 1 > are the order parameters. In 
eq.(2), the notat1ons are: 

h = h 0. 

and 

a = 
t.r 

l 
. • I . ' l' 
J \,... ., 

l ~ t, r 
HIt) ij ' 

(2) 

(3) 

(4) 

where the summation is over the interacting neighbours taken 
into consideration and the sums are presumed independent on 
the site i. If the neighbour spins act on the site i in one 
and the same way, introducing numbers zh, z 1 r of the neigh
bours for eyery coupling (J t. r and h 0), we have h = z hhO and 
a

1 
r = z

1 
r1t,r ~ 0 which is equivalent to the one-constant 

approximation. For the sake of simplicity we set below z = 

= z h = z t, r • 
The order parameters t and r are obtained by the conditi

ons (afjat) = 0 and (af/ar) = 0, which yield 

a t + hr -a . th(a t + hr) -h·th(a r +ht) ""0 
t t t r (Sa) 

and 

2 

ar r + h t - ar . th (ar r + ht) - h. th (a t t + hr) = 0, (5b) 

or, after two obvious substractions of these equations, 

a . [ t - th (a t" t + br )] "" 0 (6a) 

and 

a. [r - th (ar r + ht )] = 0 , (6b) 

where a = a(h) is given by 

a=aa -h2 
t r ' 

(7) 

The problem is to obtain the possible phases and their 
domains of stability. The interesting case is h ~ 0. If h = O, 
the eqs. (5) or (6) decouple of two canonical mean-field equa
tions with standard solutions. Further, we discuss the coup
led model (h ~ 0). 

The solution t = r = 0 (i.e. the para phase) always exists. 
One can obtain from eqs. (5) that the only allowed ordered 
phase is the mixed phase (t ~ 0, r ~ 0). 

The form of eqs.(6) shows two distinct cases. 

2.1. a= 0. There is a degeneration which is clarified 
from eqs~. Replacing ar = h2/a 1 there we receive two 
identical equations, i.e. the equation 

x - a 1 thx - h. th(hx/a 1 ) = 0 (8) 

for the (only) order parameter x = a 1 t +hr. The phases ~x 
are physically indistinguishable. The eq.(8) can be analysed 
by Landau's expansion for x <<I and (hx/a

1
) << 1. It is obvio

us that the phase transition here is of second order for suf
ficiently small values of h2. There are values of h and a 1 
however at which this transition may turn out of first order. 
The investigati9n of the.last requires an expansion up to 
order x2. Instead of these approximate ways of investigation, 
here one may successfully use numerical calculations. 

2.2. a ~ 0. It is convenient to change the variables to 

X=a 1 t+hr (9a) 

and 
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y ~ ht + ar r • (9b) 

In terms of x and y, eqs. (5) are 

X - at th X - h • thy = 0 (lOa) 

and 

Y - a r thy - h. th x = 0 • (lOb) 

After multiplications with h, at or ar and two substractions 
of these equations each other, the system (10) becomes 

ar x - a. th x = h y, 

and 

aty-a.thy=hx, 

and then, in an obvious way, one obtains two independent equa
tions for x and y, i.e. 

x - at th x -h. th ((ar x -a. th x )/h) ~ 0 (II) 

and 

y- arthy -h-th((aty -a-thy)/h) = 0. (12) 

Note that the inversion h ~-h changes nothing. It is suffici
ent to analyse one of this equations, for example, eq.(ll). 
For h = 0 eq.(ll) describes an ordinary second order phase 
transition. If h # 0, analytical calculations can be perfor
med for x << I considering the h-dependent term as a pertur
bation. Strong sufficient conditions in which this procedure 
is valid are given by the inequalities h < x and h < atthx. 
In this domain of small h2, eq.(ll) is solved by iterations, 
i.e. setting 

x(h) = x0 + x(h), (13) 

where x 0 = x(O). The solution x 0 = 0, which is stable for at< 
<I, is not of interest as it leads to x(O) = 0 within the 
first iteration (see eq.(ll)). The solutions ~x 0 (#O) are 
identical and we shall discuss only x

0 
= x~ > 0; (at >I). 

After the first iteration, 

4 

x- a thx =h·th(hx
0
/a ) , 

t t 

using eq.(13), we obtain 

Bx= 
h· th (hx 0/a t ) 

q - a tth 'x0 

( 14) 

(IS) 

Fromeq.(14) one sees that (a/ax)x ·th'x 0 = I- (x5fa1), and 
0 hence, 

h • th (hx 0 /a t ) 
X=Xo+ , at>l. 

1 - at+ (x2o/at) 
(16) 

The result (16) is exact within the framework of our mean 
field consideration. The iteration correction 8x is small, 
i.e. 8x << x

0 
if the above-mentioned restrictions for h are 

fulfilled. In Landau's approximation, x2 = 3(at- I)/at, and 
8x is small for h2 < at(at- 1). If h2<~ I, eqs.(14) and (16) 
are simplified to 

x -a . thx = h , ( 17) 

and 

x = x
0

(1 + 
a (1 - a ) + x2 

t t 0 

h 2 ) ' (18) 

where hx = (h2xofat) plays the formal role of an "external" 
fie~d/11/ . Then one may introduce a "susceptibility" x = 
= (ax/ah 2) at h = 0 as a measure of the response to the appea
rance of the "field" h2 , i.e. the coupling. The quantity x is 
easily calculated using eqs.(16) and (18). We shall explore 
this "external-field" analogy using the Landau approximation 
(x «I). 

In order to avoid some misunderstandings, note that in eqs. 
(14)-(16) and (18), x0 is the exact solution of the canonical 
mean field equation x 0 = at ·thx 0 and it would not be correct 
if one replaces' into the·se equalities the approximate value 
x 0 "' 3 (a t - I) I at, which is valid for at ~ I, i.e. x 0 « I. 

2.2.1. Landau approximation and external-field analogy. 
In fact we use the conditions h < x « I and at > I. Then, 
having in mind that x 0 # 0 is given by x~ = ~(3(a t- 1)/at) 112, 
we have two equations for x: 
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(1 - a )x + ..La x 3 = h + 
t 3 t X' 

(l9a) 

and 

1 3 
(1 - a )x + -at x = h , 

t 3 X 
(19b) 

where h ± = (h2x±fa ) • These equations give a description of 
the ordlr paramgtef x in a full analogy with the case of a 
~~odel in an external field /11/, Following ref. /11/ one 
can analyze the function h 2(x). This function has extrema at 
x~ = :!:..XoA/3. There are however some differences as, here, 
HZ(x) ~ 0. From eq.(l9a), one finds a maximum h2max= 2a t(ai
-1)/J../3 > 0 of h2(x) at x~, and a dunnny minimum h2. = -hmax 
at x' in the forbidden region (0 < x < x c) of values mmti2 (x) < 0. 
Corr~spondingly,_Jrom eq.(l9b), h2(x) has a maximum h!Ax = 
= 2at(at- l)/3v3 0 at x = x~. The curve x(h2 ) descr1bed by 
eq.(l9a) is given for small h2 and a fixed at > 1 on Figu-
re Ia. The curve x(h2) from eq.(l9b) is obtained by inversion 
x ~-x, giving an equivalent description (Figure lb). 
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Within lhe above approximation, the values of x in the vi
cinity of !Xo are given by 

2 
± h /at 

X =±X
0

(1+ -), 
(1 - a t ) + a t x~ 

(20) 

where the possibility for x 0 = 0 is included into considera
tion. In particular, for x~ = 3(at- l)/at, 

x± =±(3(at-l)/at)112.(1+ h2 ) . (21) 

It becomes clear from 
lities y 0 = y{x 0 = O), 
and 

2at (at- l) 

eqs.(20) and (21) -that the susceptibi
+ andy-= y(±x

0 
-1 0) at h = 0 are y 0 = 0, 

+ y- ± (3ja3(a - 1)) 1/2 . 
t t 

(22) 

These formulae give some information about the qualitative 
features of the functions x±(h2) depicted on Figures la,b. 
It is seen from these Figures that there are possible values 
of the order parameter x in the interval 0 < h 2 < h2 • Which 
of them correspond to stable states is a question~J be ans
wered in the next subsections. The domains of x, where y <0, 
cannot be straightforwardly identified as domains of insta
bility as here y is called a susceptibility in a special sense, 

The picture described above is qualitatively valid in the 
framework of the exact treatment of eqs. (10), or (11), and in 
particular within the iterative treatment by eq.(l4). This 
statement is verified through numerical calculations (see sub
section 2.2.3.). Differences appear in the particular values 
of the parameters at which the function x(h2) has extrema. 

We end this subsection with a note. The approximate results 
(20)-(22) cannot be obtained by the use of the exact eq.(l6). 
If one replaces there thz "' z and the exact value x ~ with xg"' 
"'3(at- I)/at, the obtaining of the results (20)-(22) requ1-
res some factors at to be neglected, which is correct only 
if at , I. In fact, if such a procedure is performed straight
forwardly, one will find from eq.(l6) that 

+" 
x- = ± x 

2 
ath 

(1 + ) ' (23) 
(at -lH3 -a~) 

instead of eq.(20). This incorrect formula describes a dunnny 
singularity at at = y:f. The correct correspondence requires 
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the expansion of th'x
0 

into eq.(I5) to the order used in 
eqs.(I9). 

2.2.2. Location of phases. The point here is the location 
of the domains of stability of the para phase and the mixed 
phase. Obtaining the second derivatives of the free energy 
(2), one can determine the sufficient conditions for minima 
of the free energy in the form 

a (1 - a a t - f3 a r + af3 a) > 0 (24) 

and 

a - aa2 - 8h2 > 0, (25) 
t t 

-1 2 -1 3 
where a =cosh (att + hr), and f3 =cosh (arr + ht), and we pre-
sume that a I 0; ar, at > 0. The inverse inequality (25) and 
(24) present the conditions for maxima. 

We restrict ourselves with some analytic calculations for 
the para phase (t = r = O), where a = f3 = I and ineqs. (24) and 
(25) are simpler, i.e., 

a (1 - at - ar + a) > 0 (26) 

__ _, 
Q&..LU 

a - a2 - h 2 > 0. 
t t (27) 

Two cases are distinguished. 

(I) The weak coupling case (a> 0), The para phase is a 
minimal state of the free energy in the domain 

h 2 < 1/4 ' (at)- <at < (at ) +' 

(h2 ;a ) < a < l - (h 2 I (1 - a t )) , 
t r 

where 

(a )+ = .!._ (l ± (J_- 4h2 ) 1/2) < l . 
t - 2 -

(28) 

(29) 

It is seen that the domains of at and ar are smaller than 
that for the decoupled case (h = 0): 0 <at, ar <1. Thenar
rowing depends on h2. 

If, as in ineqs.(28), h 2 < (1/4), the para phase is a maxi
mum off for at >I and ar > b2/(at - I) + I. 
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The situation for h2 < I/4 is shown on Figure 2. On this 
Figure we denote with (?) the regions where nothi'ng is pre
dicted by the present analysis. 

If h 2 > 1/4, the para phase gives a maximum of f for at > 
and a r > I + h2 I (at - I) • 

For the very special circumstance h2 = I/4 nothing defini-
te can be concluded. 

(2). Strong coupling case. (a< 0). The para phase does 
not give minimal values of f. It is a maximizing phase for 
h 2 < I /4 if 

1 - (h 2 I (1 -at)) < a r < h2 I at , (30a) 

nrovicfpcf 

0 <at < (at)_ or (at) _<at < l (30b) 

or if, alternatively, 

at > l and ar <h2 /at. (31) 

This picture is shown by Figure 3. 

~- .. 
0 (a.tJ_ (Q..t}t 1 a.t 

Figure 3 

If h 2 > 1/4, the maxima off are in the domains (at >1, 
ar < h2/at) and (at <I; I-h2/(1-at) < ar <h /at). 
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2.2.3. Numerical calculations. We have calculated f = f-fp, 
where fp is the free energy of the para phase._This gives some 
information about the location of the phases. f has been cal
culated at fixed y(h), at and ar using a few values of h in 
the domain h 2 < h2 • It has been shown in this way that on 
the segments AB ~~a DC of the curve x(h2 ), (see Figure 1), f 
uas minima whereas the segment oc presents maximal values of 
f. For any h2 in the interval (0, h~ax), the_minima described 
by the segment DC are situated on the curve f(x) above the 
minima described by the curve AB. This means that the stable 
states are given by the values of x(h2 ) which lie on the seg
ment AB, whereas DC describes metastable states. 

This picture changes for h2 > h~ax• In this case only one 
minimum appears and it is situated on the segment AA'. 

These considerations demonstrate that the description gi
ven in subsection 2.2.1. is qualitatively correct and that 
the inequality y< 0 really describes the regions of instabili
ty. 

, It has been shown that in the regions where the para phase 
is a minimal state, states of mixed phase are also possible, 
but the last ones give higher free energy, i.e. they are me
tastable states. Besides, it turna out that in the domains, 
where the para phase maximizes the free energy, there are 
sm.<~ll rPeions in T.Jhirh f r::~kPs :rosiri"P ""'l"P" 'l'hP rP"11lr" 

demonstrate that the phase transition is of first order with 
regions of coexistence of stable and metastable phases. 

3. FLUCTUATION HAMILTONIAN AND RENORMALIZATION GROUP 

We shall somewhat simplify the model (I) replacing the tr
term with h 0 ~riti. The integral transformation 

oo N 1 -1 -1 1 
( .TI • dx1.exp{- 2 x1 Vij xj + ai X 1) = C exp(2aiVij a j) (32) 

-oo 1 = 1 

is used in order to obtain the fluctuation Hamiltonian. In eq. 
(32) a ~ummation is presumed over repeating indices and C = 
= (Det(V~ 1 /2 ))- 11~ Applying the transformation two times 
with res~ect to t 1 and r 1 we obtain an effective Hamiltonian 
in the form: 

Herr= (ddx(.!..rlctJ1 +s_(V<t>1)2 
2 2 + ..Lr2ciJ~ + ~ Vci>2) 2 +doci>tci>2+ 

2 2 (33) 
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I 
I 
i 

+ d 1 ( V q, 1) · ( V 0 2) + u 1 ciJ 
4 

+ u2 ciJ 2
4 

+ v 1 ciJ ~ ciJ 2 + v 2 ci> lei>~+ w ciJ ictJ ~) • 
(33) 

where ctJ 1(x) and ctJ2(x) are one-component fluctuation fields 
and dis the spatial dimensionality. The para~eters r 1 , r 2 , 
c 1, etc., are related to the original parameters h 0 and J!!r 
We shall not present here these relations. We restrict oufl 
selves mentioning that r 1 "' (T-Tc0

) and r 2 "' (T-T 0 
), where T 0 

o rt r ! c2 cl and Tc2 depen~ ?n h0 and J 1•J .The parameters c 1 , c2 , u 1, u 2 
and ware pos1t1ve near Tc and Tc , whereas d 0 , d 1, v 1 and 

h . f 1 2 w h v2 may c ange s1gn or some values of h 0 and the exc ange pa-
rameters. 

The RG treatment is performed in the framework of the Wil
son-Fisher recursion relations/12/ • The parameter d 1 is 
irrelevant. The recursions for d 0 , r 1 and r 2 are: 

d~ = b2(d 0 + 3v 1 I 1 (r 1) + 3v2 I 1 (r 2 )) , 

r; = b2 (r 1 + 12u 1 I 1 (r 1) + 2w I 1 (r 2)), 

and 

r; = b 2(r2 +12u2I 1 (r 2 ) + 2wl 1 (r 1 )) , 

T.JhPrP T (r.) = K ,• dk·kd-l (k 2+r. )-0 • (i.n=l.2) and K-:1 = 

(34) 

= 2 d-1. ~d/2:r(d/2)u, and the integ~ati~n i~ ov~r momentau in 
the shell b-1 < k < I ; b > 1. The rescaling factor is denoted 
by b. The Fisher exponent ~ = 0 in this approximation. In
troducing new parameters x 1 = Kdu 1 , y 1 = Kdvi and z = Kdw, 
the remaining part of the recursion relations is 

x~ = b( (x 1 - (36x~+ 18y~ + z2 )lnb), 

x'2= b( (x2 - (36X~+ 18Y~+z2)Jnb), 

Y; = b ( (y 1 - (36x 1 y 1 + 12y 1 z + 6 y 2 z ) In b) , 

Y;= b( (y 2 -(36x2y 2 + 12y 2z+ 6y1z)lnb), (35) 
I • 

and 

z'= bl(z -(36y~ + 36y: + sz2 + 12x1z + 12x2z + 36y1y2 )Inb), 

where t = 4 - d. 
One can analyse these recursions using known rules 1121 • 
There are two decoupled fixed points (fps) characterized 
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by the coordinate z = 0 of z. They are: 
= y 1 = 0, (i=l,2) and an Ising fp (y

1 
= 

bing two decoupled Ising models. 

the Gaussian fp xi = 
a, xi = 1/36), descri-

Another type of generic fps is given by the coordinates yi= 
= 0 and z I 0. In this case one obtains the well-known Heisen
berg fp, describing bicritical points and the so-called hi
conical fp, which is related to the tetracritical behavio
ur/13/. 

Besides there are a few essentially new fps. Firstly, sym
metric fps x1 = x2 = 1/144, z = 1/24 and y 1 = y 2 = 1/72 or 
y1 = y2 = -1/72. Secondly, two fps with somewhat more compli
cated coordinates take place: 

- - + 
X1=A 'X2=A 

and 

Y 1 = (2zA- /3) 112, Y2 = (2zA + /3) 112 

or 

-
y 1 = -Y 1 and Y2 =-Y2' 

where 

± 1 1/2 A =-0-12z±(1-24z) ). 
72 

The second pair of fps has an exceptional property. The coor
dinates Xj and Yi depend on the coordinate z(=z) and this is 
a consequence of the degeneration of the system of equations 
for the fps in this case. The parameter z varies from zero to 
1/24 and this leads to the description of two lines of fps. 
If z > 1/24 or z < 0, the last couple of fps does not exist. 

The generic fps describe known exponents/12,13/, It has been 
shown by numerical calculations that the symmetric fps always 
give two positive exponents, while in the case of the last 
couple of fps one has three positive exponents for any z~ 
E (0,1/24). One may therefore conjecture that the new fps, 
obtained here, describe first order phase transition. 

4. CONCLUSIONS 

We have investigated in this paper the critical behaviour 
of coupled Ising models. We have shown within the mean-field 
approximation that this complicated model describes a first 
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order phase transition in both the weak coupling and the 
strong coupling cases. The renormalization group analysis 
has revealed a richer behaviour. A new types of critical 
behaviour are given by this model related to critical and 
multicritical points, which are previously known in the li
terature. They are described here by a few generic fps of 
the model. The RG has shown four new fps, two of them of ve
ry special kind. All of these fps are unstable and describe 
first order transitions in a support to the mean-field re
sults. The properties of these new phase transitions of first 
order can be understood to some extent studying the renorma
lization group flows in the parametric space of the system. 
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Kopy4eaa E.P., Y3yHoB ~.H. E17-88-467 
HoAenl1 H311Hra 11 c.BA3aHHwe napaMeTpbl nopAAKa 

C nOMOIIIbiO cpeAHenoneaoro np116n11MCeHI1A 11 MeTOAa peHOpManl13a~I10HHOi1 rpyn
nbl 113y4eHa CTaTI1CTH4ecKaA CI1CTeMa, COCTOA~aA 113 ABYX CBA3aHHbiX MOAenei'\ 
H311Hra. B cpeAHenoneaoM npl16ni1MCeH1111 on11caH ~a3oawi1 nepexoA nepaoro POAa 
113 HeynOPAA04eHHOi1 ~a3bl 8 CMewaHHYIO ~a3y C ABYMA napaMeTpaMI1 nOPAAKa, 
PeHopMrpynnoaoi1 nOAXOA AaeT HeCKOnbKO HenOABHMCHbiX T04eK, onHCWBaiOUIHX 113-
aecTHwe KPI1T114eCKI1e 11 MYnbTI1KPI1TI14eCKHe T04KI1, a -TaKMCe 11 4eTblpe HOBble 
HeyCTOi1411Bble nOABI1MCHble T04KI1, OTHOCA~HeCA K Oni1CaHI110 ~a30BWX nepeXOAOB 
nepeoro POAa. 3TH pe3ynbTaTbl MOMCHO npHMeHI1T,b np11 Oni1CaHI111 ~a30BbiX nepexo
AOB B MOneKynApHbiX KPI1CTannax, ABYXKOMnOHeHTHbiX MC11AKOCTAX 11 cnnaeax 11 He
KOTOPbiX MarHeTHKaX. 

Pa6oTa BblnonHeHa B na6opaTOPI111 TeopeTI14eCKOi1 ~11311K11 OHRH. 
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Korutcheva E.R . , Uzunov D. I. E17-88-467 
Ising Models and Coupled Order Parameters 

Using both·mean-fleld and renormallzatlon group approaches a statisti
cal system consisting of two coupled Ising models Is studied. A mean-field 
description of a first order phase translt~on from a disordered phase to 
a mixed phase, described by two order parameters, Is presented. The re
normal lzatlon group study gives several fixed points related to the well~ 
known critical and multlcrltlcal points as well as four new unstable fixed 
points, describing first order transitions. The results might be useful 
In discussions of phase transitions In molecular crystals, binary 1 lqulds, 
binary alloys and some magnets. 

The Investigation has been performed at the Laboratory of Theoretical 
Physics, JlNR. 
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