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I . INTRODUCTION 

One of the most exciting questions high-Tc superconductivi
ty physics deals with is that of the relation between super
conducting and structural properties. The glassy behaviour 
of new superconductive materials first reported by MOller et 
al.' 11 and afterwards confirmed in a number of papers 1 2·-8 • 121 

attracts special attention of experimentalists and theorists 
alike. Morgenstern et al. 191 by numerical simulations repro
duced the main observable features (both equilibrium and non
equilibrium) in the behaviour of new superconductors and es
tablished the phase diagram in the plane H-T for applied mag
netic fields up to H :S H~. An analogous model of frustrated 
Josephson spins on 2-D disordered lattice was treated by Vino
kur et al. 1101 at high fields (H > H~). 

In our previous pape~/11/ a phase line Tc(H) in an arbi
trary magnetic field was calculated analytically. One may 
distinguish three characteristic regions ~n. the phase diagram: 
the quasireversible Mei§sner phase (H < Hr), superconductive 
glass phase (H~ > H > ~), and Josephson spin glass phase 
(H > H~). The obtained in/11/phase diagram serves as basis 
for exploration of the dynamical behaviour of glass-like su
perconductors. At present there are available a number of 
papers on experimental studies of the nonergodic and relaxa
tion properties of magnetization including the muon spin re
laxation method/121in oxide superconductors (see, e.g.lrBI ). 
In these experiments the difference between field cooled (FC) 
and zero field cooled (ZFC) magnetic measurements due to the 
nonergodicity is observed below Tc(H). 

Numerous investigations of the long-time relaxation beha
viour of the remanent magnetization indicate the nonexponen
tial (logarithmic, power, or Kohlrausch-like) decay law with 
essential temperature and applied magnetic field dependence 
of a- and ~-relaxation exponents. 

The present paper is devoted to theoretical treatment of 
the dynamical properties of bigh-T superconductive glass 
(SCG) model with the aim to describe the above mentioned ex
perimental data. The paper is organized as follows. In Sect.2 
we consider the nonergodic behaviour of the model. The compa
rison of the theorPticaJJy obtained temperature field depen-t.._. --~_: 
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dence of nbnergodicity parameter is given versus th7 7Xperi
mental FC and ZFC magnetization data for La-Ba-Cu-0 1 , 
Y-Ba-Cu-0 141, and Gd-Ba-Cu-0 171 systems. In Sect.3 via the 
mode-coupling approximation the critical low-frequency dyna
mics of the model is discussed. The dynamical scaling as well 
as the critical crossover in behaviour of Josephson spin cor
relation function are present. In Sect. 4 we study the non
exponential (logarithmic and power) behaviour of-the long
time relaxation of the remanent magnetization. The temperatu
re and applied magnetic field dependence of calculated mag
netic viscosity coefficient and of the power relaxation expo
nent are given in comparison with the corresponding experimen
tal data 15•6• 81 • In conclusion we discuss the obtained results 
as well as some predictions of the SCG model and experimental 
possibilities for their confirmation. 

2. NONERGODIC BEHAVIOUR OF SCG MODEL 

Let us consider the SCG model191with a Hamiltonian 19- 111 

H = - J l: cos¢·. 
ij 1J 

. * 
= - Rel: J iJ S . S . , 

ij 1 J 

where 

¢ ij 

Aij 

¢i - ¢J - Aij 

= "
8 

(xi + xj )(yj - Yi ) • 
¢0 

S i = exp (i ¢ i ) , J ij = J exp (i A iJ ) • 

(1) 

(2) 

(3) 

(4) 

Here ¢. is the phase of the Cooper pairs in clusters i which 
is des~ribed by random coordinates (xi, yi). An ense~le of 
Josephson spins Si is in an applied magnetic field H = 
=(O,O,H). 

To describe the dynamical behaviour of the model (I) we 
need an equation of motion for the spin Si. According tollO/ 
the superconductive current through the Josephson juction 
between clusters i and j is defined as 

h d¢i 2eJ .. 
I .J = - ..::.!:!.L + - sm¢.. • (5) 1 2eR dt h 1J 

Here R is the resistance between domains i and j in their nor-
1\(T) 1\(T) 

mal state, J(T) = -R- th ( 2RT ) is the temperature dependent 
Josephson energy. 
2 

• 

.. 

The equation of motion for the superconducting phase of 
the i-th cluster ¢i follows from the conservation laws 1101 

~Iij =0, ~Iij =0. 
1 J 

In the approximation N » I, eq. (6) yields 

hN d¢i 2eJ 
2eR """dt + --h ~ sin ¢ ij = 0 • 

J 

Let us introduce a dimensionless time parameter 

4e 2 RT 
t = h ~ t. 

(6) 

(7) 

(8) 

Then, in view of eqs. (7) and (8), the equation of motion for 
Josephson spin si takes the form 

1 * * 2 
Si = 2T~(Jij Sj -Jij SjSi). (9) 

J -
Hereafter we put t = t keeping in mind the definition (8). 

To study the nonergodic properties of the system (I) let 
us consider a 1 ow-frprpu:ln('y 'b'::'h~,_,ic"..!!" ~f th~ ::8!:"!:"::l~tivt:" ... 
function 1111 

* Dij (t) = <Si(t)Sj >. ( 10) 

Here the bar denotes the Gauss-like averaging over random 
cluster coordinates (xi, Yi) with a mean square deviation a. 

According to paper1111the correlator (10) determines all 
nonequilibrium properties of the remanent magnetization M(t) 
which in the model (I) has the form 

M(t) = -X (t, T, H)H , (I I) 

H2 
X (t, T, H)= X (t, T)(1 +- f3/2 

o H2 ' 
(12) 

0 

1 
X (t, T) = -l: D .. (t) X (T), 

o Ni 11 o 
(13) 

2 X
0

{T) = 4SNJ(T) I ¢
0

, ¢
0 

=he I 2e. ( 14) 
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In paper 1111the field behaviour of the isothermal magnetiza
tion was obtained in static limit, when Dij (O) = 2TX:ij (T)and 
X .. = 1/2T (in the high-temperature approximation). To calcu
la£e the isothermal relaxation function Dij (t) in low-frequen
cy limit we use the Mori-like projection technique 1151 which 
is well known in the theory of spin glasses 1131 and proton 
glasses 1141 • In the mode-coupling approximation the self-con
sistent system on Dij (t) can be constructed. Let us introduce 
the Laplace transform 

OC) 

* . i zt Dij(z)=((SiJSj))=Ifdt Dij(t). ( 15) 
0 

Then the continued fraction expansion for D ij (z) leads to the 
expression 

Dq(z) =- (z -(z + Kq(z))-1)-t (16) 

where 

1 . . k) 
Dq(z) = - ~ e1 q(J- D jk (t), Dq(t=O) = 1 . 

N jk 
( 17) 

In eq. (16) the current-current correlator Kij (z) is deter
mined as a second momentum (see 114• 151) accordine to the 
~q-:!.:!ti:::~ :::f w.ctivi~. (';), ctuu .i.u Lilt! pair sp1n correlation ap
proximation has the form 

Kij (z) = ((S.tJ Sj )) 2 : f(T, H)(Dij (z) + 
(18) OC) 

+ i f dt eizt ~ Dik (t)Dkf (t) Dpj (t)), 
kf 

whe~e 

J2N J2N2U2 JNU3 J2N2U2 
2 f(T, H) = -

2 
(1 + + --) (1 - )- . 

4T 4T 2 T 4T 2 (19) 

2 2 -v2 
U(H) = (1 + H /Ho) , Ho = ¢o/2S. (20) 

Here S = "a is the mean 
cluster 111 1 • 

square area of the superconductive 

As is known 11 6 1 , 

by a nonzero value 
by a parameter 

Lij =lim Dij (t)-; 0. 
t .... 0G 

4 

the nonergodic behaviour is characterized 
of the correlator Dij (t) when t-+oo, i.e. 

(21) 

' 

And it is the nonergodicity parameter L that is connected 
with the experimentally observable difference between FC and 
ZFC susceptibilities 1131 , namely 

L- T(XFC -X zFc) • (22) 

The Fourier transform of Lij may be extracted from the rela
xation function Dq(z) in the way 

-1 -1 
l q = lim (- zD q ( z ) ) = ( 1 + m q ) , 

Z-+ io 
where 

(23) 

mq =lim (-zKq(z)). (24) 
z-+ io 

According to the fluctuation-dissipation theorem the appearan
ce of the pole for Dq(z) leads to a singular behaviour of 
the spectral function 

Dij ((L)) = "lij S((L)) +reg. (25) 

To simplify further calculation we neglect the dispersion of 
the relaxation kernel by adopting the approximation mij = aljm 
which with account for eqs. (18) and (24) yields 

m = f(T, H)(L+ L3) , (26) 

where L = Lii denotes the local nonergodicity parameter. Thus, 
from eqs.(IS)-(26) we obtain the self-consitent equation for L 

1 
L=- ~ L 

N q 
q 

f(T, H)(L+L3 ) 
1 + f(T, H)(L+ L~· 

(27) 

The transition temperature Tc(H) to the nonergodic state is 
determined by the equation 

I.(T c , H ) = 0 , (28) 

or equivalently by the equation f(Tc,H) = I. It is worth no
ting that the critical temperature Tc(H) from (28) coincides 
exactlt with the glassy temperature obtained in the SCG mo
del111 • It is easy to check that at T ~ Tc(H) the equation 
(27) has the only stable solution, namely a trivial one L = 0. 
Taking into account an explicit form of f(T,H) (see (19)), let 
us rewrite eq.(27) in the form 

3 2 2 2 
L -l +L-(1-T /Tc(H))=O. (29) 
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The general form of T,(H) is given by (28). In what follows 
we shall consider some special cases for three regions on 
the phase diagram T-H, namel~ 1111 

(I) H < H~ (the Meissner phase) 

Tc (0) - T c(H) 2 H 2 t 
(-) . H c = 3H 0 1 4 

Tc (O) vs Ho 

T (O) = JN I 2. c 

(II) H ~ > H > H~ (the superconductive glass phase) 

T c (O) - T c (H) 

Tc(O) 

Hu 
c 

15H 
0 

1 
~ (6 IH 2 ) 1/3.._2/3 y3 o H , 

(III) H > H~ (the Josephson spin glass phase) 

2 2 Tc(H) = Tc(,.,)(1 + 3NH
0

12H ) , 

T c ( oo) = J v N I 2 • 

(30) 

(3 I) 

(32) 

(33) 

(34) 

(35) 

Here N is the number of superconductive clusters, H~(H~) is 
the lower (upper) critical magnetic field (see/9, 110. 

In Fig.l the calculated by (29) values of L versus T/Tc(O) 
are shown (solid lines) in the regions (I)-(III). For compari
son, experimental data on FC and ZFC susceptibility differen
ces are plotted $dotted lines) for La-Ba-Cu-0 11 ~ Y-Ba-Cu-014 ~ 
and Gd-Ba-Cu-017 , respectively. As we see, at least in the 
region of not very low temperatures (where ordinary activa
tion processes may play an essential role) there is a good 
qualitative agreement of theoretical calculations and experi
mental results. It is interesting to note that as follows from 
(29) the dependence of L on T/Tc (H) has a universal shape in 
the whole region of applied magnetic field variation (see 
Fig.2). As we are to see in Sect. 3 this temperature-field 
dependence is presented also in the critical low-frequency 
region. 
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Fig.l. The dependence of the 
nonergodicity parameter L (29) 
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3. LOW-FREQUENCY CRITICAL DYNAMICS 

Following1131 let us consider in more detail the low-fre
quency behaviour of relaxation function Dij (z) ( 15) and,conse
quently (see (11)-(13)) the long-time behaviour of magnetiza
tion M(t) in a critical region, where Ill« 1, l = (T- Tc)/Tc• 
In the single-site approximation for the relaxation kernel 
Kij (t) (18) one geta 

K(t) = Ku (t) = f(T, H)D(t) + ip.. (36) 

The term p. = K'(o) corresponds to a regular contribution to 
the diffusive behaviour of relaxation function at T ~ Tc(H). 
In the hydrodynamic regime (q ~ 0, z ~ O) the relaxation 
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function is defined by the spin diffusivity d- 1/~ in a man
ner 

2 -1 D(q,z)--(Z+iQ d) • (37) 

Thus, at T ~ Te(H) the Josephson spin (superconductive) fluc
tuations propagate according to a diffusion equation with 
coefficient d. In this case the motion is ergodic. At T <Te(H) 
the situation changes drastically. The correlation function 
now has to exhibit a zero-frequency pole (see (23)) leading 
to a singular behaviour of the spectral function 

, 2 2 -1 D (q, cu)- 7T8(cu)(1 + r q ) 
0 

(38) 

with a strong reactive character. Here the corrr,latio~Jadius 
of spatial spin disturbances r 0 - lim lim (cuK (Q,cu)) in 

h h d d · · · cu-+0 q-+0 t e y ro ynam1c approx1mat1on. 
So, below Te(H) the system is in the nonergodic state. 

According to (16) and (36), when lz/1-'l « 1 and 1£1 « 1, the 
equation for D(z) has the form 

D(z)(l- zD(z)) = i~ + f(T, H)D(z). (39) 

From (19) and (20) it follows that near Te(H) f(T,H) ::: 
= T~(H)/T 2 , where the form of Te(H) is given by (29). The so

lution of eq. (39) is (cf. /13,211) 

ll D(z) = -- g(~), 
I ( I 

where 

{ 

1 + (1 - i ~) \.1' 

g( ~) = 

2 i 

-T + 1 + <t- i ~) 114 • 

~ = z/cue' cue= c2f~. 

(40) 

T ~ T e(H) 

(41) 

T<Te(H), 

(42) 

In view of (15) for the time evolution of the critical relaxa
tion function we have 

8 

,;l 

j 

e__,. 
lc I(-=- erfc(yir )) , 

\/ 1T T 

T > Te(H) 

D(t) = (~I 1rt)l-l, T Te(H) (43) 

e-r -
L£ + 1£1(---erfc(yir)),T < Te(H), 

JTff" 

where r=tcue' L£ = -21£I·O(Te-T) is a critical nonergodicity 
parameter. , 

At last, the behaviour of the spectral function D (cu) below 
Tc(H) is governed by the expression 

" lei 2 2 -~ 
D (cu ) = " L( · 8 ( cu ) + -- (1 + cu I cu ) 

(I) e 
(44) 

e 

From eqs.(40)-(42) one obtains the well-known in the theory 
of glasses 113• 21 ~ynamic scaling law 

2 
~. D( ~ z, ~cu) D(z, cu) · (45) 

Moreover, according to (43) the critical crossover from the 
PXOPTimPnt"<:tl f<tt- 'I' <' 'I' ""..1 'I'"- 'T' \ .. ~ --··-- 1--- /-~ "' ~ "' ' 

behaviour is ~;~r~duc~d {~f.i 13 • 2 if). ~Tb~~~;itt~;l 'i;e~u~n~;' 
cue separates the hydrodynamical regime (I z I «cue> from the 
critical one (lzl >>cue) which in turn leads to the following 
asymptotic behaviour of spectral function 

21-' 2 2 
(I) <<(I) e 

D "<w) ::: 

-~-£~-(1-cu /2rue), 
(46) 

T 2 2 
V-(1-cue/2cu ), 

(I) 
cu >> cue • 

Due to the dynamic character of the model (I) the scaling be
haviour in time (frequency) leads near T e (H) to the corres
ponding scaling behaviour in space (wave-vector) (cf/181).As 
a result we have found that when approaching the critical 
point from the ergodic phase (T _. T+(H)), the Josephson spin 
diffusivity decreased to zero like ~ - IE I , while when appro
aching it from the nonergodic SCG phase (T -+ T~(H)), the cha
racteristic length for the spatial ~read of superconductive 
fluctuations diverged like r0 - IE 1-'• . So we may say that 
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the obtained in this Section results confirm in a sense the ar
guments of Giovannello 1221concerning the unive~sality class 
of spin glass and superconductive glass models. 

In paper 1101the critical low-frequency dynamics for an 
analogous to (1) model has been considered; but in the region 
of high fields (H > Hu) only. In this region (the JSG phase, 
see (34)) we agree wifh them. 

4. LONG-TIME RELAXATION OF MAGNETIZATION 

In this Section we are dealing with a long-time relaxation 
of remanent magnetization M(t) to its equilibrium value M~. 
The long-time behaviour of some physical quantities in the 
glass phase is due to the nonergodicity of the latter. Really, 
as is shown in Sect. 2, below Tc(H) the equilibrium value of 
magnetization is of the form M~ = limM(t) = M0 L(T,H), where 

t-+"" 
the nonergodicity parameter L(T,H) is given by (29). In the 
model under consideration according to (11)-(14) the time 
evolution of the magnetization is governed by the time-depen
~ent correlation function of superconductive fluctuations 
Dij (t) (see (10)). The latter in turn is defined by the sys
tem (15)-(18). In general this system of equations permits 
only numerical investigation. That is why we consider some of 
1ts solutions using the well-known empirical relaxation laws 
as ansatz. 

As is known120/, in the glass~like state the exponential 
relaxation is substituted by the logarithmic one, and further 
(with increasing observation time) by the Kohlrausch-like law 
(a-relaxation), which in terms of the correlator D(t) has the 
form 

D(t) = De exp(-t/3) . (47) 

Considering (47) an ansatz one gets from (15)-(18) a coupled 
system for parameters De and /3 as 

3 2 2 2 
De- De+ De- (1- T /T

0
(H)) = 0, 

2 
/3 =- ln3/ln(D f/(f- 1)) , c 

(48) 

(49) 

··where the function f(T,H) is defined by (19). Comparing (48) 
and (29) we conclude that De = L. According to the experimental 
data the glassy properties of oxide superconductors show the 
strongest peculiarities near Tc(H). From eqs. (19), (29) and 
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(49) for the region T ::; Tc(H) we have within a proper accuracy 

f(T, H)::: T~(H)/T 2 , L(T, H)= (f- 1)/f, 

{3(T, H)"" -ln3/lnL(T, H) . 

(50) 

(51) 

Note that the form of Tc(H) is given by (28) in the general 
case and by (30)-(35) in some special cases. 

For the observation times t which satisfy a requirement 
lnt :S 1 for 0 < /3 < 1 (i.e. when T .$ Tc(H)) from (47) one 
obtains within a logarithmic accuracy that 

M(t) = M D(t):: M (L- s lnt), 
0 0 

(52) 

where the magnetic viscosity coefficient s has the form 

1 dM(t) 
s (T , H) = - - -- = l.(T, H) · /3 (T , H) . 

M0 d lnt 
(53) 

Thus, we have found the relation between Kohlrausch exponent 
/3 and commonly used magnetic viscosity coefficients. Using 
(51) one gets within the same accuracy. 

s(T, H)= -l.(T, H)· ln3/lnL(T, H). (54) 

Fig.3 shows (solid line) the calculated by (54) behaviour of 
s(T) versus T/Tc(H). The points represent the experimental 
data 161 on Y-Ba-Cu-0 after cooling in the field H = 500 G. As 
is seen a rather good qualitative agreement in the region of 
not very low temperatures is obtained (for discussion see 
Sect. 5). 

Let us now consider a power long-time relaxation of the 
trapped flux which is observed at longer times. We look for 
the solution of the system (15)-(18) at t >> 1 (see (8)) in 
the form 

-a 
D(t)= D"" + L(T, H)t , 0 <a< 1, Doo = L. (55) 

As a result for the dependence on temperature and applied 
magnetic field of the exponent a (T,H) in the region T .~ Tc(H) 
one gets 

a (T , H) = 1 - L 1: T , H) 

3 
2 • 

- L (T,H) 
(56) 

II 
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Fig.3. The temperature beha
viour of the magnetic visco
sity coefficient (54) (solid 
line) in comparison with the 
experimental data (points) 
for YBa j:u 3o1 

in the field 
H=50QG16, 

0.05 
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1.0 
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Fig.4. The comparison of the 
theoretical curve (solid line) 
for the exponent of power re
laxation law (56) with the 
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for YBa {:u, 30 ~ . 
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d. 

0.35 

0.3 
0 10 

• magnetic field dependence of 

H/Ho 

the power relaxation law expo
nent(56) and experimental da
ta (points) for La a-:r.Sr:r.CuO 4 
in the region of superconduc
tive glass 151• 

20 

Fig. 4 shows the temperature dependence of a (T) at a fixed 
value of magnetic field calculated by (56) (solid line). The 
points represent the experimental data/8/ for the Y-Ba-Cu-0 
system. 

The behaviour of a versus applied magnetic field H below 
Tc in comparison with the experimental data 151 for La-Sr-Cu-0 
in the region of SCG phase (see (33)) is illustrated in Fig.5. 

12 

To summarize, we have obtained the following picture for 
the long-time relaxation of remanent magnetization in the 
SCG model. The slowest part of the time decay of M(t) is 
ruled by the logarithmic law (52) which (when the observation 
time increases) is substituted by the Kohlrausch-like law (47) 
with exponent ~(T,H) (see (51)). At longer times of observa
tion the a -relaxation is distorted by a new ~-relaxation 

(power law) mechanism of the magnetization time decay. At 
last, for extremely achieved experimental times the system 
decays according to the power law (55) with a nontrivial tem
perature-field dependence of exponent a(T,H) (see (56)). 

5. DISCUSSION 

The main result of this paper is as follows. By a relative
ly simple model (I) one may quite satisfactorily describe non
equi 1 ibr ium properties of oxide superconductors /J-8' 12 -'. The 
nonequilibrium behaviour of the system is shown to be in close 
relation to the nonergodicity parameter (27) which plays the 
role of the dynamical order parameter for the glass-like sta
te. Its temperature behaviour can be determined from experi
mental data on FC and ZFC according to (22). The experimental 
check of the critical crossover in the behaviour of the time
ciepencienL relaxation tunct1on (43) near Tc(H) is of interest. 
It should be emphasized that there exists the temperature
field scaling both for the nonergodicity parameter and for 
the low-frequency relaxation function (see discussion in the 
end of Sects. 2 and 3). 

Most important in understanding the glass-like properties 
is the investigation of their long-time relaxation behaviour. 
The calculated in Sect. 4 parameters of nonexponential decay 
laws and the discussed in the end of Sect. 4 the hierarchy of 
relaxation regimes are in qualitative agreement with the 
known experimental data. Note that the slow dynamics of oxide 
superconductors is more complicated than in the ordinary spin 
glasses-' 18 /. For example, in the low-temperature region (be-

low Tc/2) there is the well-known Anderson relaxation mecha
nism /19/ Jue to the flux creep, in which the trarped flux is 
also known to decay in a logarithmic fashion 117 but with ~ li
near dependence of magnetization rate on temperature (cf.I&S0. 
However, when T ~ Tc(H) slow relaxation becomes accompanied 
by a nonlinear temperature-field behaviour of magnetic visco
sity/6/ in agreement with the predictions of the SCG model (1). 
Thus, to check the adequacy of the considered model (I) one 
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needs more detailed experimental studies to be carried out 
on long-time relaxation dynamics of oxide superconductors. 
The obtained in Sect. 4 system of equations for the correla
tion function of superconductive fluctuations allows one to 
get complete information on the time dependnece of remanent 
magnetizat~on without empirical laws (47) and (55). 
. The most interesting region on the phase diagf.am H-T is 
surely the region of weak magnetic fields (H <H), where 
the frustration is still weak and, thus, a more ~omplicated 
behaviour is expected. Indeed, the recent experiments of Gio
vannello et al:/23/ indicate pthe existence.of fine s7ructure 
on the phase d~agram at H < H0• A more deta~led exper~mental 
study in this region may provide important information to 
improve the SCG model. 
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