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1. Introduction

The revival of interest in the Jaynes-Cummings model (JCM)
{1,2] and its various modifications is due to new experiments
in which JCM is realized in practice. These experiments with
highly excited Rydberg atoms interacting with mm-wave fields
in high-Q cavities [3—5] offer the possibility of studying the quantum
dynamics of JCM and investigate the main features of the atom-
field interactions.

The light squeezing is one of the problems which are now
intensively studied in connection with JCM (for review on sgueezed
light see [6,7]). It has been shown that the squeezing of light
can be observed in the JCM with a coherent cavity field [8].
Besides it has been reported that squeezing can occur in JCM,
when st the initial time a two-level atom is prepared in a coherent
superposition of excited and ground states and the field is in
the vacuum state [9,10]. Recently the multiphoton JCM (the atom
has been supposed to be in the ground state at t=0) interacting
with a coherent single-mode cavity field has been studied [11]
and it has been shown, that the states containing a large degree
of squeezing can be obtained. Here the time evolution of the

function § which characterizes the level of squeezing (see

1°
definition (9)) has been analyzed for various intensities 7 of
the initial coberent field and various photon multiples. It has
been shown, that this function exhibits some oscillations and
that its long time behaviour is characterized by recoveries of

squeezing. However, these recoveries are not periodical ones.
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The purpose of the present paper is two-fold. First, we

will show that in & nonlinear multiphoton JCM (a generalization
of the Buck-Sukumar model {12]) with a coherent cavity field,
the periodicael light squeezing is possible. Here we will suppose
the atom to be in the ground state at the initial time. Second,
we will study in detail the interaction of a two-level atom,
initially prepared in a coherent superposition of excited and
ground states, with a single-mode cavity coherent {field. Due
ta the nonlinearity of the model the periodicity of squeezing

is preserved in this case too.

2. The model and the equation of motion
We will suppoée the electric-dipole hamiltonian in the rota-

ting-wave approximation:
" ~ ~
o= 2 hw6y ¢ hwd®s « MG RY « RME), ¢9)

where 8° and 8 are the creation and annihilation operators of
the field with the commutation relation [3,3%] = 1; the two-level
atom is described by the Pauli raising and lowering operators
%*,g' and the inversion operator é: ; the coupling constant Ais
a real number; W and W, are the frequencies of the field and
the atom, respectively. The operators ﬁ*, E are defined in the

following way [12]:

~ oA eA ~ AdA ~
R = a(a*a)l/2 ;i R" = (a*a)l/za* 5 (2)
with the commutation relation [R,R*] = 2N + 1, where N = 3‘a

is the photon number operator. We can say, that the hamiltonian
(1) describes the multiphoton intensity dependent coupling between

the atom and the field. Due to the fact, that the excitation

’~ ~ A ~ -
number operator C = N + G*% is a constant of motion - [H,C] =.0,

the time-dependent Schrodinger equation for the state vector |$(t))

th g3 18> = Hlee)) (3

can be solved easily. Further we will focus on two problems.First,
the atom will be supposed to be in the ground state and the single-
mode field in the coherent state at t = 0. Second, the dynamics
of the nonlinear JCM will be studied when at the initial moment
the atom is in the coherent superposition pf the ground and excited
states and the field is in the coherent state. To make the paper
more clear the conclusions are drawn jin each case separately

in the form of several comments.

3. The atom in the ground state at t=0
Let at t=0 the atom is in the ground state |-> and the field
in the coherent state |cl> :

n
(=003 = |-, = exp(-lx|2/2) 2 & |-np = le3n|"">' (4
n=0 !n! n=0
where oL = [n' eiv ; N is a dimensionless intensity of the field
and P is its phase. The initial state has the Poisson’s distribu-
tion P _ = IQnI2 = exp(-n)a"/nt.
In the resonant case, when MhWw = E*—E_ = hw, , the state

vector |[J(t)> for t>0 is found to be

. - U] (M}
TTORE nZB Qe EmhOtA LMy e nemy + B ()[-,n)}, (5

where
ety = -1 sin XMt (6a)
D,(1M)(t) = cos?('gM)- T ; T= 2t (6b)

and 'XgM) = n'/(n-M} for n2M and 0 for n< M.
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Having found the state vector [$(t)> we can calculate the
mean photon number (5*3> , the mean photon smplitude {(3) as well

as the mean squared photon amplitude (3%} :

(3*3> = & -nZé PtcMo1? = ay (72)
n=

. . ®
ARGy 72 i [ B R AR o

e21(Ot-P) 52 & 5 p {0(“)0(“) ( iR %gmcﬁ’fi}"*z (7e)
n=0

n+2 n+l

To analyze the squeezing of the field we introduce two slowly

varying hermitian quadrature operators 31, 32 of the field
5 - el (Wt-8), 3+ -iut- &))/Q

(8)
= (el (Wt=3)_ g+ -iut-d)y oy

a2 a

where & is an arbitrary phase, which is chosen to be equal to

the phase ¥ of the coherent field.
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Fig.l. The time evolution of the function §,. (a) Photon multiple
M is equsl to 1. The curves correspond to various values of the
intensity of the coherent field n, (b) Field intensity is fixed

(h = 1). The curves correspond to two values of the multiple M.

to define two functions §

Since the squeezed stat;; are defined as the states with
a smaller uncertainty (variance) in one quadrature of the field
than that associated with the coherent field, it is convenient
i i=1,2:
((Aa >> ((Aa )>coh

<(Aai) >coh

where ((a8))% = (&%) - (5,57 and a3 = 1/8.

The squeezing condition now looks very simply

= 4{@sp®dD -1 (9

Si < 0. (10)
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The variances of the quadrature operators can be expressed through
the mean values of the photon operators (7) {3*3), {a) and (32>, so

the functions S1 can be written as

= 2
S A, + Zﬁ(ReAz) - 6n(ReA1) , (11a)

#

1
5, = 28 - Zn(ReA,) - an(Ima? (11b)
The time evolution of S1 for various values of 0 and M are given
in Fig.l. It is seen for instance that the large magnitude of
squeezing {over 52%) can be obtained for M=1 and n=1 (see Fig.la).
From this figure it is also visible, that for constant M the
magnitude of sgueezing decreases by increasing of the field inten-
sity n. Furthermore, squeezing disappears when M is top large.

Here several comments shoud be made:
i) The functions Si and Ai are periodical - sgueezing recovers
periodically with the period T= JVA . This is the main difference
between the nonlinear and linear multiphoton JCM.
11) The results of the linear JCM [11] can be obtained from ours
by a simple substitution ?§£M1—~? ( Xkﬁ"))l/z in (6).
ii11) It can be proved by direct calculations that a “"dual relation”
exists by means of which one can immediately find the solution
for the problem with the initial state |+,M> (the atom is in the
excited state |+)> and the field in the coherent state J«> at t=0):
KM, (M)l s 0 \
and M- -M in all expressions, so that:
5r> =Sl»‘w¢—N >

Kg?ﬂ,gsr}

here the indeces I£> in the functions Si reflect the initial
state of the atom. The functions Siﬁsre periodical too.
iv) For M=1, the atom inversion W(t)= (é§> can be expressed in an
analytical form. For the initial state [P(t=00D = {-,% we obtain
the well known result of Buck and Sukumar [12]:
w1*)(t) = -exp(-2h-sin‘t)cos(fA-sin2t).
6

When the atom is in the excited state at t=0, then for the atomic
inversion H">(t) we find [13]:

w‘*)(t) = exp(-Zﬁ-slnzv)cos(2t+ﬁsin2£).

In the nonlinear JCM the atomic inversion is a periodical function

for any M and for any initial conditions.

4, The atom in the coherent state at t=0
Now we will consider the atom to be in a coherent superposi-
tion of the excited and ground states and the field to be in

a coherent state at t=0:
[9(t=0)) = cl+ &y » D]-,>, (12)

where the coefficlents C and D are supposed to be normalized
to one - |Clz+|B12=1, and the relative phase between them is &

Following [9] we choose C and D to be:

*®

C = cos¥2 ; B = el .sinY2 . (13

Here, for simplicity, we suppose just one-photon hamiltonian (1)
with M=1 (the generalization for M>! is trivial).

The solution of the time-dependent Schrédinger equation
(3) with the initial condition (12) in the resonant case |is:

TROE Z& e~1(nﬁu>+£_)t/‘h{ Cn(t)e'iwt|"’n>+ On(t)l-,n>} s a8
n= -

where

C (1) = -iQ ,Dsin(n+1)T + Q Ccos(n+1)T (15a)
C
On(t) = ~iQ,_@sinnt + O _Ocosnt (15b)

and un is defined by (4) for n » 0 and equal to zero for n<¢ 0.

If we want to analyze the squeezing effects it is necessary



to calculate the variance of the quadrature operstors (8), or,

what is the same, the functions Si (9). To do that, the mean values
AgA i(mt—t) - _ =
Ca'ad> = A, e G 'F‘Al ang e2i(ut- P)(%2> = hA, should be

found. For instance, the mean value of the number operator Ao is:

Aon n +Z_, P {cosz e/z-sinz(ml)t - sin29/2-sin2n'c—
n=0

- -% sin® sing Sn—:‘i— sin2(n+1)‘C§

Other mean values can be found easily too, but the expressions

(16}

for them are lengthy and not transparent, therefore we do not
write them explicitly here. Nevertheless it should be pointed
out, that all measurable nquantities do not depend on the phases
§ (the phase of the atomic dipole) and tP(the phase of the coherent
tield) independently, but only on their sum (§+¥) = .‘. Using
formulae (11) we will obtain the explicit expressions for Si'wh
{subscript coh indicates the coherent state of the atom at t=0),

The time evolution of the function 51°°h is seen ftrom Fig.2.
and Fig.3. First of all we should stress the periodicity (with
period 1=W/'}‘)‘ of the tunction SICOh. Second, for n=1 the maximum
of squeezing for |§(t=0)) defined by (12) does not exceed the
value of squeezing in the case when the atom is initially in the
ground state. This is not the case for weask-intensity fields (see
below). Third, when the relative phase hetween the field and
the atomic dipole .\ is from the interval (0,W), then maximum

(see line 3 in Fig.2a. and lines 2,3 in Fig.2b.). When Q‘e(ar,z:i),
then the maximum squeezing can be observed for Jlk <2At< A (k+l/2)
(see line 4 in Fig.2a. and line 1 in Fig.2b.). If § =% , then
51°°h = cos?¥/2 Sl"> + sin?by/2 Si'> and the function Slcoh reaches
its minima for At = Fk + %/2 (see line 5 in Fig.2a.).

squeezing is reached for times J(k«1/2) (2t M(k+1), where k=0,1,2 ..

0 n/2 n
At -

Fig.2. 7The time evolution of the function S, for n = 1 and various
values of the parameters O and §. (a) line 1 - © =X . 13‘ =0 {the
atom in the ground state); line 2 - B = a, O‘ = 0 (the atom in
the excited state); line 3 - 8= 2J/3, ¢ = 7/2; line 4 - = 273,
0= 5T/a; line s - 6= 2473, #'= 0. () line 1 - & = 2473, 0 - 332
line 2 - ©=2%/3, ¢'= X/2; line 3 - © = T2, ' F/q,
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Fig.3. The time evolution of the function S1 for n
the atom is in the ground state at t =0 (© =00, & = 0).; line 2-

the atom 1s in the coherent atomic state at t =0 (6= 2J/3; ¢;33172).

Of course, the magnitude of squeezing depends on the values
of cos e/2 and sin 9/2. It the atom is in the ground state at t=0
(6=X , sp0 D=1 and €=0), then the maximum squeezing is reached
for At= J[(k+1/2) {(see line 1 in Fig.Za.). When the atom is in
the excited state (9=0, so £=1, DB=0) no squeezing occurs ({see

coh is shown

1ine 2 in Fig.2a.). In Fig.2b. the evolution of S,
for constant ‘\= j}? and different values of O (lines 2 and 3).
In this case the maximum squeezing is obtained for © = 2X/3 (line2)

As seen from Fig.2a. the relative phase Q\ does not only
influence the moment when maximum sgqueezing is obtained, but alsc
the magnitude of squeezing depends on its value. This can be
seen, when the lines 3,4 and 5 of Fg&Za. are compared. Here the
values of O are equal, only the relative phases f are different.

In Fig.3. it is shown, that for weak intensity fields the
magnitude of squeezing cen be enhanced when the coherent field
interacts not with the atom in the ground state (line 1), but
with the atom, which is in the coherent state at t=0 (line 2).

10

In this particular case (n=0.1, © =2%/3, ‘;3172) squeezing is
enlarged approximatelly twice when the atom is in the coherent
state at t=0.

We will conclude this section with a few comments:
i) When the relative phase ‘\ cannot be measured, then in the
expressions for measurable guantities the average over this phase
should be done, and the result for §1°°h (bar aver 81°°h means

\
average over § ) is:

slcoh = 00329/2'81$>+ sin2972'81;>

ii) The atomic inversion for the initial state vector (12) can be

calculated in a compact analytical form [13]:
WOy = 00926/2'H|+>(t) + sinze/z.w!')(t)

+f? sinecsinf-exp(—Zﬁsinzt) sin{fsin2t + 2v).
This sgaln 1s @ periodical tunction and it is seen here explicitly,

that when the average over § is done, then:

WOty - cos?8/2-wl P (1) « s1n28/2.w! (1),

1i1) In the weak-intensity 1imit n »0 for the functions SiCOh we
have:

1im Slcnh = acos?8/2.s1nly (% - sin%6/2-sin? § )
N0

lim 52°°h = 4ces? &2 .sin’s (% - sin26/2-cos? ¢').
fi+0

This result can be identified with that derived by Knight [9,10]
when at t=0 the atom was in a cocherent state and the fleld in
the vacuum state. In the weak-intensity limit squeezing is produced
just by the estsblishment of an atomic coherent state, Maximum

emplitude of squeezing in this case is 25% (for § =2 and 6=2%/3).
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R llokasaHo, 4WTO ecjH B Mopend [xeiinca-KaMMuHrca pBecTH

‘Buzek V. E17-88-399
Squeezing in the Nonlinear Jaynes—Cummings
Model ‘

ﬁg It is shown that if nonlinearity a la Buck and Suku-
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Cxarve B memuHelHON Mopgenu [Ixelfinca-KammuHrca

HeJmHeiHocTs THna Baxa—-CykyMapa, TO CxaTHe NoJf H3nyde-
HUA NEepHORMYecKH BOo3oGHOBNAeTcCA. 3pdeKT cCxaTHA HCCIeno—
BaH [AJ7IA PAas/IAYHMX HayaNbHHX COCTOAHMI aToMa /B YacTHOCTH |
HCCHIeNOBAaHM NMPONECCH, KOrga B HadalbHei MOMEHT aroM Ha~
XOMHTCA B OCHOBHOM BO3OVENEHHOM MITH KOT€pPeHTHOM COCTOA—
HEHAX/ .

PaBora sumonHena B JlaBopaTopuu TeopeTHYeCcKod GHSHXH
($7: 158
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mar is introduced into Jaynes—-Cummings model, then squees
zing of the radiation field exhibits periodicity. Squee-
zing is examined for various initial states of the atom
(ground, excited and coherent atomic states are taken
into account).

The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.

‘B Communication of the Joint Institute for Nuclear Research. Dubns 1988




