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1. INTRODUCTION

So far, much of interest has been directed towards the stu-
dy of low-dimensional systems. Many of them, in spite of the
restricted applicability, correctly describe a number of phe-
nomena associated with higher dimensions /}/. They are usually
solvable exactly. However, when the system becomes inhomoge-
neous, the space variation of the model parameters prevents
to express the free energy explicitly except in some special
examples.

In the theory of the one-dimensional inhomogeneous Ising model,
there have been examined the cases of:

i) nonconstant interactions and a uniform external field
at zero temperature /2/,

ii) the fixed nearest-neighbour interactions and a site-
dependent field/3-%
iii) variable both interactions and a field 1/,

The partition function and its derivatives for some spe-
cial models were obtained in ref./8/ nnly 2r z spccific tewpe-
rature. Otherwise, the results were expressed in terms of
continued fractions /%, nonlinear recurrence relations /7,
More encouraging results were obtained in the so-called
inverse problem initiated by Percus /%, It consists in
finding the external potential needed to evoke a given magne-
tization profile. The original solution of Percus ’34%or con-
stant nearest-neigbour interactions has been generalized re-
cently in ref.’/?/ to variable nearest-neighbour bonds.

In this paper,we report a new approach to inhomogeneous
Ising models. In contrast to the above methods, it works from
the beginning to end with the quantities having a clear phy-
sical meaning. It turns out that the method is a very conveni-
ent means for formal solving the inverse problem for a large
class of models.

An introductory outline of the theory for a one-dimensional
Ising chain is presented in section 2. Within the framework
of the proposed formulation it becomes apparent how to solve
the inverse problem (section 3). A natural and straightfor-
ward extension of the method to the Bethe lattice with arbi-
trary coordination number q is given with a discussion of its
applicability in section 4.

2. FORMULATION FOR A ONE-DIMENSIONAL
INHOMOGENEOUS ISING MODEL

We are concerned with an Ising chain of N spins. Its Hamil-
tonian is
K N-1 N
= =3 J;S.8,.4- = Hgs,, (2.1)
n=1 n=1
where s, (=%1) denotes the usual Ising spin variable at site
n, J, a nonconstant interaction that couples 8, to 8;,; and H,
a site-dependent external field. The equilibrium statistical
properties of the system are determined by the partition func-
tion
N-1 N
ZyKy, oKy gibyobyg)=3 exp(X K, s;s, 4+ % hys; ), (2.2)
iB!N n=1 n=1
where K, =8J,, h, =BH,, B is the reciprocal temperature and
the summation runs over all possible configurations of N spins.
A second thermodynamic quantity which we shall concentrate on
is the spin expectation value,

S, (K,,..K shoLLhy) .
l 1 -] 1] ’
<8.>= . N-1' 1 N (2.3a)

Z(KyoeKy i hpohiyg)

N
(+ = hos ). (2.3b)

n=1 % 1

N-1
S, Ky Ky yibyoen hN)={2ﬂ 8, exp( nil K ss .,

In the present method, we shall eliminate consecutively
spins from the chain and investigate the thermodynamic quan-
tities of interest of the remaining fragments. We start with
the spin at site |. Using the identity

exp (K 8 8,) =cosh K, +8,8, sinhK, for s ,8, = +1,

and taking in (2.2) the sum over spin variable s,, we easily
find !
Zy(Ky, .o.Ky_y i hy,..hy) = 2coshK, coshh, {1+

(2.4)
+tanh hy tanh K, <8y> 124, (K,,...Ky_ (i h,, .0

Here,

N)'

N-1 N
Zyt (Kz,...KN_l;hz,...hN)=i2} exp(nézl{nsnsn+1+£=2hnsn) » (2.5a)

8
N-~1
“3:;;. (V2% A«é‘v;x’i% m i 3
MACUHAE o ennnaon



N-1 N
b3 spexp( X K8, ;+ % hys))
s foly_y n=2 n=2 {(2.5b)
<By> =
N-1 N 4

3 exp( 2 K; s,

{S N n=2
represent the thermodynamic quantities of the chain without

Sp41+ = hpsy)
n=2

site 1. Following the same procedure in the case of Sl(Kl'“'KN-l;
h1""hN) , we arrive at
S].L(K].""KN—I:hI""'hN) = 2 cosh KI. cosh hl {tanh hl +
(2.6)
+tanh K, <sp >, lZN-n(K.‘e""KN _tihgeehy)
and so
tanh hy + tanh K; <sp >4
<8, > = . (2.7)

1 + tanh hm tanh K1 <845

We proceed further in this manner for spins 2,...,N-1,N

and readily get

h

ZN-I(Kz""KN-l' h) =2cosh K, coshh, {14+

PR

+ tanh h, tanh K ,<84>, }Zy_o(Kg, oKy yihg,.chy)

(2.8)

Zg(Ky_yihy_y,hy) =2cosh Ky, coshhy , {1 +tanhhy

tanh Ky 4 < 1Z, (hy)

5 N"N-1
Zl(hN) = 2 cosh hN

and

tanh h2 + tanh K 2<8g>g

1 + tanh h2 tanh K2 <Bg>,

(2.9)
tanhh, , +tanhKo  <sp>.

1+tanhhy | tanh Ky <sg>c

N

.<SN >N—L =tanh h N

Note that the elimination of the n th sp1n in <s, means
the simultaneous elimination of all spins with 1n§1ces lower

than n.
To simplify the formalism we introduce the auxiliary quan-
tities {anl;q:l as follows

tanh a =tanhl(n <8 .1 (KNEO) (2.10)
Then using
tanh (x+y) = (tanh x + tanh y) /(1 + tanh x tanh y)
we rewrite (2.4,8), (2.7,9) in a more convenient form
N N
Zy(Ky. Ky gibyohy) =27( 11 cosh K, coshh,) -
' (2.11)
n (L+tashh tanha ),
n=i
<s|‘>=tanh(hl +3),
.......... (2.12)
<8y 1>N-2=""“h(hu 1 +8yy )

<ByOy-p =tanh (hy +ay) .

where the quantities {a l -y satisfy the recursion relations

tah a, = tanh K, tanh (hy +8,) ,

tanh a, = tanh K, tanh (hg + ag) ,

(2.13)

N ™ N-1 tamh(hy +ay),

Analogously,performing the successive elimination of spins
starting from site N, ending at site 1, and defining tanhb, =

= tanh K _; <8, 4 >, (n=0,1,...,N; K; =0), one easily deri-
ves
N N
Zy(Ky s Koy ihyseny) =28C 1 cosh K, coshhy) -
(2.14)
1 (1+tanhh, tanh b ),
n=1
5



<8 >=tanh(hN+bN) ,

<8y 1 >N-_—.tanh(hN__1 +bN__1) ’

N-1
.......... (2.15)
<8,>; =tanh(h, +b,),
<8, > = tanh(h1 + bn ),
where the auxiliary quantities {bnigﬂ are given by
tanh bN = tanh KN—]. tanh (hN—i + bN—]L ) ’
tanh by s =tanh Ky o tanh (hy_o + by ) »
.......... (2.16)

tanh b, = tanh K; tanh(h, +b,),

b =0.

3. THE INVERSE PROBLEM IN ONE DIMENSTION

rhe recursion schemes (z.i3) and (z.10) derermine unambil-
guously the respective sequences {anigil and {b }Ed , whose
knowledge should enable us to compute the partition function
directly from (2.11) or (2.14). However, the variables {an}N=1,
{b}N_, are highly nonlinear in the model parameters {K {75,
lhn}n=1 and so the exact solution can be found only in some
special cases.

On the other hand, the procedure for solving the inverse
problem is straightforward. To express a specific field, h,
for example, as a function of the magnetization profile and
the nonconstant couplings, we will eliminate the spin i th
from the system and investigate the consequent modification of
naturally chosen  quantities Z(K1""’KN-15 hy,eeeshy),

Sl (Kl""’KN—l; h]l”"’hN)’ SH, (Kl""’KN—]L; hl""’hN) and
Sty (KyyeevsKyys hy,eee,hy). Using the simple technique given
in section 2 we have

Z(Ky,..Kg y ihy,.ohy) =2 cosh K, _, coshK, coshh, {1+

+tanh by tanh K, <s, ; > +tanhh; tanh K, _, <8 4 > +tanhKi_17~( )
3.1a

tanhK, <s, _ 8, > 12y (K;, Ky 50Ky v Ky g LTION P TUPRETS % I

6

8, (KyyeeeKy 4 ihy,ohy) =2 coshK ; coshK, coshh, .

{tanhh, +tanh K, <8; ; >;+tanhKy _, <s; ;> +tanhh .
(3.1b)
ta.nhKl__l tanhKi ,<si_1 si+1 >i }ZN—X(KI""KI—E ’Ki+]l 3 eoe KN—]l;

h h h h

1o By By e by)

841 (Kl""KN—l;hl"'"hN) =2cosh K, ; coshK, cosh h

{<s, > +tanhh tachK, +tanhh tanhK, , <8, , 8, >/ +

i+3 7§

(3.1¢)
+ta|nh Kl—l tanh Ki _<Si_1 >1 !ZN—I(KI ,...Kl_z 'Ki+1 ""KN—I.;
hyvehy b b)),

Si—l (Kl ""KN—I;hl""hN) = 2 cosh Kl—l COShKl cosh hi ,
{<s;_; > +tanhh, tanh K, <s, , 8, , > +tanhh, tanhK, , + G
.1

+tanh K, _; tanh K; <s; > }ZN-I(KL""KI—?.'KIH vee Ky g

h,...h, . .h,. . .he)

The spins localized at sites i-1 , {+1 are statistically in-
dependent in the absence of the i th spin and, therefore,
<8y_18y44 >4 =<Sy_g1>; <8j,1 >y . Then, using the definitions
tanha; =tanh K <s;,;>; , tanhb; =tanhK; ; <s;_>; and the gene-
ral formulae for computing the spin excitation value, we ob-
tain from (3.la-d),

tanhh +tanha +tanhb +tanhh tanha tanhbd
i i i i i i
<8 >= (3.2a)
1+ta.nhhi l:a.nhal +tanhhl ta.nhbi +tanhai tanhbi

tanha rtanhh tanha, tanhb, +tanh® K, (tanhh, + tanhb,)

> =
i+1 ) '
1+tanhhi txa,nhai+tav.nhh1 tanhbl +tanhal t::mhbl

|:anhKl <8

(3.2b)

tanhb +tanhh tanha tanhb, +tanh® K
tanhK, _ <s, _, >= ! i ! i+ {1 (tanhh, +tanha )

1+tanhhl ta.nhal+!:a,nhhi tanhbi +tanhai tanhbl
(3.2¢)

7



This set of equations contains three unknown‘hl, a;, by de-
pending on the fixed average spin values <s -7 <By>, <8, >
and coupling constants K, _,, K. The solution of the inverse
problem is then given by eliminating a  and b, from the above
set. For this purpose we rewrite (3.2a-c) as %ollows,

<sl>=tanh(hl+al+b1),‘ (3.38)
|
<sl>-tanhKl.<sl+1> ta.nh(hl+bl) }
- ., (3.3b)
(1-tanh® K ) <s,> tanh (h, +b, ) +tanha
<8;>-tanhK, 6 ,h <8, > ) tanh (hy +a,) (3.3¢)
(L -taph® K, _ ) <s > tanh (h, +a,) +tanh b,

By combining (3.3a) with (3.3b) and (3.3c), we find the respec-

tive second-degree equations for tanha.l and tanhb, ,

[<sl>-ta.nhl(l <8y,1>] 1:anh2al -(l-tanhzl{l) tanh a, +

(3.4a)
+tanh Ky [<s ,>-tamhK <s >]=0,
[<s;>-tanhK, , <s;  >]tanh®b -(1-tanh?K, ) tanhb +
(3.4b)
+ tanh K1-1[<81~1>-mnhxl-l <8, >]=0.
Consequently,
(1 -tanh® K, ) -y A%
tanha1 =x:'= R (3.5a)

2[<sl>—ta.nhl(l <81+1>]

+
A} =(1-tanh® K )®-4tanhK [ <s,>-tanhK <8, >].[ <8, >~taohK,<s,>],

and
(3.5b)
2 -
i (1-tanh®K, ) -VA]
tagh b, = X7 = , (3.6a)
2[<s >-tanhK <8, _,>]
~ 1  tanh 2 2 _
Ay=(1-tanh®K, )" -4tanhR, _ [<s,>-tamhK, <8, >]- 4 o)

[ <s

l_1>-1:anhKl__1 <81>]'

8

the sign of the square root being fixed by the conditions

1. . = s

im al (Kl._<si>. <81+1>) 0

Kl-»O

l(11m*0b1 (K _4p<8,>,<8, ;>)=0.
i=1

Finally, taking into account (3.3a), (3.5), (3.6), we have
respectively

1+<8,>
hy +8; +by =10 (ol ) (3.7a)
2 1"<81>
L4+xt
a, =1 iy, (3.7b)
2 l-x;'
14+x7
by =l (i), (3.7¢)
l-xl'

from which the desired field variable h1 is obtained as

1+<8;> 1-xt 1-x7
h, = ini( ! Ly (——L . (3.8)
TR 1-<8;> 1+x] 1+x]
Here, the edge effects are reflected through xI’=0, x;==0.

It can be
symmetric

shown after lengthy calculations that the present
solution of the one-dimensional inverse problem
coincides with the previous one by Tejero’/?/. However, as we
will see, the present f{ormulation permits us to solve the in-
verse problem for more complicated structures.

4. THE INVERSE PROBLEM FOR THE ISING MODEL
ON TIE BLTHE LATTICE

Now, we will extend the method to the Bethe lattice of N
spins with the coordination number q = 3. A typical situation
is drawvn in fig.l, where the reference spin at site O is coup-
led to the surrounding 1 th, 2 th, 3 th spins by the dimension-
less interactions Ky, K,, Kg. The remaining bounds, whose va-
lues and positions on the Bethe lattice are irrelevant in the
problem, will be denoted by K,, ... . Our objective is to find
the external field at site O, h;, needed to produce the magne-

9
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tizations <B>y <B,>, <By>, <Bg>, for the fixed nonconstant
nearest-neighbour interactions K;, Ky Kg,... .

In the spirit of our approach, we eliminate the O th spin
from the thermodynamic quantities of interest, namely

Zy(Ky,euihg,..) =2 cosh K, cosh K, cosh K4 cosh hy -

{1 + tanh hy tanh K| <8, >q + tanh hy tanh K, <sg>, + taoh h - P

tanh K5 <8q >, + tanh K, tanh K, <s; 8, > + tanh K; tanh K, .
<8; 83 >¢ + tanh K, tanh K4 <s,84 >, +tanh h, tanh K, tanh K, .

tanh K3 <8L8283 >0 iZN—l(K‘ »eses hl ,.n) N

S (K

o H ho"") = 2 cosh K1 cosh K2 cosh K3 cosh h0 .

1

itanhh0+tanhKl <8, >, +tanhK, <s,> +tanh K, <s ;> +

1 2 370

10

(4.1a) L

tanh b, tanh K, tanh K, <8, s, >, + tanh hy tanh K; tanhKg -

<8y84> +tath ho tanh K, tanh Kg <s,83 >, + tanh K, tanhK, . (4.1b)

tanh K, <8,8,84>, 12 ¢ (K, .0ihy ),

S, (K

N ;ho....) =2 cosh K, costh cosh K4 cosh h0 .

oo
{<s, >; +tanh h, tanh K  + tanh b, taoh K, <s;s,>, +tanh hy -

(4.1c)

tanh Kg <8 >0+ tanh K, tanh K2 <89 > + tanh Kl tanh Kgq -

183
<84 >q +tanh K, tanh K 4 <s; 8,84 > + tanh h0 tanh K]‘. tanh K2 .

tanh K, <s,84>0 VZy (K, ,.0ihy, ),

Sz(Ku"";ho""') =2 cosh K, cosh K2 cosh Kq cosh h, -

{ <8, >, +tanhhy tanh K; <s;8,>; + tanh h tanh K, +tanh h .

tanh K4 <s,8; >; + tanh K; tanh K, <8 >5+ tanh K‘ tanh K4 - (4.1d)

.<s.s s_ > +t‘.a.nhK2 t:anhK3<153>0+ta.nhh0 tanh K1 tanh K

152°370 2’

tanh K3 <8, 84>, }ZN_I(K‘,...;hl,...) ,

Sq (Kg,eeibg,e..) =2 cosh Ky cosh K, cosh Kg cosh h, -
i.<ss>o + tanh h; tanh Ky <s;s5>, +tanh by tanh K, <sp84>0 +

ftanh ho tanh Kg + tanh K, tanh K, <8;8,8,> + tanh Kh . (4.1e)

370

tanh K3 <8y >q + tanh K, tanh Ks <By >y + tanh h0 tanh K, -

tanh K, tanh K4 <8;8,>, }ZN_1(K4,...;hL yoee)

Eliminating site O, the 1 th, 2 th, 3 th spins belong to diffe-
rent lattice fragments which have no common bounds. They are
consequently statistically independent and so <8;85>)=<83>3<Sy>,
<8y 83>( = <81 >(<Bg>gs <B8>q =<Sp>g <By>p <B;ByBy>g = <8y >(<8y>.

T <8y>qe Thus, introducing the auxilliary variables {an}nil by
tanh a, =tanh K, <8,>, and after some algebra, we find

11



<s,>=tanh (h) +a, +a, +8,), (4.2a)

0

<s8,>-tanh K, <s, > ) tanh (h; +a,+ay) 4.20)
tanh (hy + 3, +ag) +tanh ay )

(1 - tanh® K, ) <8y >

<8, > - tanh K, <85> tanh (hy +a, +ag) (4.2¢)
= » L] C

tanh (hy +a, +a3) + tanha,

(ﬂ'-— mhz K2 ) <8Bp >

<8 >-ta.nhKa<s >

0 3 tanh(h0+al+a.2)

= . (4.2d)
tanh(ho+a1+az) +tanha.3

(1 -tanhzl{s) <8y >

Analogously to section 3, by combining (4.2a) with (4.2b),
(4.2¢) and (4.2d) we et the second-order equations for tanha
(n = 1,2,3),

2 2
[<so>-ta.nhKn <sn>] tanh an-(l - tanh Kn) tanh a +

4.3
+tanhKn[<sn>-t'anhl{n <85>1=0.

Respecting the right sign ot the square root, their solutioms
are yielded by

(1 -tanh® K ) -v 4,
tanhanﬂxn‘—"- ’
2{ <8 >-tanhK <s_>]

n=1,2,3, (4.4a)

2 2
An=(l. —tanh® K ) —4tanhKn[ <so>-tanhl(n <sn>] N <sn>-tanhl{n<so>] .

Since (4.4b)
3 1 L'+ <8y >
hy+ £ a ==In( , (4.5a)
n=1 2 11-<so>
Ln(s*®n 1,2,3 (4.5b)
a ==ln( ~—u>=n - , .
o2 L'-x v BT s

the field variable h, required to evoke the given magnetization

profile is written
12

14+<8,> .3 1-x
hy =iin (— 2 )+~ 5 In(—0D ). (4.6)
1 - <8 4> 2 p=1 1+x,

As expected, it depends only on the spin thermal averages <§;>,
<8;> , <8,>and the couplings K;, Ky, Kg. ’

The method can be generalized to the Bethe lattice with
arbitrary coordination number q (q = 2 represents the ordina-
ry one-dimensional chain), when the reference spin at site O
interacts with the 1 th, 2 th, ... q th spins by Ky, Kgy.o Ky,
respectively. The result is

1 +<8,> .9q I'-x
By =bln () + L 5 m(—2y, (4.7)
2 1-<8,> 2 n=1 1+x)

where the quantities x ( n = ,q) are defined by (4.4a,b).
In conclusion, the present theory for solving the inverse
problem can be formally extended to an arbitrary cluster of
spins. In dependence on the situation, one must simultaneously
eliminate a group of spins chosen so that their neighbouring
spins become statistically independent. In our formulation
this condition permits us to decouple two-, three-, ... spin
correlations generated during the nracedure and in thic way
to obatin a closed system of resulting equations. To be more
specific, let us consider the cluster shown in fig.2. The
spins are coupled to one another by nearest- as well as next-
to-nearest-neighbour interactions. From the point of view of
the present method it is inevitable to eliminate from the
thermodynamic quantities of interest the spins at sites 2 and
4. Performing the whole procedure, we arrive at the final com-
plete set of five equations which relates the magnetizations
<8y >, <By> , <Bg> <B,>, <8g> to the unknowns hy, h, ,<8;>5, <8 2.4

Tyooo

— e e ¢/ . 4 \
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<8g>4. The h is determined simply by <Bg>g 4 =tanhhg , while
the *esults %Or hl,h5c01nc1de with the ones obtalned for the
one-dimensional Ising chain.

We believe that the proposed approach will provide further
new results for the inhomogeneous models not studied so far.
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Mamaii JI. E17-88-380

HeopHopogHas Mopennp HsuHra Ha pemetke BeTe

[IpepynioxeH HOBbE nomxod K Momenu HauHra ¢ HemnoCTOsTHHbIMH
B3aUMOAEHCTBHAMH H MarHUuTHbM nojieM. OH mpepcrTaBiisieT OpsA—
MO NYTh IJIst pemeHHil oGpaTHbIX nmpobneM. BHemHee momne, KOTO-
poe co3pmaeT OAaHHBET MarHe TH3aUMOHHBIA NpPOGHITE , IIOJIYYEHO AN
cucTeM co cnuHoM 1/2 Ha ‘pemeTke bBeTe C NPOH3BOJILHBIM
YHCJIOM cocepell q.

Pa6ora BhmonHeHa B JlafopaTOpHH TeOpeTHUEeCKOH (HU3HKH
OusiU.
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‘Tnhomogeneous Ising Model on the Bethe Lattice

A new approach to the Ising model with nonconstant
interactions and a site-dependent external field is pre-
sented. It represents a straightforward way for solving
the inverse problems. The external field required to pro-
duce a given magnetization profile is given explicitly
for spin 1/2 system on the Bethe lattice with an arbitra-
ry coordination number (.
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of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988




